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Abstract: piRNAs play pivotal roles in maintaining genome stability, regulating gene expression, and
modulating development and immunity. However, there are few piRNA-associated studies on honey-
bees, and the regulatory role of piRNAs in the development of bee guts is largely unknown. Here,
the differential expression pattern of piRNAs during the developmental process of the European
honey-bee (Apis mellifera) larval guts was analyzed, followed by investigation of the regulatory
network and the potential function of differentially expressed piRNAs (DEpiRNAs) in regulating gut
development. A total of 843 piRNAs were identified in the larval guts of A. mellifera; among these,
764 piRNAs were shared by 4- (Am4 group), 5- (Am5 group), and 6-day-old (Am6 group) larval
guts, while 11, 67, and one, respectively, were unique. The first base of piRNAs in each group had a
cytosine (C) bias. Additionally, 61 up-regulated and 17 down-regulated piRNAs were identified in
the “Am4 vs. Am5” comparison group, further targeting 9, 983 genes, which were involved in 50 GO
terms and 142 pathways, while two up-regulated and five down-regulated piRNAs were detected
in the “Am5 vs. Am6” comparison group, further targeting 1, 936 genes, which were engaged
in 41 functional terms and 101 pathways. piR-ame-742536 and piR-ame-856650 in the “Am4 vs.
Am5” comparison group as well as piR-ame-592661 and piR-ame-31653 in the “Am5 vs. Am6”
comparison group were found to link to the highest number of targets. Further analysis indicated
that targets of DEpiRNAs in these two comparison groups putatively regulate seven development-
associated signaling pathways, seven immune-associated pathways, and three energy metabolism
pathways. Moreover, the expression trends of five randomly selected DEpiRNAs were verified based
on stem-loop RT-PCR and RT-qPCR. These results were suggestive of the overall alteration of piRNAs
during the larval developmental process and demonstrated that DEpiRNAs potentially modulate
development-, immune-, and energy metabolism-associated pathways by regulating the expression
of corresponding genes via target binding, further affecting the development of A. mellifera larval guts.
Our data offer a novel insight into the development of bee larval guts and lay a basis for clarifying
the underlying mechanisms.

Keywords: honey-bee; Apis mellifera ligustica; piRNA; gene expression; regulatory network; larva;
gut; development

1. Introduction

Piwi-interacting RNAs (piRNAs) are types of small non-coding RNAs (ncRNAs),
with a length distribution from 24 nucleotide (nt) to 32 nt [1]. Accumulating evidence
shows that piRNAs play critical roles in suppressing transposons and maintaining genome
stability [2,3]. Dissimilar to miRNA, piRNAs are transcribed from single-stranded RNA
via a dicer-independent mechanism and function by interacting with P-element-induced
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wimpy testis (Piwi) proteins [4,5]. Structurally, piRNAs have no secondary hairpin struc-
tures, with a uridine (U) base bias at the 5′ end and an adenosine (A) at position 10 [6].
However, piRNA has been proved to specifically bind to target mRNA in an miRNA-like
way [7]. There are two major pathways to generate piRNAs: the primary processing
pathway and the ping-pong cycle that amplifies secondary piRNAs [8]. In somatic and
germline cells, piRNA precursors are transcribed from piRNA clusters in the nucleus,
which are processed by the endonuclease Zucchini (Zuc) to produce piRNA intermediates,
and subsequently piRNAs can be loaded into Piwi or Aubergine (Aub) to form piRNA-
induced silencing complexes (piRISCs), which are further trimmed by exonuclease and
2′-O-methylation of piRNAs with Hen1 (nascent helix-loop-helix 1) to produce mature
piRNAs. Whereas secondary piRNAs are produced only in germ cells by secondary ex-
pansion of Argonaute 3 (AGO3) protein with Aub-piRISCs. This process is also known
as the ping-pong pathway [6,9–11]. Recent studies demonstrated that piRNAs, as newly
emerging regulators of gene expression, could exert functions in an array of biological
processes such as immune response and development [12,13]. For example, Wang et al. [14]
discovered that piRNAs in Aedes albopictus were involved in the host antiviral immune
response to Dengue virus 2 (DENV-2) infection.

