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Abstract

The aim of this study was to show how computational models can be used to increase our

understanding of the role of microRNAs in osteoarthritis (OA) using miR-140 as an example.

Bioinformatics analysis and experimental results from the literature were used to create and

calibrate models of gene regulatory networks in OA involving miR-140 along with key regula-

tors such as NF-κB, SMAD3, and RUNX2. The individual models were created with the

modelling standard, Systems Biology Markup Language, and integrated to examine the

overall effect of miR-140 on cartilage homeostasis. Down-regulation of miR-140 may have

either detrimental or protective effects for cartilage, indicating that the role of miR-140 is

complex. Studies of individual networks in isolation may therefore lead to different conclu-

sions. This indicated the need to combine the five chosen individual networks involving miR-

140 into an integrated model. This model suggests that the overall effect of miR-140 is to

change the response to an IL-1 stimulus from a prolonged increase in matrix degrading

enzymes to a pulse-like response so that cartilage degradation is temporary. Our current

model can easily be modified and extended as more experimental data become available

about the role of miR-140 in OA. In addition, networks of other microRNAs that are important

in OA could be incorporated. A fully integrated model could not only aid our understanding

of the mechanisms of microRNAs in ageing cartilage but could also provide a useful tool to

investigate the effect of potential interventions to prevent cartilage loss.

Introduction

MicroRNAs (miRNAs) are involved in many signalling pathways, especially those involving

gene regulation [1]. They are known to enhance degradation of mRNAs and also to inhibit

translation of mRNAs by a variety of mechanisms. It is known that miRNAs play an important

role in complex networks that are enriched with positive and negative feedback loops. This has

led to many researchers taking a systems biology approach whereby experimental data is inte-

grated with mathematical modelling, e.g., review by Vera et al, 2013 [2]. Previous models have
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used functions to represent inhibition and activation in a series of ordinary differential equa-

tions using deterministic algorithms. These models have provided useful insight into the

expected behaviour of the system due to the presence of miRNAs in different network motifs

(small regulatory circuits that recur in gene networks) [3], such as positive feedback, negative

feedback, and feedforward loops. In this study, we considered these motifs but unlike previous

models, we explicitly modelled the interactions between different components using mass

action kinetics. Since many molecular numbers such as genes and mRNA may be low, we also

used stochastic simulation.

Positive feedback loops occur where two components in a system either positively or nega-

tively regulate each other. Whereas positive regulation leads to signal amplification and a longer

lasting cellular response, negative regulation may lead to bistability with one of the components

staying switched on whilst the other is turned off. Since miRNAs are mainly involved in nega-

tive regulation, we only considered the latter situation. For example, a transcription factor (TF)

may inhibit the synthesis of a miRNA that, in turn, enhances the degradation of the TF mRNA

(Figures A-B in S1 File). Negative feedback occurs when two components in a system regulate

each other in an incoherent fashion, e.g., component A activates component B whereas B inhib-

its A (Figure C in S1 File). This provides a homeostatic mechanism and is a very common motif

in protein signalling and transcriptional networks leading to oscillatory behaviour ([4,5])

(Figure D in S1 File).

A coherent feedforward loop may either consist of a double positive or a double negative

interaction (Figure E in S1 File illustrates a double negative loop). They function as sign-sensi-

tive delay elements, extend the duration of target repression, or may prevent leaking of target

genes. We only considered double negative loops in this study. In this type of loop the miRNA

mediates a delay in the response of target gene to TF (see Vera et al. Fig 4.6) [2]. On the other

hand, incoherent feedforward loops produce accelerated and pulse-like responses to signals

(Figure F in S1 File). It has been suggested that the function of miRNAs in these loops is to

provide fine-tuning and that they act as noise buffers [6].

MiRNAs have been implicated in many diseases such as cancer [7], neurodegeneration [8],

and osteoarthritis (OA) [9]. OA is a disease of the joints characterised by loss of cartilage,

abnormal bone growth, e.g., osteophytes, and changes to the synovium. Once thought to be

mainly a degenerative disorder, it is now considered that inflammation may be important in

disease progression. The cartilage mainly consists of an extracellular matrix (ECM) with chon-

drocytes (the only cell type) sparsely distributed throughout the ECM. Chondrocytes maintain

the cartilage by responding to signals (growth factors and cytokines) to up-regulate anabolic

and catabolic processes. There is evidence from several studies that miRNAs are involved in

regulating gene expression in signalling pathways that control cartilage turnover [10–14]. In

particular, miR-140 has been consistently found to have a significant role in cartilage ageing

and the development of OA in studies from different groups [11–13,15–17]. We confirmed its

importance (and that of other miRNAs such as miR-455 [18,19]) by integrating information

on miRNA targets and OA-associated genes. In view of this, we started by investigating the

mechanisms of gene regulation by miR-140 using experimental data from the literature and

the above bioinformatics result. We also used the bioinformatics results to search for potential

novel miRNAs for OA.

