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Durable Near-Complete Response to Olaparib
Plus Temozolomide and Radiation in a Patient
With ATM-Mutated Glioblastoma and
MSH6-Deficient Lynch Syndrome
Danielle M. File, MD1; Katherine P. Morgan, PharmD, BCOP, CPP2; and Simon Khagi, MD1,3

INTRODUCTION

Glioblastoma (GBM) remains a life-limiting disease
with a median overall survival of 14.6 months.1 Prog-
nosis is improved in patients who undergo gross total
resection and those whose tumors demonstrate O6-
methylguanine-DNA methyltransferase (MGMT) pro-
moter methylation and isocitrate dehydrogenase (IDH)
mutations.2-4

Given that GBM commonly recurs within 2 years, there
is a clear rationale for improving upfront therapy. Poly
(ADP-ribose) polymerase inhibitors (PARPi) represent
one approach, as investigated in previous studies
using olaparib.5-7

We describe a patient with an unresectable MGMT
unmethylated, IDH wild-type GBM. Tumor genomic
profiling and germline results provided rationale for the
addition of olaparib to standard therapy. The patient
had a remarkable response, with an ongoing near-total
absence of radiographic disease 2 years beyond di-
agnosis. Her consent was obtained for publication of
this article.

CASE

A 52-year-old female with suspected Lynch syndrome
on the basis of family history and a personal history of
endometrial cancer as well as premalignant breast and
colon lesions presented with neurologic complaints.
Magnetic resonance imaging revealed a 2.7 × 1.9-cm
T2 hyperintense cortically based mass in the infer-
omedial right frontal lobe, which was determined to be
unresectable because of bihemispheric involvement.
MGMT promoter was unmethylated, and no IDH
mutations were detected. The patient was enrolled in
an observational clinical study (sponsored by Strata
Oncology, Ann Arbor, MI), through which whole-
exome and RNA sequencing on formalin-fixed
paraffin-embedded tumor tissue revealed loss-of-
function mutations in ATM and tumor protein 53
(TP53). The tumor was classified as tumor mutational
burden (TMB) high, programmed death-ligand 1 (PD-L1)
low, and microsatellite stable (MSS; Table 1). After
completion of therapy, additional review of the

patient’s records revealed a germline MSH6 loss-of-
function mutation, which confirmed Lynch syndrome.

The genomic findings and high likelihood of Lynch
syndrome, along with early-phase data suggesting
safety and brain penetration, provided rationale for the
treating oncologist to initiate olaparib with standard
chemoradiation. Olaparib was dosed at 150 mg daily
for 3 consecutive days each week during chemo-
radiation. After chemoradiation, the patient received
6 cycles of maintenance temozolomide. She was also
treated with alternating tumor-treating fields (Optune;
Novocure, St Helier, Jersey), an externally applied,
low-intensity electromagnetic field treatment shown to
improve survival by 4.9 months over maintenance
temozolomide alone when used 18 hours per day.8

Device compliance was limited, and treatment was
discontinued after 1 month. She has received no
additional therapy.

Treatment was well tolerated. Interval imaging showed
continued tumor shrinkage (Fig 1). Two years since
diagnosis, further reduction in size was observed,
compatible with ongoing partial response by RECIST.
The patient remains fully functional.

MOLECULAR TUMOR BOARD DISCUSSION

Given the excellent response in the setting of germline
and somatic mutations in DNA repair genes, this
patient was discussed at the institutional multidisci-
plinary molecular tumor board (MTB). The objective
was to broaden the understanding of the impact of the
mutations individually and collectively with respect to
susceptibility to chemotherapy, radiation, and PARPi.

Germline MSH6 p.F1088Sfs*2 Mutation; MSS

Pathogenic; loss of function (exon 5).

The presence of this mutation was not known at the
time of treatment because it was not reported on the
tumor sequencing report. Outside hospital records
included this finding on germline testing performed by
Ambry Genetics (Aliso Viejo, CA).

