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Background: To date, no in-depth study has been conducted on the intrinsic

pathological relationship between altered brain activity and related behavioral changes in

patients with orbital fracture (OF).

Purpose: The present research aimed to explore the potential functional network

cerebrum activities in patients with OF using resting state functional magnetic resonance

imaging–fractional amplitude of low-frequency fluctuation (rsfMRI-fALFF). This technique

can reveal dynamic functional changes in specific cerebrum areas.

Methods: Twenty patients with OF and 20 healthy controls (HCs) were included,

closely matched in terms of gender, age, weight, and education level. To record

spontaneous cerebral activity changes, the rsfMRI-fALFF tool was applied. Receiver

operating characteristic (ROC) curves and Pearson’s correlation analysis were used to

analyze mean fALFF values in specific cerebrum regions and to explore changes of

behavioral changes in patients with OF. The Hospital Depression and Anxiety scale was

applied to reveal the relationship between emotional states and fALFF values of the right

superior temporal gyrus in patients with OF.

Results: In comparison with HCs, significantly lower fALFF values were detected in the

left anterior cingulate gyrus (LACG) and right superior temporal gyrus (RSTG) in patients

with OF. ROC curve analysis showed excellent accuracy. The mean fALFF values of the

RSTG negatively correlated with the depression score as well as the anxiety score.

Conclusion: The finding of abnormal spontaneous activities in cerebral regions

may contribute to more comprehensive understanding of the potential neural network

changes in patients with OF. The changes of fALFF value in patients with OF may help

to gauge their emotional changes and clinical recovery levels.
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INTRODUCTION

The orbital bones are fragile, with no protective surround,
making them vulnerable to orbital wall fracture (1), of which
trauma is the main cause. Previous research (2) has shown
that about half of orbital fractures are isolated and are usually
limited to one orbital wall, the orbital floor, and medial wall
being the most frequently occurring fracture sites (3). Orbital
fractures mostly occur in children and young people, and
are more common in males than females (4, 5). Chi et al.
reviewed 733 cases of orbital fractures, among which three
quarters were male (6). Conservative treatment is often used
for small orbital fractures without displacement (7), while, for
large displaced fractures, surgical intervention is necessary (8, 9).
Orbital fractures may cause exophthalmos (10), enophthalmos
(11), diplopia (12), entropion (13), subconjunctival hemorrhage
(14), and even blindness (15). Therefore, early monitoring and
termination of adverse disease progression in patients with OF
are very important. The use of modern imaging technology to
study the brain activity of patients with OF may be important as
a means by which to improve understanding of the mechanism
of potential pathological changes in this condition, and may,
therefore, be beneficial to the management of complications.
Previous studies have confirmed that the changes of spontaneous
brain activity in related brain regions can be used as an indicator
of disease progression. Therefore, we tried to explore the value
of using modern imaging techniques to explore the value of
spontaneous brain activity changes as a marker of disease
progression in patients with orbital fractures.

Magnetic resonance imaging (MRI), as a widely used auxiliary
imaging technology, was developed in the 1980s and provides
us a preliminary understanding of the anatomical structure
and operating mechanism of the brain (16, 17). Hemodynamic
changes caused by neuronal activity can be qualitatively
measured with the help of MRI technology, known as functional
magnetic resonance imaging (fMRI). This approach has been
used in a variety of studies on the mechanism and effects of
spontaneous neuronal activity in the brain, and has been helpful
in exploring the pathophysiological changes and pathogenesis
of various diseases (18, 19). The fractional amplitude of low
frequency fluctuation (fALFF), a resting state fMRI method,
has provided an index for the evaluation of spontaneous neural
activity, and its accuracy and sensitivity have been widely
confirmed (16). To our knowledge, the present experiment was
the first attempt to explore the connection between spontaneous
brain activity and behavioral performance in patients with OF
using the fALFF method as well as to explore the value of fALFF
in evaluating the pathological changes and severity of OF.

SUBJECTS AND METHODS

Subjects
In total, 20 patients with OF (12males, 8 females) and 20matched
healthy controls (HCs) participated in this research. The relevant
inclusion criteria were: (1) with optic nerve injury; (2) with
diplopia; (3) with orbital collapse; (4) with limited eyemovement;
(5) with surgical treatment; (6) no other ocular diseases (such

as macular degeneration); (7) no brain disease (such as cerebral
infarction); (8) no history of mental illness; (9) no organic
diseases likely to affect MRI examination.