Honey-bees are capable of pollinating a substantial quantity of wildflowers and crops,
thus playing a pivotal part in the maintenance of ecological balance and the survival of
mankind [15]. As one of the most widely distributed subspecies of A. mellifera, A. m.
ligustica are commercially reared in China and other countries for their great economic
value [16]. The insect gut is an essential organ for food digestion, nutrient absorption,
and immune defense [17]. Previous works were mainly focused on the adult bee gut
and intestinal microorganisms [18,19]. Previously, our group conducted a series of stud-
ies on ncRNA-regulated development of honey-bee guts, e.g., Guo et al. systematically
identified long non-coding RNAs (lncRNAs) in A. m. ligustica workers’ midguts and an-
alyzed DElncRNA-regulated parts in midgut development [20]. Guo et al. deciphered
the differential expression profile of circle RNAs (circRNAs) in the midgut tissues of A.
m. ligustica workers and putative roles of DEcircRNAs in midgut development [21]. Guo
et al. also conducted transcriptome-wide identification of microRNAs (miRNAs) in the
A. m. ligustica larval guts followed by investigation of DEmiRNA-mediated regulation
of gut development [22]. However, little progress on piRNAs engaged in regulating the
development of the bee gut has been made to date.

In the previous study, our group performed deep sequencing of 4-, 5-, and 6-day-old
larval guts of A. m. ligustica followed by the identification and investigation of miRNAs
using bioinformatics [23]. Currently, whether and how piRNAs regulate the development
of A. m. ligustica larval guts are still largely unknown. Here, to decipher the expression
profile of piRNAs during the developmental process of A. m. ligustica larval guts, piRNAs
in larval guts were identified and validated based on the obtained high-quality sRNA-seq
datasets, and differentially expressed piRNAs (DEpiRNAs) were then analyzed followed
by target prediction and regulatory network investigation. DEpiRNAs and corresponding
target genes that were associated with the development of the larval gut are discussed.
the findings in the present study will provide a novel insight into the development of
the honey-bee larval gut and a basis for illustration of the piRNA-regulated mechanism
underlying gut development.

2. Materials and Methods
2.1. Bee Larvae

The A. m. ligustica larvae that were used in this work were obtained from colonies that
were reared in the apiary at the College of Animal Sciences (College of Bee Science), Fujian
Agriculture and Forestry University, Fuzhou City, China.
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2.2. Source of sRNA-seq Data

The larval guts of A. m. ligustica that were 4-, 5-, and 6-days-old (Am4, Am5, and
Am6 groups) were previously prepared. Each of the aforementioned three groups con-
tained three larval guts, and there were three biological replicas that were used in this
experiment [22]. Am4, Am5, and Am6 groups were subjected to cDNA library construction
and deep sequencing using small RNA-seq (sRNA-seq) technology where 38, 011, 613; 43,
967, 518 and 39, 523, 034 raw reads were produced, and after quality control, 32, 524, 933;
36, 113, 035 and 27, 691, 488 clean tags were gained, respectively. The Pearson correla-
tion coefficients between three different biological replicas within each group were above
98.22% [23]. The raw data that were generated from sRNA-seq were deposited in the NCBI
SRA database under the BioProject number: PRJNA408312.

2.3. Identification and Investigation of piRNAs

A. m. ligustia piRNAs were identified according to our previously described proto-
col: (1) The clean reads were mapped to the reference genome of A. mellifera (Assembly
Amel_4.5), and the mapped clean reads were further aligned to GeneBank and Rfam (11.0)
databases to remove small ncRNA including rRNA, scRNA, snoRNA, snRNA, and tRNA
(2) miRNAs were filtered out from the remaining clean reads; and (3) sRNAs with a length
distribution from 24 nt to 33 nt were screened out based on the length characteristics
of piRNAs, and only those that aligned to a unique position were retained as candidate
piRNAs. Next, first base bias of piRNAs in each group was summarized on the basis of the
prediction result.