MSH6 is involved in DNA mismatch repair (Appendix
Table A1). A deleterious mutation constitutes Lynch
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syndrome and results in high susceptibility to mutations in
tumor suppressor and proto-oncogenes, which lead to
a fourfold increased risk of primary brain tumors.9,10

Germline MSH6 mutations are rare in GBM. Most muta-
tions are somatic, found almost exclusively after temozo-
lomide therapy.11 In this setting, they are associated with
resistance to alkylating agents, hypothesized to be the
dominant mechanism of acquired temozolomide resistance
after therapy, likely because of failure of temozolomide-
induced DNA damage to result in apoptosis in mismatch
repair–deficient (dMMR) cells.12-24 When MSH6 mutations
are present in treatment-naı̈ve patients with MGMT
methylated, otherwise chemosensitive tumors, treatment
response is markedly attenuated.13 Beyond treatment
resistance, ongoing temozolomide exposure after MSH6
inactivation leads to a hypermutator phenotype and tumor
progression.14-16 PARPi restore sensitivity to temozolo-
mide in dMMR cells.25 dMMR cells may also have in-
creased resistance to radiotherapy.26-28

Lynch syndrome was not identified by somatic testing.
Often, Lynch syndrome is discovered after a tumor is found
to be microsatellite instability high (MSI-h) or dMMR on
immunohistochemistry. MSH6-mutated brain tumors,
however, are often not MSI-h by standard polymerase chain
reaction testing, and immunohistochemistry is not stan-
dardly performed.29 In this case, MSS status was de-
termined from next-generation sequencing (NGS) on the
basis of length variant allele counts at multiple micro-
satellite loci. While alternate NGS methods have demon-
strated sensitivity and specificity in brain tumors, the
performance of this specific methodology in GBM is
unknown.30,31 While deficient MSH6 immunohistochemi-
cal staining would confirm a pathogenic mutation, intact

staining would not rule out dMMR because somemutations
result in intact expression of dysfunctional protein.32-35

The MSH6 mutation was not reported by somatic testing
because of its presence in a stretch of repeating cytosines,
known as a homopolymer region. Determination of nu-
cleotide calls in homopolymer regions is a common source
of sequencing errors in NGS, regardless of the platform
used. Most laboratories do not report findings from ho-
mopolymer regions because of the uncertainty in base
calling that occurs when repeating identical bases in-
corporate during the same synthesis cycle.27 After the
germline MSH6 mutation was discovered, Strata Oncology
was able to detect the mutation in the tumor sample with
94% allele frequency.

ATM p.G1016X Mutation

Likely pathogenic; nonsense (premature stop codon in
exon 20/63).

There were no reports of this mutation in the queried da-
tabases; however, it is a predicted loss-of-function mutation
that is based on other pathogenic mutations in a similar
gene region. ATM is mutated in , 5% of glioblastomas.36

ATM is involved in DNA damage response (DDR; Appendix
Table 1). Unlike dMMR, which prevents damaged cells
from undergoing apoptosis, decreasing treatment efficacy,
ATM mutations increase cell vulnerability to cytotoxic
therapy.37 They are associated with increased platinum
sensitivity and superior survival.37,38 Tumors with loss-of-
function ATM mutations have increased radiosensitivity.39

ATM suppression in the setting of p53 deficiency sensitizes
tumors to DNA-damaging chemotherapy and radiotherapy,
whereas ATM suppression with intact p53 leads to a worse
response.40,41

TABLE 1. Sequencing Results
Mutation Type Mutations Identified Predicted Consequence Pertinent Negatives Sequencing Platform

Germline MSH6 p.F1088Sfs*2 Loss of function ATM, BRCA1, BRCA2, TP53 NGS or Sanger sequencing by
Ambry Genetics

Somatic ATM p.G1016X (VAF 45%) Loss of function MSH6 a NGS by Strata Oncology

TP53 p.R181H (VAF 39%) Reduced function

TP53 p.R248Q (VAF 45%) Loss of function

PD-L1 low (RNA expression score 7) NGS (PD-L1 expression reported as
an RNA expression score,
predictive of TPS)