The 20 HCs (12 males, 8 females) were highly similar to
the OF group in sex, age, weight, and education level. Our
study met the ethical standards of the Medical Ethics Committee
of the First Affiliated Hospital of Nanchang University as
well as the principles of the Declaration of Helsinki. After
materials, methods, purpose, and underlying risks of this
experiment were explained, each participant signed a declaration
of informed consents.

MRI Parameters
MRI scanning was conducted using a Trio 3-Tesla MR scanner
(Trio; Siemens, Munich, Berlin, Germany) in all the participants.
During the MRI scanning, other interference factors were
excluded, and the subjects remained awake, breathing normally
and with good vital signs. The whole-brainT1-weights were
obtained with the application of the spoiled gradient-recalled
echo sequence. Relevant corresponding parameter settings of
structural images were as follows: echo time= 2.25ms, repetition
time= 1,800ms, field of view= 250× 250 mm2, layer interval=
0.5mm, flip angle= 90◦, matrix= 256× 256, thickness= 1mm.
Functional images (n = 240) were captured with the following
settings: echo time = 30ms, repetition time = 2,000ms, field of
view = 220 × 220 mm2, flip angle = 90◦, matrix = 64 × 64,
thickness= 4 mm.

FMRI Data Processing
All data were pre-filtered using MRIcro (www.MRIcro.com) and
then preprocessed the filtered data using SPM8 (https://www.fil.
ion.ucl.ac.uk/spm/). In pre-filtering, the first 10 volumes were

TABLE 1 | Basic information of the participants in the study.

Condition OF HCs t P-value

Male/female 12/8 12/8 N/A >0.99

Age (years) 51.21 ± 11.42 50.96 ± 10.82 0.242 0.871

Weight (kg) 68.32 ± 9.24 69.93 ± 9.54 0.165 0.902

Handedness 20R 20R N/A >0.99

Duration of (days) 11.61 ± 4.14 N/A N/A N/A

Best-corrected VA-left

eye

0.40 ± 0.20 1.05 ± 0.20 −3.763 0.017

Best-corrected VA-right

eye

0.45 ± 0.15 1.00 ± 0.15 −3.064 0.011

Latency (ms)-right of

the VEP

118.16 ± 8.29 100.98 ± 6.17 3.554 0.017

Amplitudes(uv)-rightof

the VEP

6.87 ± 2.42 14.16 ± 1.93 −6.643 0.009

Latency (ms)-left of the

VEP

116.12 ± 7.11 101.21 ± 1.32 4.532 0.022

Amplitudes (uv)-left of

the VEP

7.42 ± 2.73 16.74 ± 2.52 −5.732 0.012

Compare two groups with independent t-tests (p < 0.05). VA, visual acuity; N/A, not

applicable; OF, orbital fractures; VEP, visual-evoked potential; HCs, healthy controls.
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FIGURE 1 | Spontaneous brain activities of and healthy controls. (A) Different fALFF areas in patients with OF. (B) The blue areas represented lower fALFF values. L,

left; R, right.
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regarded as invalid data and excluded to ensure steady signals.
The volumes were offset by no more than 2mm in X, Y, or Z
directions. On the basis of the standard echo planar imaging
template, the images were resampled and normalized (with a
standard setting of voxel size 3× 3× 3mm, and were smoothed)
to enhance the signal-to-noise ratio. This method has been
described in detail previously (20).

FALFF Analysis
To calculate fALFF, a full-width Gaussian kernel (half maximum
= 6 × 6 × 6 mm3) was used to smooth the remaining 230
images. Band-pass (0.01–0.08Hz) filtering was used to control
for movement artifacts and low frequency drift. A fast Fourier

TABLE 2 | Brain areas with significant differences in fALFF between two groups.

Brain areas MNI coordinates BA Number of voxels T value

X Y Z

Patient < HC

Cingulum_Ant_L 0 18 27 31 172 −4.6941

Temporal_Sup_R 45 −30 15 82 82 −4.399

A P-value < 0.05 was significantly different for multiple comparisons using Gaussian

random field theory (cluster 0.40 voxels, Alphasim corrected). HC, health control;

MNI, Montreal Neurological Institute; BA, Brodmann area; Cingulum_Ant_L, left anterior

cingulate gyrus; Temporal_Sup_R, right superior temporal gyrus.

transform (FFT) algorithm was used to obtain the signal power
spectrum, and fAFLL was calculated as the ratio of the amplitude
at each value in the low frequency band (0.01–0.08Hz) to full-
band (0–0.25Hz) power amplitude.

Brain-Behavior Correlation Analysis
To look for any associations between brain activity and
behavioral performance, brain regions of interest were
determined based on fALFF values, and Pearson’s correlation
analysis was used to explore the linear relationship between
activities in these regions and clinical manifestations.