2.4. Target Prediction and Analysis of DEpiRNAs

The expression level of each piRNA was normalized to tags per million (TPM) fol-
lowing the formula TPM = T × 106/N (T denotes clean reads of piRNA, N denotes clean
reads of total sRNA). The fold change of the expression level of each piRNA between
two different groups was determined following the formula: (TPM in Am5)/(TPM in
Am4) or (TPM in Am6)/(TPM in Am5). On basis of the standard of p-value ≤ 0.05 and
|log2(Fold change)| ≥ 1, DEpiRNAs in “Am4 vs. Am5” and “Am5 vs. Am6” comparison
groups were screened out. TargetFinder software was used to predict the target genes of
DEpiRNAs [24]. The targets were aligned to the GO (https://www.geneontology.org/,
(accessed on 7 October 2022)) and KEGG (https://www.genome.jp/kegg/, (accessed on
7 October 2022)) databases using the BLAST tool to obtain corresponding annotation.

2.5. Construction and Analysis of Regulatory Network of DEpiRNAs

The gut of insects including the honey-bee is not only a key organ for food diges-
tion and nutrition absorption [25], but also a pivotal position for immune defense and
host-pathogen interactions [26]. In addition, the developmental process of the bee gut was
suggested to be accompanied with the development of immune and energy metabolism [22].
Therefore, DEpiRNAs that are relevant to immune and energy metabolism pathways as
well as corresponding regulatory networks were further investigated in this current work.
Following the KEGG pathway annotations, the target genes annotated in development-,
immune-, and energy metabolism-associated signaling pathways were further surveyed,
respectively, and the threshold for screening the targeted binding relationship was set
as a binding free energy of less than −15 kcal/mol; the regulatory networks were con-
structed based on the targeting relationship between DEpiRNAs and genes, followed by
visualization utilizing Cytoscape software [27] with default parameters.

2.6. Validation of DEpiRNAs by Stem-Loop RT-PCR

The total RNA from 4-, 5-, and 6-day-old A. m. ligustica larval guts were extracted
using a FastPure® Cell/Tissue Total RNA Isolation Kit V2 (Vazyme, Nanjing, China). The
concentration and purity of RNA were checked with a Nanodrop 2000 spectrophotometer
(Thermo Fisher, Waltham, MA, USA). A total of five DEpiRNAs were randomly selected
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for stem-loop RT-PCR validation, including four (piR-ame-1146560, piR-ame-1183555, piR-
ame-387266, and piR-ame-856650) from the “Am4 vs. Am5” comparison group and one
(piR-ame-592661) from the “Am5 vs. Am6” comparison group. Specific stem-loop primers
and forward primers (F) as well as universal reverse primers (R) were designed using
DNAMAN software and then synthesized by Sangon Biotech Co., Ltd. (Shanghai, China).
According to the instructions of HiScript ® 1st Strand cDNA Synthesis Kit, cDNA was
synthesized by reverse transcription using stem-loop primers and used as templates for
PCR of DEpiRNA. Reverse transcription was performed using a mixture of random primers
and oligo (dT) primers, and the resulting cDNA were used as templates for PCR of the
reference gene snRNA U6. The PCR system (20 µL) contained 1 µL of diluted cDNA,
10 µL of PCR mix (Vazyme, Nanjing, China), 1 µL of forward primers, 1 µL of reverse
primers, and 7 µL of diethyl pyrocarbonate (DEPC) water. The PCR was conducted on
a T100 thermocycler (Bio-Rad, Hercules, CA, USA) under the following conditions: pre-
denaturation step at 95 ◦C for 5 min; 40 amplification cycles of denaturation at 95 ◦C for
10 s, annealing at 55 ◦C for 30 s, and elongation at 72 ◦C for 1 min; followed by a final
elongation step at 72 ◦C for 10 min. The amplification products were detected on 1.8%
agarose gel electrophoresis with Genecolor (Gene-Bio, Shenzhen, China) staining.

2.7. Verification of DEpiRNAs by RT-qPCR

The RT-qPCR was carried out following the protocol of SYBR Green Dye kit (Vazyme,
Nanjing, China). The reaction system (20 µL) included 1.3 µL of cDNA, 1 µL of forward
primers, 1 µL of reverse primers, 6.7 µL of DEPC water, and 10 µL of SYBR Green Dye.
RT-qPCR was conducted on an Applied Biosystems QuantStudio 3 system (Thermo Fisher,
Waltham, MA, USA) following the conditions: pre-denaturation step at 95 ◦C for 5 min,
40 amplification cycles of denaturation at 95 ◦C for 10 s, annealing at 60 ◦C for 30 s, and
elongation at 72 ◦C for 15 s, followed by a final elongation step at 72 ◦C for 10 min. The
reaction was performed using an Applied Biosystems QuantStudio 3 Real-Time PCR System
(Themo Fisher). All the reactions were performed in triplicate. The relative expression
of piRNA was calculated using the 2−∆∆Ct method [28]. Detailed information about the
primers that were used in this work is shown in Table S1.