To date, computational models of the role of miRNAs in OA are lacking, although models

have been developed in oncogenesis and ischemic vascular disease [20–22]. Therefore, we

adapted the generic models (described in S1 File) and constructed five different networks

based on experimental evidence from the literature, where miR-140 is involved in signalling

pathways relevant to OA [10–13,17]. We used the dynamical behaviour of the relevant compo-

nents in the network to infer the type of motif connecting miR-140 to the other components.

Computer modelling of microRNAs in osteoarthritis
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Finally we integrated the five individual models to examine the overall effect of miR-140 on

cartilage turnover. The models demonstrated how computational modelling can help to

increase our understanding of the role of miRNAs in OA and highlighted the need for inte-

grated approaches.

Methods

Modelling

The models were constructed in the Systems Biology Markup Language (SBML) [23] using the

Python tool SBML shorthand [24]. SBML is a modelling standard that allows for model shar-

ing and development and enables models to be simulated in a wide range of freely available

software tools. The models were simulated using COPASI 4.18 [25] and tools developed at

Newcastle University [26] (further details below). The network diagrams were constructed in

CellDesigner [27], which uses the Systems Biology Graphical Notation [28]. The model output

was analysed in R and plotted with ggplot2 [29].

Stochastic simulation

We mainly used stochastic simulation, which is based on the Gillespie algorithm (direct

method) [30]. This algorithm simulates every reaction, updating the number of molecules of

each species after a reaction occurs. At each time-step random numbers are generated to deter-

mine the next reaction to occur and the time interval to that reaction. The probability of any

particular reaction occurring is proportional to its associated parameter value and the number

of substrate molecules. Each stochastic simulation produces a different trajectory. Therefore,

multiple stochastic simulations were carried out on a cluster using software based on the Gil-

lespie algorithm that was developed at Newcastle University [26]. The input for the simulation

was the duration time (virtual time) in seconds (typically the equivalent of 4 or 8 hours), the

number of intervals to be saved to an output file (1000), and the initial conditions and parame-

ter values (which are contained in the SBML files and can also be found in S1 File).

Deterministic simulation

For deterministic simulations, we used the LSODA algorithm in COPASI, a method for solv-

ing stiff and non-stiff systems of ordinary differential equations by automatic selection [31].

We used the COPASI default parameters for this solver (relative tolerance = 1e-6; absolute

tolerance = 1e-13; maximum internal step size = 10000).

Kinetic parameters

It is rarely possible to obtain all the kinetic parameters required for a mathematical model due

to a lack of suitable time-course experimental data. Even when data are available, they may not

be appropriate as parameter values are usually dependent on cell type and experimental condi-

tions. Therefore, we initially chose parameters with an order of magnitude that would be

expected for the process, e.g., degradation rates were chosen to give half-lives that were in an

appropriate range), and then synthesis rates were set to obtain the chosen steady state level. In

the model of miR-140 in the TGF-β signalling pathway, parameters were chosen to fit experi-

mental data that shows that Smad3 is rapidly phosphorylated after the addition of TGF-β
(peaking at 30–45 minutes), and due to negative feedback is de-phosphorylated by 8 hours,

although still above basal at this time-point [32].

Computer modelling of microRNAs in osteoarthritis
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Availability of models

The models were deposited in Biomodels [33] and assigned the identifiers [MODEL16101

00000-1610100004, MODEL1705170000-1705170005]. Full details of all the model compo-

nents, reactions, and parameters are given in S1 File.

Bioinformatics analysis. Validated targets of all human miRNAs were downloaded from

miRTarBase [34] and genes annotated as associated with OA from Open Targets (www.

targetvalidation.org) [35]. The miRNAs were filtered to retain only those whose targets include

more than one OA-associated genes (2125 miRNAs), and the hypergeometric test was used to

assess the enrichment of the OA-related targets among the entirety of the targets of each

miRNA (Fig 1). The details of the searches are given below.

miRTarBase

http://mirtarbase.mbc.nctu.edu.tw/php/download.php. hsa_MTI.xlsx (Human data), release

6.1, was downloaded Feb 20 2017 and converted from xlsx format to text csv with libreoffice.

All interactions were included whether evidence was annotated as strong or weak.

Open targets

https://www.targetvalidation.org/disease/EFO_0002506/associations. The search term for tar-

get or disease was "osteoarthritis". The results were downloaded on Feb 20 2017, at which time

there were 1202 targets. All types of evidence of association in the database for this disease

were included (genetic associations (18), drugs (120), text mining (1k) and animal models

(32)).

Data from miRTarBase and Open Targets were integrated with an R script (S1 Script).

Search for novel miRNAs

In addition to miR-140-5p, a miRNA that is well-known to have a role in OA, we used the bio-

informatics analysis to find novel miRNAs that may have a potential role in OA. We looked

for those miRNAS that had targets with strong validation evidence and that had not been pre-

viously examined in the context of OA. We first carried out a search in PubMed (https://www.

ncbi.nlm.nih.gov/pubmed/, date of search: July 11 2017), using the terms “(miR-Xy-Zp OR

miR-Xy) AND osteoarthritis” (e.g. (miR-200c-3p OR miR-200) AND osteoarthritis) to estab-

lish whether the chosen miRNA was novel. We included the generic miRNA term in the search

due to many publications not specifying exactly which miRNA was being studied. For the

potential novel miRNAs, a further search was carried out in PubMed (date of search: July 17

2017) on the targets with strong validation evidence using the terms (GeneX AND (cartilage

OR osteoarthritis)), where GeneX is the HUGO approved symbol of the target gene (http://

www.genenames.org/).

