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Abstract

Tomato Genomic Resources Database (TGRD) allows interactive browsing of tomato genes, micro RNAs, simple sequence
repeats (SSRs), important quantitative trait loci and Tomato-EXPEN 2000 genetic map altogether or separately along twelve
chromosomes of tomato in a single window. The database is created using sequence of the cultivar Heinz 1706. High quality
single nucleotide polymorphic (SNP) sites between the genes of Heinz 1706 and the wild tomato S. pimpinellifolium LA1589
are also included. Genes are classified into different families. 59-upstream sequences (59-US) of all the genes and their tissue-
specific expression profiles are provided. Sequences of the microRNA loci and their putative target genes are catalogued.
Genes and 59-US show presence of SSRs and SNPs. SSRs located in the genomic, genic and 59-US can be analysed separately
for the presence of any particular motif. Primer sequences for all the SSRs and flanking sequences for all the genic SNPs have
been provided. TGRD is a user-friendly web-accessible relational database and uses CMAP viewer for graphical scanning of
all the features. Integration and graphical presentation of important genomic information will facilitate better and easier use
of tomato genome. TGRD can be accessed as an open source repository at http://59.163.192.91/tomato2/.
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Introduction

Tomato (Solanum lycopersicum) is model for a number of biological

studies important to agriculture such as, fruit development and

ripening, disease resistance and biochemical pathways of impor-

tant nutrients [1–3]. Tomato, a Solanaceae member, has been used

for pioneering research on cell wall and storage polysaccharide

synthesis and degradation [4–6]. Tomato was the first plant from

which a ‘gene for gene’ class of R-gene for disease resistance was

cloned [7]. Tomato fruits are a rich source of carotenoid pigment,

which is the precursor of vitamin A. Tomato has been used

extensively for genetic studies because of several reasons such as,

its diploid genome, short generation time, availability of homo-

zygous inbred lines, efficient transformation technology and its

genes are largely sequestered in contiguous euchromatic regions

[8–10]. Apart from basic research, tomato is the second most-

consumed vegetable in the world. Researchers from fourteen

different countries together have published a reference genome

sequence of an inbred tomato cultivar Heinz1706 and a draft

sequence of wild tomato, Solanum pimpinellifolium [11]. These

sequence information have provided the basic and applied

researchers an opportunity to scout for gene function, genetic

diversity and evolution not only in tomato, but also in other

Solanaceae members, for studying basic biology and bio-diversity

based breeding. The Sol genomics network (SGN) serves as the

most referred host for storing and integrating most of the

information on Solanaceae crops and is continuously developing

[12]. There has been existence of a number of other tomato

databases on specific aspects even before the release of tomato

genome such as, SolEST database, MoTo DB, Tomato functional

genomics database, miSolRNA, TOMATOMA, KaTomicsDB

(http://www.kazusa.or.jp/tomato/) and several others [13–18].

These databases serve extensively as resources for genomic and

biochemical information and biological material for the Solanaceae

research community. However, there is a need to amalgamate

different genomic and trait information together graphically along

all the chromosomes of tomato in a single window to enable the

basic and applied researchers to integrate and utilize all the

information in a better and easier way.

Microsatellite markers (simple sequence repeats, SSRs) are

important for various applications such as construction of high-

density linkage maps, comparative genome mapping, identifica-

tion of variety, marker-assisted selection, studying genetic diversity

and so on. They are reliable because of high experimental

reproducibility, multiallelic nature and co-dominant inheritance

[19]. Simple sequence repeats (SSR) are the most popular

microsatellite markers. Genes are the most important functional

part of a genome and define the trait of an organism. Integration

of SSRs with genes in a single window will allow the researchers to

look for presence of SSRs in the coding, non-coding and the

upstream activating sequences of a gene and subsequently for

intra- and inter-species polymorphism. Genetic variation of a trait

within a species can be attributed to a single gene or joint action of

many genes that can be mapped on the genome (QTL,
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Quantitative trait loci) by genetic markers [20]. Integration of well-

known QTLs with the genes and SSRs along chromosomal length

will provide the users an easier access to the genes and SSRs co-

localizing with a QTL. Changes in gene expression may lead to

phenotypic differences between two individuals. Apart from

transcriptional regulation, gene expression can be regulated at

various stages including through microRNAs (miRNAs). Several

studies demonstrated that development and metabolism of plants

are regulated by miRNAs [21–23]. miRNAs might also have

potential role in transgressive phenotype [24]. Therefore, inclusion

of tissue-specific expression of genes, miRNAs and their predicted

target genes together with SSRs, genes and QTLs would be useful.

Small and red-fruited Solanum pimpinellifolium is the closest wild

relative of domesticated tomato. Introgression lines for S.

pimpinellifolium in the background of cultivated tomato are used

for mapping different traits. There is a 0.6% nucleotide divergence

between the inbred cultivar Heinz1706 and the S. pimpinellifolium

accession LA1589. This huge resource of SNPs, especially in the

genic region, would immensely benefit the breeders to utilize the

natural trait reservoir for crop improvement. In view of above, we

have integrated SSRs, genes, miRNAs, known QTLs and SNPs

between the sequenced cultivated and wild tomato accessions in a

single window along the length of all the twelve chromosomes of

tomato.

Materials and Methods

Sequence Retrieval
S. lycopersicum Heinz 1706 reference genome sequence, raw

sequence reads of S. pimpinellifolium LA1589, latest annotation

(ITAG 2.3), and gff files were downloaded from Sol genomics

network database (SGN) (www.solgenomics.net). The RNAseq

data was downloaded from short read archive of NCBI [accession

number SRX118613 (leaf) SRX118614 (root) SRX118615

(flower) SRX118621 (mature green fruit)]. QTL and EXPEN-

2000 map coordinates were retrieved from SGN.