2.8. Statistical Analysis

Statistical analyses were conducted with SPSS software (IBM, Amunque, NY, USA)
and GraphPad Prism 7.0 software (GraphPad, San Diego, CA, USA). Data were presented
as the mean ± standard deviation (SD). Statistics analysis was performed using Student’s
t-test. Significant (p < 0.05) GO terms and KEGG pathways were filtered by performing
Fisher’s exact test with R software 3.3.1 [29,30].

3. Results
3.1. Identification and Characterization of piRNAs in A. m. ligustica Larval Guts

A total of 843 piRNAs were identified in the larval guts of A. m. ligustica; among these,
764 piRNAs were shared by Am4, Am5, and Am6 groups, while 11, 67, and one, respectively,
were unique. Additionally, the first base of piRNAs in Am4, Am5, and Am6 groups had a C
bias (Figure 1A). Further investigation showed that the length distribution of the identified
piRNAs in Am4, Am5, and Am6 groups were from 24 nt to 33 nt (Figure 1B), similar to the
findings in other animals such as the Mongolian horse and Scylla paramamosain [31,32].
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3.2. Differential Expression Profile of piRNA during the Developmental Process of Larval Guts

Here, 78 DEpiRNAs were identified in the “Am4 vs. Am5” comparison group, includ-
ing 61 up-regulated and 17 down-regulated piRNAs. Among these, the most significantly
up-regulated one was piR-ame-1009988 (log2FC = 14.52, p = 7.22 × 10−5), followed by
piR-ame-14055 (log2FC = 14.52, p = 7.22 × 10−5) and piR-ame-456655 (log2FC = 14.52,
p = 7.22 × 10−5), while the three most significantly down-regulated DEpiRNAs were
piR-ame-1223398 (log2FC= −11.38, p = 3.19 × 10−9), piR-ame-1186994 (log2FC= −1.66,
p = 0.041), and piR-ame-1077365 (log2FC= −1.65, p = 0.001) (Figure 2A). A total of seven
DEpiRNAs were identified in the “Am5 vs. Am6” comparison group, including two up-
regulated and five down-regulated piRNAs. Among these, the two most significantly up-
regulated DEpiRNAs were piR-ame-1243913 (log2FC = 3.01, p = 0.019) and piR-ame-592661
(log2FC = 1.14, p = 0.005); whereas the most significantly down-regulated piRNAs were
piR-ame-1173337 (log2FC = −10.96, p = 1.34 × 10−5) and piR-ame-31653 (log2FC = −10.96,
p = 1.34 × 10−5), followed by piR-ame-1246710 (log2FC = −1.18, p = 0.045) (Figure 2B).
Detailed information about DEpiRNAs is presented in Table S2.

3.3. Target Prediction and Annotation of DEpiRNA

DEpiRNAs in the “Am4 vs. Am5” comparison group can target 9, 983 genes, which
could be annotated to 20 biological process-related GO terms such as cellular processes
and RNA biosynthetic processes, 11 molecular function-related GO terms such as cation
channel activity and cation binding, and 19 cellular component-related GO terms such as
cell and membrane parts (Figure 3A). DEpiRNAs in the “Am5 vs. Am6” comparison group
can target 1, 936 genes, and these targets could be annotated to a total of 41 GO terms,
including cation transport, cation channel activity, and cells. (Figure 3B).
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In addition, the target genes of DEpiRNA in the “Am4 vs. Am5” comparison group
could be annotated to 142 pathways such as Wnt signaling pathway, propanoate metabolism,
and Hippo signaling pathway (Figure 4A). Those in the “Am5 vs. Am6” comparison group
can be annotated to 101 pathways including the Hippo signaling pathway, RNA degrada-
tion, and phototransduction (Figure 4B).
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3.4. Investigation of Regulatory Network between DEpiRNAs and Target Genes

In the “Am4 vs. Am5” comparison group, 54 up-regulated piRNAs could target 9,
398 genes, while 14 down-regulated piRNAs could target 3, 606 genes; each of these DEpiR-
NAs can target more than two genes, with piR-ame-742536 and piR-ame-856650 binding
to the highest number of target genes (1, 421 and 1, 437). Additionally, two up-regulated
piRNAs in the “Am5 vs. Am6” comparison group could target 604 genes, whereas four
down-regulated piRNAs could target 1, 473 genes. Each of these DEpiRNAs can target
more than two genes, with piR-ame-592661 and piR-ame-31653 linking to the highest
number of target genes (447 and 839).