Statistical Analysis
Using SPSS software version 20.0 (IBM Corp, Armonk, NY,
USA), an independent sample t-test was conducted on the
common clinical variables and demographic data of patients with
OF and HCs using a 5% significance level. A two-sample t-test
was used to compare the functional data. Based on Gaussian
random field theory, the statistical threshold of the voxel level
in multiple comparisons was set at p < 0.05. Gaussian random
field theory was used to determine the significance of the
functional image at the 5% level with a cluster size > 40 voxels.
Using the mean fALFF in various cerebral regions of HCs and
patients with OF, the areas under the ROC curves (AUC) were
obtained. In addition, Pearson correlation analysis was used
to look for associations between the mean fALFF values in
multiple cerebrum regions and characteristics of clinical behavior
in patients with OF.

FIGURE 2 | The average fALFF values in OF and HC groups. Cingulum_Ant_L, left anterior cingulate gyrus; Temporal_Sup_R, right superior temporal gyrus; fALFF,

fractional amplitude of low-frequency fluctuation; OF, orbital fractures; HC, healthy control. “*” p < 0.05.
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FIGURE 3 | ROC curve analysis of the average fALFF values in different cerebrum areas. AUCs: Cingulum_Ant_L: 0.983, Temporal_Sup_R: 1.000. Cingulum_Ant_L,

left anterior cingulate gyrus; Temporal_Sup_R, right superior temporal gyrus; AUC, area under the curve; ROC, receiver operating characteristic.

FIGURE 4 | Correlations between the average fALFF values and clinical characteristics in the RSTG. In the RSTG, the DS (r = −0.955, p < 0.01) (A) and AS (r =

−0.899, p < 0.01) (B) are both represented by a negative relationship with the fALFF values. fALFF, fractional amplitude of low-frequency fluctuation; DS, depression

score; AS, anxiety score; RSTG, right superior temporal gyrus.
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FIGURE 5 | The correlations between average fALFF signal values and clinical manifestation of patients with OF. The patients with OF have lower fALFF values, and

they are more likely to develop depressive symptoms. OF, orbital fractures.

RESULTS

Demographics and Visual Measurements
No significant differences were found between groups in terms
of gender (p > 0.99), weight (p = 0.902), or age (OF, 51.21 ±

11.42; HC, 50.96 ± 10.82; p = 0.871). However, best corrected
monocular visual parameters were significantly different between
groups, as follows: visual acuities (p= 0.017, left, and 0.011, right
eye), visual-evoked potential (VEP) latencies (p= 0.022, left, and
0.017, right eye), and amplitudes (p= 0.012, left, and 0.009, right
eye) (Table 1).

Differences in FALFF
In comparison with HCs, the patients with OF showed significant
lower fALFF values in the left anterior cingulate gyrus (LACG)
and right superior temporal gyrus (RSTG) (Figure 1, Table 2).
The mean fAFLL values are shown in Figure 2.

Receiver Operating Characteristic Curves
ROC curves were used to visualize the comparison between
average fALFF values of patients with OF and HCs, and the areas
under the curves (AUCs) were used as indicators of diagnostic

accuracy. Using this approach, AUCs of the LATG and RSTG
were found to be 0.983 and 1.000, respectively (Figure 3).

Correlation Analysis
In patients with OF, significant correlations were found between
fALFF values in the RSTG and depression scores (negative
correlation: r = −0.955, p < 0.01) and anxiety scores (negative
correlation: r=−0.899, p < 0.01) (Figure 4).

DISCUSSION

To our knowledge, the ALFF method has not previously been
used to study the potential relationship between brain activity
changes and clinical manifestations in patients with OF. This
study aimed to explore the cerebral neural changes after orbital
fracture using the fALFF technique (Figure 5). The study found
significantly lower fALFF values in the LACG and the RSTG
in patients with OF (Figure 6). In previous studies, the fALFF
method has been applied to a series of ophthalmological
diseases, including normal-tension glaucoma (20), monocular
blindness (21), retinal vein occlusion (22), diabetic retinopathy,
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FIGURE 6 | fALFF results of cerebral activity in the OF group. The fALFF values of the cerebral areas in the OF group were in the following: 1- left anterior cingulate

gyrus (t = −4.6941), 2 - right superior temporal gyrus (t = −4.399). The intensity, as well as the frequency of brain activity, is reflected by the size of spots.

TABLE 3 | The fALFF method applied in ophthalmological diseases.