Results

Bioinformatics analysis confirm the importance of miR-140 in OA

We started by integrating data on validated miRNA targets and OA-related genes to identify

those miRNAs having an unusually high proportion of OA-related targets. When sorted by

hypergeometric p-value, miR-140 ranks 12th, with a multiple test-corrected p-value of 0.049

and an enrichment (observed to expected number of OA-related targets) of 3.7. This is the

highest of any miRNA that has 10 or more OA-related targets, suggesting that its function may

be particularly biased towards regulation of cartilage. This data is shown in S2 File.
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Models of regulatory feedback loops demonstrate how miRNAs affect

gene regulation

We constructed a set of generic models to illustrate the behaviour of miRNAs in four different

feedback loops, namely positive feedback, negative feedback, coherent feedforward, and

Fig 1. Identification and prioritisation of possible OA-associated miRNAs. Schematic representing the

integration of information about (left) validated targets of miRNAs and (right) OA-associated genes. The

output is a list of miRNAs sorted by the multiple-test-corrected p-value of their enrichment in OA-associated

targets.

https://doi.org/10.1371/journal.pone.0187568.g001

Computer modelling of microRNAs in osteoarthritis

PLOS ONE | https://doi.org/10.1371/journal.pone.0187568 November 2, 2017 5 / 22

https://doi.org/10.1371/journal.pone.0187568.g001
https://doi.org/10.1371/journal.pone.0187568


incoherent feedforward (Figures A-F in S1 File). Full details of these models and the results are

given in S1 File.

miR-140 is involved in network motifs relevant to OA

We chose five targets of miR-140 that have been studied in the context of OA. Three of these

were validated OA-related targets that were in the list from miRTarBase, namelyMMP13,

HDAC4 and IGFBP5 (S2 File). The other two were ADAMTS5 and SMAD3.ADAMTS5 is a

predicted target and has been validated in the literature [36]. According to the microRNA

databases, SMAD3 is not a predicted or a validated target but there is evidence that SMAD3 is

a direct target of miR-140 at the protein level [12]. Since TGF-β signalling is important in

maintaining cartilage homeostasis, we considered that the SMAD3/miR-140 interaction was

worthy of further investigation. The quality of the chosen studies are variable and the authors

would like to point out that we do not claim that the all the experimental results on which we

have based our models is accurate.

A model of miR-140 in TGF-β signalling–a positive feedback loop

It is known that the growth factor TGF-β usually has a protective role in cartilage as it normally

up-regulates anabolic genes via the ALK5/SMAD2/3/4 pathway. A study by Pais et al. showed

that TGF-β signalling promotes phosphorylation of SMAD3, which in turn binds to the pro-

moter of the miR-140 gene to inhibit transcription [12]. In addition miR-140 inhibits produc-

tion of SMAD3 protein but does not affect levels of SMAD3 (mRNA) [12]. This data suggests

that miR-140 binds to SMAD3mRNA to inhibit its translation rather than enhancing its deg-

radation. This is an example of a positive feedback loop mediated by a double negative loop as

shown in Fig 2A. We constructed a simple model of this system (Fig 2B). Pais et al. show that

miR-140 is transiently suppressed by TGF-β and that levels return to basal by 48 hours [12].

This is due to negative feedback loops in signalling pathways, which act to ensure that signal-

ling is only transient to prevent adverse effects from over-activation. A well-known negative

feedback loop in TGF-β signalling is the up-regulation of the inhibitory SMAD7, which may

enhance degradation of TGF-β receptors and prevent phosphorylation of SMAD3. Therefore,

we included SMAD7 in the model, and, for simplicity, we assumed that SMAD7 directly

inactivated TGF-β. To model this we included two pools of TGF-β, either active (TGFb_A) or

inactive (TGFb_I). We assumed that TGF-β is initially activated which leads to rapid phos-

phorylation of SMAD3 (Fig 2C and 2D). If miR-140 levels are initially high, then after SMAD3

phosphorylation, miR-140 declines but then levels recover again due to the negative feedback

via SMAD7, which inactivates TGF-β. However, miR-140 is always sufficient to prevent an

increase in SMAD3 (Fig 2C). If we assume miR-140 is absent, then after activation of TGF-β,

there is an increase in SMAD3 transcription and translation and therefore a higher peak in

phospho-SMAD3 although the duration of the signalling response is not affected (Fig 2D).

This suggests that miR-140 only acts to dampen the initial response.

A model of miR-140 in the SOX9 pathway–an incoherent feedforward

loop

SOX9 is a transcription factor that is important in chondrogenesis and cartilage development.