The regulatory network was constructed and analyzed, and the results showed that
202 and 58 target genes in the above-mentioned two comparison groups were involved
in seven development-associated signaling pathways such as Hippo, Notch, and mTOR
signaling pathways, whereas 255 and 39 targets were engaged in seven immune-associated
pathways including endocytosis, the Jak/STAT signaling pathway, and ubiquitin-mediated
proteolysis (Figure 5A). Additionally, 33 and 12 targets were found to be enriched in
three energy metabolism pathways, namely sulfur metabolism, nitrogen metabolism, and
oxidative phosphorylation (Figure 5B). Detailed information about the targeting relation-
ship between DEpiRNAs and genes relative to the development, immune, and energy
metabolism pathways are shown in Table S3.

3.5. Stem-Loop RT-PCR and RT-qPCR Verification of DEpiRNA

The stem-loop RT-PCR results indicated that fragments with an expected size (about
60–80 bp) were amplified from five randomly selected five DEpiRNAs (Figure 6), which
verified the expression of these DEpiRNAs in the A. m. ligustica larval gut.

Further, RT-qPCR results suggested that the expression trend of these five DEpiRNAs
were consistent with sRNA-seq datasets, confirming the reliability of our transcriptome
data (Figure 7).
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4. Discussion

Here, sRNA-seq datasets derived from 4-, 5-, and 6-day-old A. mellifera larval guts
were used following two major considerations: (1) the larval stage of the honey-bee lasts
for 6 days, 1- and 2-day-old larvae are very small and manual transfer is likely to cause
larval death. It was found after artificial transfer of 3-day-old bee larvae to 24-well culture
plates that the larvae can maintain a high survival rate up to 6-days-old in a constant
temperature and humidity chamber under lab conditions [33]. (2) we had already per-
formed deep sequencing of 4-, 5-, and 6-day-old A. m. ligustica larval guts using sRNA-seq,
and deciphered the differential expression profile of miRNAs and the putative roles of
DEpiRNAs in the regulation of larval gut development based on the obtained high-quality
sequencing data [23]. Our team previously predicted 596 piRNAs in the A. m. ligustica
workers’ midguts based on bioinformatics [34]. In this current work, 843 piRNAs were
identified in the larval guts of A. m. ligustica, with a length distribution among 24 nt~33 nt.
Further analysis showed that as many as 519 (61.57%) piRNAs were shared by the workers’
midguts and larval guts of A. m. ligustica, whereas the numbers of unique piRNAs were
324 and 77. It is inferred that the shared piRNAs are likely to play a fundamental role in
various developmental stages of A. m. ligustica larval guts, while the unique piRNAs may
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play different roles in different developmental stages. In view of the limited information
on bee piRNA, the piRNAs that were identified in the present study further enrich the
reservoir of piRNAs in European honey-bee and offer a valuable genetic resource for related
studies on other bee species.