MSS NGS (on the basis of length variant
allele counts at multiple
microsatellite loci)

TMB high (69 mutations/MB) NGS (on the basis of noncoding and
coding, synonymous and
nonsynonymous, and single-
nucleotide and multinucleotide
variants present at . 10% VAF)

Abbreviations: MB, megabase; MSS, microsatellite stable; NGS, next-generation sequencing; PD-L1, programmed death-ligand 1; TMB, tumor mutational
burden; TPS, tumor proportion score; VAF, variant allele frequency.

aOn initial report.
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Inactivating mutations in ATM result in DDR-deficient tu-
mors that are susceptible to synthetic lethality with DNA-
damaging agents and PARPi.42,43 In the absence of data, it
may be predicted that a tumor both dMMR and DDR de-
ficient is exceptionally unstable and susceptible to synthetic
lethality, although the complexity of the roles of MSH6 and
ATM in DNA repair and apoptosis make this uncertain.

TP53 p.R181H and p.R248Q

Potential clinical significance; missense.

TP53 encodes the p53 tumor suppressor protein and is
mutated in. 30% of GBMs36,44 (Appendix Table A1). TP53
p.R181H disrupts protein function but may allow partial
residual protein activity.45 TP53 p.R248Q is reported in
. 380 CNS tumors associated with protein loss of
function.45 As previously mentioned, p53-deficent cells
may be particularly vulnerable to DNA-damaging treatment
when an ATM mutation is present. Conversely, the com-
bination of dMMR and p53-deficient cells worsens re-
sponse because of failed phosphorylation of p53 and, thus,
failed cell arrest after treatment-induced DNA damage.46 In
general, cancers with mutant p53 have reduced sensitivity
to chemotherapy and radiation; however, there are many
instances where mutant p53 has no effect or even en-
hances treatment effect.47

TMB High

TMB was determined from NGS and included noncod-
ing and coding, synonymous and nonsynonymous, and
single- nucleotide and multinucleotide variants present at
. 10% variant allele frequency. The high TMB is likely
secondary to the MSH6 mutation and resultant tumor

genome hypermutation.14,48-50 In treated patients,
hypermutation can result from exposure to alkylating
agents.51 The therapeutic implications of high TMB are not
fully understood. Cancers with high TMB as a result of prior
alkylator exposure are resistant to alkylators, but it is not
clear whether tumors with high TMB from alternate etiol-
ogies share this resistance.51

PD-L1 Low

PD-L1 expression is used to predict response to immu-
notherapy. While frequently performed through immuno-
histochemistry, classification was based on sequencing
results in this patient, using a score derived from the
percent of maximumPD-L1 expression across tested tumor
samples. This method is validated in a lung cancer cohort,
but accuracy in GBM is less certain. PD-L1 is expressed on
the surface of most glioma cells, with increased frequency
in high-grade gliomas such as GBM, and variable detection
is based on technique.52-54 Of note, several studies dem-
onstrated high PD-L1 association with worse survival in
GBM.55

There are no currently approved drugs that target PD-L1 in
GBM, although several trials are ongoing. Given the efficacy
of programmed death 1 (PD-1)/PD-L1 blockade in dMMR
tumors, immunotherapy could be considered.56 The PD-1
inhibitor pembrolizumab is approved for all MSI-h tumors,
making it a treatment option for patients with Lynch
syndrome–associated cancers, which are typically MSI-h.