It inhibits RUNX2, a transcription factor that inhibits chondrocyte proliferation, up-regulates

the matrix-degrading enzyme,MMP13, and promotes chondrocyte hypertrophy [37]. SOX9

inhibits RUNX2 by promoting its degradation [38]. HDAC4 also inhibits RUNX2 by binding

to its promoter and inhibiting transcription. In addition, HDAC4 binds to RUNX2 protein to

inhibit its transcriptional activity. A target of SOX9 is miR-140 [18,39], which has been shown
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to inhibit HDAC4 [13]. Since HDAC4 inhibits RUNX2, the overall effect is that miR-140 acti-

vates RUNX2. Therefore SOX9 directly inhibits RUNX2 but also indirectly activates RUNX2

via miR-140 (Fig 3A). This is an example of an incoherent feedforward loop, but note that this

has different features to the motif described above. In the generic model, a TF directly acti-

vated a target but indirectly inhibited the target via a miRNA. In this example, a TF (SOX9)

directly inhibits a target (RUNX2) and indirectly activates it via a miRNA (miR-140). There-

fore, we would not expect a pulse-like response but would expect miR-140 to have a moderat-

ing effect on RUNX2 inhibition. We constructed a simple model, where we assumed that

SOX9 up-regulates miR-140, miR-140 binds toHDAC4mRNA to inhibit its translation,

HDAC4 protein binds to RUNX2 to inhibit its activity and also binds to the RUNX2 gene to

inhibit transcription, and SOX9 promotes the degradation of RUNX2 protein (Fig 3B). Hence

SOX9 directly inhibits RUNX2 but also has a delayed response whereby it activates RUNX2.

Therefore, we would predict that on activation of SOX9, RUNX2 levels would decline, but

after up-regulation of miR-140, pools of RUNX2 would stabilise. The model output shows this

Fig 2. Model of the involvement of miR-140 in SMAD3 signalling. A, Network motif showing positive feedback. B, Diagram of full model. C-D,

Output from one stochastic simulation with miR-140 present (miR140 = 500 initially, ksynmiR140 = 0.0018 s-1) (C) or without miR-140 (miR140 = 0

initially, ksynmiR140 = 0.0 s-1) D. Key for B: TGFb_A–active TGF-β, TGFb_I–inactive TGF-β, miR140_SMAD3mRNA–SMAD3 mRNA bound by

miR140 to inhibit its translation.

https://doi.org/10.1371/journal.pone.0187568.g002
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behaviour as RUNX2 levels decline in the presence of SOX9, but the increase in miR-140 leads

to a slight recovery in RUNX2 levels and soMMP13 levels increase slightly (Fig 3C). In the

absence of miR-140, RUNX2 declines to very low levels and so noMMP13 is produced (Fig

3D). Therefore miR-140 moderates the response of RUNX2 to SOX9, raising the steady-state

level of RUNX2.

A model of miR-140 in the IL-1 pathway–a coherent feedforward loop

The cytokine IL-1 activates signalling pathways that lead to up-regulation of catabolic genes

such asMMP1,MMP13 and ADAMTS5 [40]. It has been shown that chondrocytes treated

with IL-1β have reduced expression of miR-140 [11]. In the same study, treating cells with ds-

miR-140 (a mimic of miR-140) down-regulates IL-1β-induced expression of ADAMTS5 [11].

In light of this data, we constructed a simple model in which IL-1 leads to up-regulation of

ADAMTS5, which is then degraded by miR-140. In addition, we assumed that IL-1 increases

the rate of miR-140 degradation as observed [11], resulting in a coherent feedforward loop

(Fig 4A and 4B). The presence of miR-140 provides a pulse-like response in the up-regulation

Fig 3. Model of the involvement of miR-140 in SOX9-dependent regulation of RUNX2. A, Network motif showing incoherent feedforward loop.

B, Diagram of full model. C-D, Output from one stochastic simulation, C, with miR-140 (ksynmiR140 = 0.0018 s-1) or D, without miR-140 (ksynmiR140 =

0.0 s-1).

https://doi.org/10.1371/journal.pone.0187568.g003
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of ADAMTS5 (Fig 4C), whereas in the absence of miR-140, the model output shows

ADAMTS5 continuing to increase even after a decline in levels of IL-1 (Fig 4D).

Model of the miR-140/IL1/MMP13 pathway–an incoherent feedforward

loop

In contrast to Miyaki et al. [11], a study by Liang et al. showed that IL-1β up-regulates miR-140

in an NF-κB-dependent pathway in C28/C12 human cartilage cells [10]. They also showed that

stimulating the cells with exogenous miR-140 reduced the levels ofMMP13 [10]. This is an

example of an incoherent feedforward loop, and so we would expect a pulse-like response of

MMP13 (the target) in the presence of miR-140. We constructed a network model (Fig 5A and

5B). Simulation output from the model shows that after a stimulus of IL-1, in the presence of

miR-140,MMP13 increases, peaking at about 10–12 hours and then declines (Fig 5C). When

miR-140 is absent,MMP13 keeps increasing over 48 hours even though the IL-1 signal is turned

off after 2–3 hours (Fig 5D). We also used this model to examine the effect of simulated inter-

ventions such as NF-κB inhibition, miR-140 inhibition and miR-140 over-expression. NF-κB

Fig 4. Model of the interaction between miR-140, IL-1 and ADAMTS5. A, Network motif showing coherent feedforward loop. B, Diagram of full

model. C-D, Output from one stochastic simulation, C, with miR-140 (miR140 = 500 initially, ksynmiR140 = 0.0018 s-1) or D, without miR-140

(miR140 = 0 initially, ksynmiR140 = 0.0 s-1).

https://doi.org/10.1371/journal.pone.0187568.g004
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inhibition (by 80%) led to reduced levels of miR-140 andMMP13 (Fig 5E). miR-140 inhibition

(by 50%) led to an increase inMMP13 (Fig 5F) and lastly, over-expressing miR-140 (two-fold

increase) led to reduced levels ofMMP13 (Fig 5G).