In animals, piRNAs were verified to participate in the regulation of growth, develop-
ment, and embryogenesis. Based on the overexpression and knockdown of piRNA-3312,
Guo et al. [35] found that piRNA-3312 targeted the gut esterase 1 gene to decrease the
pyrethroid resistance of Culex pipiens pallens. Praher et al. [36] found that piRNAs were
significantly differentially expressed in the early developmental stages of Nematostella
vectensis, indicative of the regulatory role of piRNAs in development. Here, 78 and seven
DEpiRNAs were observed in “Am4 vs. Am5” and “Am5 vs. Am6” comparison groups,
respectively, indicating that the process of the larval gut of A. m. ligustica was accompa-
nied by the differential expression of piRNAs, and these DEpiRNAs may be engaged in
regulating development of A. m. ligustica larval gut. DEpiRNAs in the “Am4 vs. Am5”
and “Am5 vs. Am6” comparison groups were found to target 9, 983 genes. In addition,
1, 936 target genes were involved in metal ion transport and calcium ion transport terms
relative to biological processes, membrane parts, and membrane terms relative to cellular
components, and cation channel activity and ion channel activity relative to molecular
function. Additionally, the targets of DEpiRNAs in the aforementioned two comparison
groups were involved in four and three development-associated terms such as metabolic
processes and development processes and three and two immune-associated terms such
as immune system processes and response to stimulus. Targets in these two comparison
groups were engaged in 142 and 101 KEGG pathways, including fatty acid metabolism and
propanoate metabolism relative to metabolism, mRNA surveillance pathway and RNA
degradation relative to genetic information processing, and lysosomes and endocytosis
relative to cellular processes. Further analysis indicated that the targets were engaged in
seven and seven development-related pathways such as the Hippo signaling pathway and
Wnt signaling pathway, seven and seven immune-related pathways such as endocytosis
and the Jak/STAT signaling pathway, as well as three and three energy metabolism-related
pathways such as nitrogen metabolism and sulfur metabolism. These results demonstrate
that DEpiRNAs exerted a potential regulatory function in the A. m. ligustica larval guts by
affecting many biological processes including development, immune defense, and energy
metabolism.

Mondal et al. [37] confirmed that piRNA was capable of silencing gene expression
in an siRNA-like manner. In the present study, a complex regulatory network between
DEpiRNAs and target genes was observed, and all DEpiRNAs had more than two tar-
gets, implying that DEpiRNAs may be used by A. m. ligustica larvae to modulate target
gene expression during gut development. Additionally, piR-ame-742536 (log2FC = 11.34,
p = 5.42 × 10−7) and piR-ame-856650 (log2FC = −1.49, p = 0.0003) in the “Am4 vs. Am5”
comparison group could target 1, 421 and 1, 437 genes, respectively, while piR-ame-592661
(log2FC = 1.14, p = 0.005) and piR-ame-31653 (log2FC = −10.96, p = 1.34 × 10−5) in the
“Am5 vs. Am6” comparison group had 447 and 839 target genes, respectively. This indi-
cated that the abovementioned four DEmiRNAs were likely to play crucial parts in the
developmental process of A. m. ligustica larval guts.

As a highly conserved signaling pathway, the Wnt signaling pathway plays a key role
in maintaining the development and homeostasis of animals and in promoting intestinal
regeneration [38]. Shah et al. [39] discovered that silencing Wnt-1 at the larval stage of
Tribolium castaneum could result in larval death and abnormal pupal and adult develop-
ment. Fu et al. [40] conducted knockout of the HaWnt1 gene in Helicoverpa armigera using
CRISPR/Cas9 technology, and the results showed that the HaWnt1 signaling pathway
was essential for the embryonic development of H. armigera. Here, 68 DEpiRNAs in the
“Am4 vs. Am5” comparison group could target 58 genes involving the Wnt signaling path-
way, including piR-ame-247619 (log2FC = 2.01, p = 0.002), piR-ame-750627 (log2FC = 2.20,
p = 0.003), and piR-ame-990954 (log2FC = 11.81, p = 5.82 × 10−5). Additionally, seven
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DEpiRNAs in the “Am5 vs. Am6” comparison group could target 15 Wnt signaling
pathway-relevant genes, including piR-ame-1173337 (log2FC = −10.96, p = 1.34 × 10−5),
piR-ame-31653 (log2FC = −10.96, p = 1.34 × 10−5), and piR-ame-260979 (log2FC = −11.20,
p = 3.78 × 10−5). In insects, the Hippo signaling pathway participates in regulating body
size as well as normal growth and development [41]. The BmSd gene was characterized as
one of the Hippo signaling-pathway-related genes [42]. Yin et al. [42] detected that as many
as 57.9% of Bombyx mori showed deformed wings after BmSd knockdown. Here, we found
that 68 DEpiRNAs in “Am4 vs. Am5” group, such as piR-ame-456655 (log2FC = 14.52,
p = 7.22 × 10−5), piR-ame-5 (log2FC = 14.52, p = 7.22 × 10−5), and 14055 (log2FC = 14.52,
p = 7.22× 10−5), could target 52 genes involving the Hippo signaling pathway, whereas five
DEpiRNAs in “Am5 vs. Am6” group could target 22 genes involving the Hippo signaling
pathway, including piR-ame-31653 (log2FC = −10.96, p = 1.34 × 10−5), piR-ame-1173337
(log2FC = −10.96, p = 1.34 × 10−5), piR-ame-260979 (log2FC = −11.20, p = 3.78 × 10−5),
piR-ame-592661 (log2FC = 1.14, p = 0.005), and piR-ame-1246710 (log2FC =−1.18, p = 0.045).
Together, these results suggested that corresponding DEpiRNAs may affect Wnt and Hippo
signaling pathways through regulating target gene expression, further controlling the
growth and development of A. m. ligustica larval guts. However, additional work is needed
for the exploration of the underlying mechanism.