Rationale for Olaparib

PARP is involved in single-strand DNA break and base
excision repair. PARP-1 nuclear staining supports its
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FIG 1. Magnetic resonance imaging (MRI) of glioblastoma at the time of diagnosis (left). Glioblastoma was noted to be
smaller after initial treatment with chemoradiation and olaparib and was further reduced in size after maintenance
temozolomide. On the most recent MRI (right), obtained . 14 months after completion of therapy, the tumor
demonstrated further regression, compatible with a durable, near-complete treatment response. TMZ, temozolomide.
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expression in GBM.57 Olaparib is a PARPi that impairs the
DDR, increasing treatment-induced chromosomal insta-
bility, cell cycle arrest, and apoptosis.58 In patients with
germline BRCA1/2 mutations that impair double-strand
DNA break repair by homologous recombination, PARPi
cause synthetic lethality with significant clinical benefit.59-62

PARPi also have efficacy in tumors with mutations in DDR
genes, including ATM, and in patients with neither
a germline BRCA mutation nor other homologous re-
combination deficiency.63,64

PARPi have been used asmonotherapy and in combination
with radiation and chemotherapy to prevent the repair of
treatment-induced DNA breaks, thereby promoting tumor
cell death. PARPi increase sensitivity to temozolomide in
cell and xenograft models of GBM.65-67 This effect persists
in MGMT unmethylated tumors.68 PARPi also restore
sensitivity to temozolomide in dMMR cells.25,69 In addition,
exposure to temozolomide before or concurrently with
a PARPi increases the magnitude of DNA damage and led
to complete regression of GBM cells in one study.70 This
treatment-sensitizing effect is not present in patients with
temozolomide resistance, which suggests optimal in-
corporation in newly diagnosed GBM.71

There have been 3 phase I trials of olaparib with temo-
zolomide and/or radiation in GBM. The OPARATIC trial
confirmed tumor penetration and dosing schedule, with
promising early results.5,7 PARADIGM-2 investigated ola-
parib plus radiotherapy with or without temozolomide.6,72

These studies support the addition of olaparib to temozo-
lomide and radiation as safe, well tolerated, and potentially
radiosensitizing.5

DISCUSSION

This patient had an excellent, durable response despite
many factors that predict a poor prognosis. Incomplete

resection, an unmethylatedMGMT promotor, and wild-type
IDH are associated with exceptionally poor outcomes. In
addition, somatic MSH6 loss-of-function mutations con-
tribute to temozolomide resistance, glioma recurrence, and
tumor progression, with similar effects expected from
a deleterious germline mutation. While ATM mutations
improve treatment sensitivity, particularly with concurrent
TP53 mutations, it is unlikely that this would result in
a sustained, near-complete response with standard che-
moradiation alone. It is also unlikely that tumor-treating
fields improved clinical outcome given short duration
of use.

In addition to the general chemo- and radiosensitizing
properties of PARPi, the ability for PARPi to restore sen-
sitivity to temozolomide in dMMR andMGMT unmethylated
tumors, as well as efficacy of PARPi in DDR-deficient tu-
mors, strongly suggests that olaparib was an essential
component of the treatment regimen. The likelihood of
olaparib-induced synthetic lethality is high, through im-
pairment of single-stranded DNA break repairs in a tumor
already deficient in base-base substitution, single-base
insertion, and single-base deletion mismatch repair as
well as double-stranded DNA break repair.

Genomic sequencing allows identification of patients with
targetable mutations who may benefit from currently
available treatments, which are increasing rapidly.73 This is
particularly important for patients predicted to have poor
outcomes with standard treatment and limited access to
clinical trials.

Novel treatment approaches in the first-line setting are
needed. MTB discussions broaden the understanding of
the interplay among complex genomic alterations and serve
as a forum to share cases of successful molecular targeting
to inform the care of future patients.
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APPENDIX

TABLE A1. Normal Gene Function
Gene Function

MSH6 One of 4 major proteins in the DNA mismatch repair system
Involved in the repair of base-base substitutions and single-base insertion
or deletion mismatches

Results in high susceptibility to mutations in tumor suppressor and
proto-oncogenes, resulting in increased risk of many malignancies

ATM Expressed in most tissues
Key regulator of DNA damage response
Serves as a tumor suppressor by initiating DNA damage checkpoint
signaling after accumulation of double-stranded DNA breaks and
initiating repair by homologous recombination

TP53 The most commonly mutated gene in human cancer
A transcription factor that induces antitumor responses, including DNA
repair and apoptosis, to cellular stress

Near-Complete Response to PARPi in GBM and Lynch Syndrome
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