Model of miR140 in the IGF-1 signalling pathway–an incoherent

feedforward loop

IGF-1 signalling in chondrocytes leads to induction of anabolic genes and decreases the

response to catabolic factors [41,42]. It has also been shown that IGF-1 signalling maintains

chondrocytes in a proliferative state to prevent progression to hypertrophy [43]. The insulin-

like growth factor binding protein-5 (IGFBP-5) is important for maintaining pools of IGF-1 in

the joint [44]. IGFBP5 is expressed in chondrocytes and has been shown to be a direct target of

miR-140 [17]. IGFBP5mRNA is significantly reduced in OA compared to normal human

chondrocytes and is significantly up-regulated in OA chondrocytes by the cytokines TNF-α,

IFN-γ and IL-10 and by the growth factors TGF-β [17]. We constructed a model describing

Fig 5. Model of the interaction between miR-140, IL-1 and MMP13. A, Network motif showing incoherent feedforward loop. B, Diagram of full

model. C-D, Output from one stochastic simulation, C, with miR-140 or D, without miR-140. E-G, output showing simulated interventions: E, NFκB
80% inhibition (kactNFkB = 1e-4 s-1); F, miR-140 50% inhibition (ksynmiR140 = 0.0009 s-1); G, miR-140 overexpression (miR140 = 500 initially,

ksynmiR140 = 0.0036 s-1).

https://doi.org/10.1371/journal.pone.0187568.g005
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the interactions between TNF-α, NF-κB, miR-140, and IGFBP5 (Fig 6A), which we show to be

an incoherent feedforward loop (Fig 6B). We also included JNK and AKT as mediators in the

pathway and ACAN as readout of IGF-1 signalling (Fig 6A). We calibrated our model based

on data from Tardif et al. [17] so that the addition of TNF-α led to approximately a three-fold

increase in IGFBP5mRNA and a 1.5-fold increase in miR-140 at 20 hours (Fig 6C and 6D).

The model was simulated to check that miR-140 inhibition and over-expression resulted in an

increase or decrease of IGFBP5mRNA respectively (Fig 6E and 6F), as shown experimentally

[17]. The model was then used to examine the effects of chronic activation of TNF-α with low,

medium (basal), or high levels of miR-140. If miR-140 is low initially, IGFBP-5 mRNA and

protein levels increase and peak at about 2.5 days, but then decline due to the increase in NF-

κB activity and a gradual increase of miR-140 to basal levels (Fig 7A). If miR-140 levels are ini-

tially at basal levels, the model suggests that chronic activation of TNF-α leads to up-regulation

of miR-140 due to activation of NF-κB, an increase in IGFBP5mRNA due to activation of JNK

but a decline in IGFBP-5 protein due to targeting of IGFBP5mRNA for degradation by miR-

Fig 6. Model of the interaction between miR-140, IGFBP-5 and TNF-α. A, Diagram of full model; B, Network motif showing incoherent

feedforward loop. C-F, Output from one stochastic simulation showing total pools of miR-140 and IGFBP5 mRNA, C,TNF-α = 0; D, TNF-α = 500; E,

TNF-α = 0, miR-140 inhibition (miR140 = 30 initially, ksynmiR140 = 6e-5 s-1, ksynmiR140NFkB = 1.5e-4 s-1); F, TNF-α = 0, miR-140 overexpression

(miR140 = 900 initially, ksynmiR140 s-1 = 0.0018, ksynmiR140NFkB = 0.0045 s-1).

https://doi.org/10.1371/journal.pone.0187568.g006
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140 (Fig 7B). Finally, if miR-140 is over-expressed when there is chronic TNF-α-activation,

miR-140 levels increase further resulting in very low levels of IGFBP-5 protein despite the

increase in IGFBP5 transcription (Fig 7C). We also looked at the effect of chronic TNF-α-acti-

vation and miR-140 levels on production of Aggrecan (ACAN). The model predicted that

Fig 7. Effect of chronic activation of TNF-α on miR-140, Igfbp5 and Acan. A-F, Tnfa = 500 initially, kdegTnfa = 1e-5 A, Low levels of miR-140

(miR140 = 30 initially, ksynmiR140 = 6e-5 s-1, ksynmiR140NFkB = 1.5e-4 s-1); B, Basal levels of miR-14-0 (mir140 = 200 initially, ksynmiR140 = 4e-4 s-1,

ksynmiR140NFkB = 1e-3 s-1; C, High levels of miR-140 (miR140 = 900 initially, ksynmiR140 = 1.8e-3 s-1, ksynmiR140NFkB = 4.5e-3 s-1); D, Effect of miR-140

on ACAN levels (mean of 100 stochastic simulations; error bars indicate confidence interval of the mean).

https://doi.org/10.1371/journal.pone.0187568.g007
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increasing miR-140 results in less ACAN due to the inhibitory effect on IGFBP-5 translation

and so less IGF-1 signalling (Fig 7D).