Author Year Disease Brain areas

Increased fALFF values Decreased fALFF values

Li et al. (20) 2020 Normal-tension glaucoma _ RAG, RACL

Fang et al. (21) 2020 Monocular blindness LP, RPI, LPI LCA

Tong et al. (22) 2020 Retinal vein occlusion LC, RC, RB, LI RC, RT

Wang et al. (23) 2021 Primary angle-closure glaucoma BSFG LC, LMTGRMTG, RPG

fALFF, fractional amplitude of low-frequency fluctuation; RAG, right angular gyrus; LP, left precuneus; LMTG, left middle temporal gyrus; LCA, left anterior cingulate; RPI, right inferior

parietal lobe; LPI, left inferior parietal lobe; RMTG, right middle temporal gyrus; LC, left cerebellum; RC, right cerebellum; RB, right brainstem; RC, right calcarinesulcus; BSFG, bilateral

superior frontal gyrus; LIG, left lingual gyrus; RPG, right precentral gyrus; RT, right thalamus; LI, left insula; RACL, right anterior cuneiform lobe.

and nephropathy (23) (Table 3), demonstrating its potential for
clinical application.

The anterior cingulate gyrus (ACG) is a functional area
associated with many physiological functions, is located in the
medial brain and passes longitudinally through the parietal
lobe, and its main roles are in memory (24), action – outcome
learning (25–27), emotion, and reward-related processing (28).
The research of Hornak et al. (29) showed that, in some cases,
the ACG plays an important part in voice and facial expression
recognition, while Lane et al. (30–32) studied anterior cingulate
injury in subjective emotional experience, and found that ventral

ACG and Brodmann’s area 9 may be activated during mood
fluctuations. Based on the functions of the anterior cingulate
gyrus, some researchers have explored its diagnostic value in
Parkinson’s disease (33), depression (34), and acute and chronic
pain (35). In addition, a previous study has found that the
prefrontal cingulate gyrus can respond to visual stimuli (36). In
the present study, given the reduced visual responses in patients
with OF, the results may indicate a compensatory mechanism for
vision loss in patients with OF.

The superior temporal gyrus (STG) is a functional area of the
brain located in the temporal lobe, closely related to emotional
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TABLE 4 | Brain areas of altered fALFF values and anticipated results.

Brain regions Experimental

result

Brain function Anticipated

results

Cingulum_Ant_L OF < HCs Memory,

action–outcome

learning, emotion

and reward-related

processing

Behavioral

disorders, memory

impairment,

depression,

Temporal_Sup_R OF < HCs Emotional and

speech

processing,

curative effect

index

Mental disorders,

speech disorder,

reflecting

treatment effect

Cingulum_Ant_L, left anterior cingulate gyrus; Temporal_Sup_R, right superior temporal

gyrus; OF, orbital fractures; HCs, healthy controls.

and speech processing (37, 38). The STG is a component of
the default mode network, which is inhibited during brain
activity and excited during rest. Liu et al. (39) used the rsMRI-
fALFF method to study the STG in depression. They found that
the lower fALFF values of STG correlated greater reductions
on the Hamilton rating scale for depression, and inferred
that STG neural changes were closely related to the effect of
early treatment for depression. In addition, Wang et al. (40)
measured functional connectivity density in STG and found that
abnormal connectivity is negatively correlated with the treatment
effect. In the present experiment, the fALFF value of the right
STG in patients with OF was significantly lower than that in
healthy controls, and we speculate that this decrease may be a
compensatory mechanism for the recovery of brain function in
patients with OF. The results suggest that the fALFF value may
be used as a reliable index to gauge therapeutic effects of clinical
treatment. Moreover, it was discovered that, in the patients
with OF, fALFF values in the RSTG were negatively correlated
with anxiety and depression scores, which may indicate a self-
regulation mechanism in this brain area, with brain function
being temporarily inhibited (Table 4).

This study has some limitations; one of which is the relatively
small sample size, and the other is that the sample source
was limited and not completely matched. Third, compared
with the simple use of VEP, the use of pattern electro
retino grams (PERGs) and pattern visual-evoked potentials
(PVEPs) two checks can be more rigorous explanation of
the problem. Therefore, future research should use larger and
more closely matched samples to further clarify the neural
changes in patients with orbital fractures, and to provide
a more intuitive clinical efficacy index for treatment. In
conclusion, this study has demonstrated that patients with
OF have reduced fALFF values in specific cerebrum areas,
indicating changes in spontaneous brain activity. Further
research on the mechanism underpinning brain activity changes
in patients with OF may be helpful to advance understanding of
this condition.
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