The immune system in insects is composed of the humoral immune system dominated
by several signaling pathways such as Imd/Toll, JAK/STAT, JNK, and insulin, and the
cellular immune system is represented by phagocytosis, melanization, autophagy, and
apoptosis [43]. The JAK/STAT signaling pathway is not only implicated in regulating cell
growth, differentiation, apoptosis, and inflammatory immunity but also participates in
gut immunity via the modulation of intestinal stem cell proliferation and epithelial cell
renewal [43,44]. Here, we observed that the JAK/STAT signaling-pathway-related genes
were targeted by 54 DEpiRNAs (piR-ame-742536, piR-ame-1183555, and piR-ame-1233036,
etc.) in the “Am5 vs. Am6” comparison group and one DEpiRNA (piR-ame-1243913) in
the “Am5 vs. Am6” comparison group, suggestive of the involvement of corresponding
DEpiRNAs in the regulation of immune defense in the larval guts. Tomato yellow leaf
curlvirus has been proven to enter whitefly Bemisia tabaci midgut epithelial cells through
receptor-mediated clathrin-dependent endocytosis [45]. Zhang et al. [46] reported that the
inhibition of endocytosis induced the proliferation of Drosophila intestinal stem cells and
massive gut hyperplasia, which further affected intestinal development and lifespan. In
this study, endocytosis-associated genes were found to be targeted by 60 DEpiRNAs in the
“Am4 vs. Am5” comparison group including piR-ame-14055 and piR-ame-456655, and five
DEpiRNAs in the “Am5 vs. Am6” comparison group such as piR-ame-31653 and piR-ame-
1173337, indicating that corresponding DEpiRNAs potentially regulated endocytosis during
the development of larval guts. Together, these results demonstrated that DEpiRNAs as
potential regulators participated in the development of A. m. ligustica larval guts. More
efforts are required to elucidate the regulatory function of these DEpiRNAs. Several groups
confirmed the feasibility and reliability of performing functional investigation of piRNAs
following the technical platform similar to miRNAs, e.g., the expression and knockdown
of a piRNA through feeding or injecting mimics and inhibitors [35,37]. In the near future,
on the basis of findings in this work, we will further select key DEpiRNAs followed by
expression and knockdown via feeding corresponding mimics and inhibitors to uncover
their functions in the development of larval guts.

5. Conclusions

Taken together, 843 piRNAs were, for the first time, identified in the A. m. ligustica
larval guts, and the first base of A. m. ligustica piRNAs had a C bias. A total of 78 piRNAs
were differentially expressed in 5-day-old larval guts compared with 4-day-old larval guts,
while only seven DEpiRNAs were detected in the 6-day-old larval gut compared with
5-day-old larval guts. Additionally, these DEpiRNAs could target 9, 983 and 1, 936 genes,
respectively, which were engaged in 50 and 41 functional terms such as the developmental
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process and immune system process and 142 and 101 KEGG pathways such as the Wnt
signaling pathway and endocytosis. Moreover, some DEpiRNAs may modulate the ex-
pression of corresponding target genes in the A. m. ligustica larval guts, further affecting
sulfur metabolism, nitrogen metabolism, oxidative phosphorylation, endocytosis, and
ubiquitin-mediated proteolysis as well as Hippo, Notch, mTOR, and Jak/STAT signaling
pathways.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13101879/s1, Table S1: Primers that were used in this study,
Table S2: Detailed information about the identified DEpiRNAs in A. mellifera larval guts, Table S3:
Detailed information about the targeting relationship between DEpiRNAs and genes relative to
development, immune, and energy metabolism pathways.
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