A combined model of the effects of miR-140 in OA

The five individual models of the role of miR-140 in OA were combined to form an integrated

model. The main components showing the different motifs are shown in Fig 8A. We used

ADAMTS-5 and MMP-13 protein, aggrecan fragments (AggFrag) and collagen2 fragments

(ColFrag) as readouts. First we investigated the effect of a combined stimulation of IL-1, TNF-

α and TGF-β at the start of the simulation with different levels of miR-140 inhibition (anti-

miR140). The model output shows that with no miR-140 inhibition both ADAMTS-5 and

MMP-13 peak but then decline as IL-1 is degraded and there is very little degradation of

Aggrecan or Collagen2 (Fig 8B). With moderate inhibition of miR-140, ADAMTS-5 and

MMP-13 have much higher levels in the first three days leading to degradaton of matrix com-

ponents, but eventually the increased synthesis of miR-140 overwhelms the effect of the anti-

miR140 (Fig 8C). If very high levels of anti-miR140 are added at the start of the simulation,

then both ADAMTS-5 and MMP-13 peak to much higher levels and stay in the system for

much longer leading to more degradation of matrix components (Fig 8D).

To examine the interaction of the effects of miR-140, IL-1 (a catabolic factor) and TGF-β
(normally, an anabolic factor) on cartilage degradation, the integrated model was then run

with the initial levels of IL-1 and TGF-β being varied simultaneously with and without inhibi-

tion of miR-140. As levels of aggrecan and collagen2 fragments are low, the same combination

of IL-1 and TGF-β can produce different levels of fragments in repeated simulations. There-

fore, each combination of initial conditions was simulated 100 times and the mean and 95%

confidence interval of the mean was plotted (Fig 9). The model output shows that both aggre-

can and collagen2 fragments increase with increasing levels of IL-1 with much higher levels

when miR-140 is inhibited. Increasing TGF-β has no effect on aggrecan degradation but signif-

icantly decreases collagen degradation when miR-140 is not inhibited (Fig 9A and 9B). How-

ever, when miR-140 is inhibited, increasing TGF-β leads to a slight increase in aggrecan

fragments, when IL-1> 700, but a significant decrease in collagen fragments and also delays

the threshold level of IL-1 at which collagen fragments appear (Fig 9C and 9D). Interestingly,

the model indicates that miR-140 may have an even greater effect than TGF-β on the threshold

level of IL-1 necessary to initiate collagen degradation. Therefore the combined model suggests

that overall miR-140 has protective effects on cartilage.

Potential novel miRNAs in OA

Out of the top 12 miRNAs (S2 File), we found three miRNAs which to date had not been stud-

ied in the context of OA (zero publications in PubMed): miR-200c-3p, miR-100-5p and miR-

1826 (S1 Table).

miR-200c-3p. miR-200c-3p has the highest number of OA-related targets (S2 file). We

examined the potential role of this miRNA in OA by using information from miRTarBase, and

carrying out a literature search on the targets that had strong evidence (S2 Table). These targets

were involved in a variety of processes that are relevant to OA including apoptosis (BCL2,

XIAP), up-regulation of MMPs (VEGFA), chondrocyte hypertrophy (FLT1, JAG1, VEGFA),

maintenance of ECM (ERRFI1, FN1), inflammation (IKBKB,NTRK2,VEGFA), angiogenesis

(TIMP2,VEGFA), and maintenance of the cytoskeleton (TUBB3) (Fig 10). In addition, we con-

sidered 13 additional targets of miR-200c-3p that have strong validation evidence with impor-

tant roles in cancer, but were not found in Open Targets as important in OA. Of these, we

discovered that five targets (DNMT3A,DNMT3B,NOTCH1, SP1, and ZEB1) have been shown
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Fig 8. Integrated model:: Inhibition of miR-140. A, Diagram showing main components. Arrows indicate activation, blocked lines indicate inhibition. The

red lines show coherent feedforward motif from miR-140/IL1/ADAMTS model; turquoise lines show postive feedback motif from the miR-140/TGF-β/

SMAD3 model; green lines show the incoherent feedforward motif from the miR-140/IL1/MMP13 model; lilac lines show the incoherent feedforward motif

from the miR-140/SOX9 model; pink lines show the incoherent feedforward motif from the miR-140/IGF-1/TNFαmodel; dark grey lines indicate additional

reactions for the combined model. B-D, Output from the stochastic integrated model after a combined stimulus of IL-1, TNF-α and TGF-β showing levels of

ADAMTS-5 and MMP-13 protein, and the amount of Aggrecan and Collagen2 degradation (AggFrag and ColFrag, respectively). B, no inhibition of miR-

140 (anti-miR140- = 0). C, moderate inhibition of miR-140 (anti-miR140 = 500); D, high inhibition of miR-140 (anti-miR140 = 3000).

https://doi.org/10.1371/journal.pone.0187568.g008
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to be potentially important in cartilage maintenance, chondocyte hypertrophy, and the onset

of OA (Fig 10). Interestingly, our literature search revealed that miR-200c-3p is up-regulated

by oxidative stress in endothelial cells [45]. In addition, miR-200c-3p and ZEB1 form a dou-

ble-negative feedback loop that may contribute to the switch in the epithelial to mesenchymal

Fig 9. Integrated model: Combined effect of IL-1, TGF-β and miR-140 on cartilage degradation. Model output showing effect of varying the

initial amounts of IL-1 (0–1000, 10 intervals) and TGF-β (1–1000, 3 intervals, log scale) simultaneously on levels of aggrecan fragments (A,C) or

collagen2 fragments (B,D). A-B, no miR-140 inhibition (anti-miR140 = 0), C-D, miR-140 inhibition (anti-miR-140 = 500). Curves show mean of 100

stochastic simulations, error bars indicate 95% confidence interval of the mean.

https://doi.org/10.1371/journal.pone.0187568.g009
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transition in the development of cancer [46]. ZEB1 has low expression in proliferating chon-

drocytes but is highly expressed in the growth plate [47], where it has been shown to inhibit

IHH [48]. This suggests the possibility that the interation between miR-200c-3p and ZEB1

may contribute to chondrocyte hypertrophy, whereby chondrocytes switch from a resting to a

proliferative state, followed by differentiation.

miR-100-5p. miR-100-5p has six targets that are relevant for OA (S3 Table). The most rel-

evant target is the collagenase,MMP13. The other targets are PLK1, a kinase that is involved in

inducing chondrocyte apoptosis, and FGFR3, FLT1, ID1, IGF1R, genes that may all play a role

in chondroctye hypertrophy.

miR-1826. miR-1826 has only three targets in miRTarBase but all these had strong valida-

tion evidence and were relevant for OA (S4 Table), namely CTNNB1,MAP2K1, and VEGFC.

CTNNB1 encodes the protein β-catenin, a key component of Wnt signalling,MAP2K1 encodes

a kinase involved in MAPK/ERK signalling, and VEGFC encodes a VEGF receptor.

Fig 10. Potential role of miR-200c-3p in osteoarthritis. Oxidative stress leads to up-regulation of miR-200c-3p. Validated targets of miR-200c-

3p that are involved in processes relevant to OA are shown. OA targets from targetvaliation.org are shown in blue rectangles; targets in orange

rectangles have strong evidence in miRTarBase and a literature search reveals they are potential targets for OA. ZEB1 inhibits miR-200c-3p to

provide a double-negative feedback loop. Red dashed lines indicate inhibition.

https://doi.org/10.1371/journal.pone.0187568.g010
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Discussion

We used computational modelling to explore the effect of miRNAs in different network

motifs. Each model represented a biological network consisting of key components such as

transcription factors, miRNAs, and target genes and a set of reactions to describe how the

components interact. The generic models showed how different motifs lead to different behav-

iours such as bistability (positive feedback), oscillatory behaviour (negative feedback), longer

lasting responses (coherent feedforward), and pulse-like responses (incoherent feedforward).

We then identified some of these motifs in pathways involving miR-140 in the context of OA.

Several studies have reported the effect of miR-140 on a number of different targets that are

important in OA [10–13]. The aim of this study was to demonstrate how models can be built

based on bioinformatics analysis and experimental data and then to show how different find-

ings can be integrated. We constructed five different models and identified five different net-

work motifs: positive feedback (miR-140/SMAD3); coherent feedforward (IL1/miR-140/

ADAMTS5); and three types of incoherent feedforward motifs (SOX9/miR-140/RUNX2),

(IL1/miR-140/MMP13), and (TNF-α/miR-140/IGFBP5). We showed that miR-140 has both

positive and negative effects on cartilage. On the one hand, it inhibits translation of two major

cartilage degrading enzymes, MMP-13 and ADAMTS-5. On the other hand, miR-140 reduces

both IGF-1 and TGF-β signalling so that potentially less cartilage components are transcribed

and, in addition, increases activation of RUNX2, which leads to up-regulation ofMMP13. To

examine the overall effect of miR-140, we combined the five models, and this model suggested

that the overall effect of miR-140 would be beneficial. This agrees with observations that miR-

140 is down-regulated in OA [17,49]. However, there are many other components in the dif-

ferent pathways of the integrated model that were omitted for simplicity in this model. More-

over, at the present state of knowledge in the field, it is quite likely that there exist relevant

processes regulated by miR-140 that are currently unknown. Also, the integrated model was

based on published data from different sources; some more complete than others, having, for

example, different time resolutions and different experimental protocols. For all these reasons

further experimental studies are required to explicitly validate parts of the network before we

can have complete confidence in the integrated model’s overall behaviour. As the model is

encoded in SBML, it will be possible to remove or amend parts of the network if future studies

show that the current data is not robust. It will also be straight forward to add in more detail of

other important mechanisms, as data become available, to produce a model that can make test-

able predictions.

Many miRNAs, including miR-140 have been shown to be involved in chondrogenesis

[9,19]. Barter et al. [19] identified miR-140 and miR-455 as having an important role, with the

effects of miR-140 being predominantly mediated by the miR-140-5p strand. As well as con-

firming many previously identified targets, they identified a new target in the Wnt signalling

pathway [19]. In addition to modelling the effects of miRNAs in OA, the modelling approach

described in this paper is currently being used to produce a computer simulation model of the

regulatory pathways involving miRNAs in chondrogenesis. This would provide a useful tool to

examine different interventions, to increase the efficiency of in vitro chondrogenesis.

Network motifs in biological systems have been extensively studied and modelled by Alon

[3,50]. He found that some motifs are particularly common in transcriptional networks, such

as the incoherent type-1 feedforward loop. There are four different incoherent feedforward

loops as each of the interactions between the nodes can be either activation or repression; a

type-1 loop corresponds to the arrangement shown in Figure Fi of S1 File. Alon [3,50] showed

that this type of motif produces pulse-like behaviour and our model of the IL1/miR-140/

MMP13 interactions also resulted in a pulse ofMMP13 in the presence of miR-140 (Fig 5C). In
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01wour model of SOX9/miR-140/RUNX2 interactions, our incoherent network is rather dif-

ferent from any of the networks studied by Alon [3,50] in that one of the branches is three

steps long rather than two. This gives it the features of two feedforward loops (a type-2 inco-

herent loop, with two inhibitory reactions centred on HDAC4, and a type-3 incoherent loop,

with two activating reactions centred on miR-140). The type-2 incoherent loop is responsive

to its internal signal (HDAC4) and tends to act to accelerate an off signal (switching off

RUNX2), which is a desirable feature in the regulation of cartilage degradation. Alon [50]

found that type-3 incoherent loops are uncommon and suggested that this was due to the

poor sensitivity of the network to inputs at its internal node. In our model, this internal node

corresponds to miR-140, which has the potential to increase activation of RUNX2 and hence

MMP13. It may be that this lack of sensitivity explains why in the combined model (Fig 8),

the inhibitory effects of miR-140 seem to overcome its potentially activating effect through

RUNX2.

Other miRNAs have also been shown to play a role in OA, including miR-9, -98, -146 and

-455 (reviewed in Le et al. 2013 [9]) and more recent studies have added to the ever-growing

list, e.g., miR-3085 [14]. The bioinformatics analysis (S2 File) suggests that other miRNAs such

as miR-200c-3p -21-5p, -29b-3p, -100-5p and 200b-3p may also be worth further investigation.

Interestingly, a recent study showed that miR-200b-3p inhibits expression of DNMT3A result-

ing in lower expression of the matrix degrading enzymesMMP1,MMP3,MMP9 andMMP13
[51]. In addition, another recent study examined the miR-29 family (including miR-29b-3p) in

cartilage and identified a complex network of interactions between miR-29 and TGF-β, NFκB,

and WNT signalling [52]. Both these studies were too recent to be included in the latest version

of miRTarBase, confirming the usefulness of our bioinformatics analysis for discovering new

potential targets. However, even this approach has limitations due to the time-lag between the

publication of new studies and the updating of the databases. This problem was demonstrated

when we carried out a search of the role of miR-200c-3p (the miRNA that was most enriched

for OA targets), as this revealed other targets important in OA that were not present in Open

Targets. Despite this, the analysis provides a good starting point to suggest further research

into miRNAs that are currently over-looked in OA research. In identifying novel OA-associ-

ated miRNAs, we adopted the approach that miRNAs associated with cartilage development

or remodelling in disease would be likely to have OA-associated genes enriched among their

targets. This could be criticised for a number of reasons: the effectiveness of the approach will

depend on the completeness and accuracy of annotation of the targets of a miRNA and OA

related genes; OA-related genes may have multiple functions, and it may be in a different bio-

logical role that a particular miRNA is regulating them; and finally a miRNA could still be

important in cartilage homeostasis or the development of OA while regulating just a few cru-

cial genes. We also stress that focussing on particular miRNAs can lead to bias, e.g., miR-140 is

known to play a role in OA but this has led to many studies of variable quality that may be

over-emphasising its importance over other miRNAs. Therefore, future work should focus on

validating potentially novel miRNAs that have been discovered using unbiased approaches.

We carried out a search in PubMed to investigate which miRNAs from our bioinformatics

analysis are novel for OA. This showed that miR-200c-3p, miR-100-5p, and miR-1826 are all

good candidates for future validation. Lastly it is well-known that individual miRNAs have

fairly small effects on gene expression, but many genes are regulated by many different miR-

NAs (referred to as miRNA target hubs) and/or have multiple sites of regulation and, so,

including multiple miRNAs will lead to stronger repression of targets. To understand the

effects of miRNAs in such complex networks, we will require integrative models.
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