Microsatellites/SSRs
MIcroSAtellite identification tool, MISA (http://pgrc.ipk-

gatersleben.de/misa/) was used to scan the tomato reference

genome with default parameters to identify repeats. MISA

program allows the user to specify the minimal length of the

consecutive nucleotide repeat and reports the SSR type, SSR

motif, motif repeat, length of repeat and coordinates of the SSRs

in the genome. Mononucleotide repeats were not included. The

minimum number of repeats allowed for the dimers was six and

for tri-hexamers was five. Primer3 program was used to design the

primers from the flanking regions within 100 bp of each of the

identified SSR [25]. Coordinates for all the genes were retrieved

from the gff file of ITAG2.3 annotation. Coordinates and

sequence of 2 kilobase (kb)-long upstream sequences (59-US) of

the genes were extracted with PERL script. Accordingly, SSRs

were assigned to 59-US and different parts (exon, intron, and 39

untranslated region) of the genes in addition to other parts of the

genome. All the SSRs, for which primers could be designed, were

anchored on to all the twelve chromosomes and can be visualized

interactively using CMAP viewer [26].

SNPs and miRNAs
Raw Illumina reads of S pimpinellifolium were filtered for high

quality through NGS QC Toolkit v2.3 with default parameter

[27]. Paired end reads were mapped on tomato reference genome

through Bowtie version 2.1.0 with default parameters [28].

SAMTools was used to convert SAM file to BAM file, remove

duplicate reads and for SNP calling [29]. Stringent SNP filtering

criteria of minimum read depth 5, minimum root-mean-square

mapping quality 30 and all the mapped reads showing same non-

allelic base were applied. SNPs in the protein-coding genes were

extracted using gene coordinates and accordingly assigned to the

different parts of the genes as mentioned above. MicroRNAs with

their targets were retrieved based on the available literature and

from miRBase database, and the co-ordinates were retrieved

from.gff file of reference genome [30,31,11].

Genetic Markers and QTLs
Genetic markers and QTLs were retrieved from EXPEN-2000

and QTL genetic maps, respectively, from SGN database and

literature (Ty1/3, Pto, Bs4, Cf-9, Ve, Mi) [32–37]. All the EXPEN-

2000 genetic markers were anchored to the chromosomes

according to their physical locations. All the QTLs were assigned

according to the physical locations of the nearest flanking

sequence-characterized genetic markers mentioned in SGN.

Where the sequences of the flanking markers were not available,

physical coordinates of the corresponding EXPEN2000 genetic

positions, if available, were retrieved from Kazusa Tomato Marker

Database (http://www.marker.kazusa.or.jp/Tomato/) for assign-

ing to chromosomal locations.

Gene Expression
RNA sequence data for four tissues, namely leaf (3 week-old),

root (3 week-old), flower (unopened bud) and mature green fruit,

of tomato cv. Heinz1706 was retrieved as mentioned above and

used for the analysis. Illumina RNAseq reads were first aligned to

ribosomal RNA sequences using Bowtie 2 to eliminate possible

rRNA sequence contamination. To quantify the expressions of

genes all the Illumina reads from 4 tissue samples were mapped

onto the genes using RSEM [38]. The number of reads mapped

was normalized by RPKM (reads per kilobase per million)

method. The heat map showing gene specific expression was

generated on the RPKM for each gene in all the tissue samples

using TIGR MultiExperiment Viewer [39,40]. Differential gene

expression analysis was performed using DESEQ [41]. The genes

showing greater than two fold expression with p#0.05 were

regarded as differentially expressed. Genes expressing with more

than 5 RPKM in a tissue as opposed to less than 1 RPKM in other

tissues were considered as preferentially expressed. Genes prefer-

entially expressed in each tissue sample, as compared with others,

in a tissue-by-tissue comparison is presented as heat map. To find

out collinear gene blocks on tomato genome, all-versus-all BlastP

match was performed using the tomato proteome (version:

ITAG2.3) with cut off e-value of 1e25. The BLASTP result was

fed into MCScanX toolkit (http://chibba.pgml.uga.edu/

mcscan2/) to identify collinear blocks with the following

parameters; e-value of 1e25 and match size of 10. A total of 773

collinear blocks were detected with 20 genes as a minimum block

size.

Structure of TGRD
The Tomato Genomic Resources Database (http://59.163.192.

91/tomato2/) is an online and interactive relational database

developed using open source software, Apache (http://www.

apache.org), MySQL 5.0 (http://www.mysql.com), JavaScript and

PHP 5.4 (http://www.php.net) and is hosted on a 64-bit Linux

Server. The database was designed based on ‘Three-Level Schema

Architecture’ (figure S1). A flow chart explaining the database

architecture, organization and workflow of TGRD has been

presented in figure 1. The CMAP viewer and its schema were

integrated with TGRD for graphical scanning and analysis of

Tomato Genomic Resources Database
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various genomic features. The user-friendly interface for TGRD

has been developed using PHP 5.4, JavaScript and HTML to

query and retrieve the data based on user needs. The interface is

completely interactive and interlinked with each component of the

genome. For example, the gene page contains information about

the associated SSRs and SNPs; and the genic SSR page contains

information about the gene, which contains the SSR and so on.

The TGRD database contains a robust graphical tutorial to

facilitate better use of the database.

Results and Discussions

Sequence Based Physical Mapping
All the genomic features, eg. genes, SSRs, genic SNPs, QTL,

miRNAs and genetic markers (EXPEN-2000) are mapped on

twelve chromosomes and visualized by using CMAP viewer. The

CMAP viewer can be accessed from ‘‘MAPs’’ tab. The MAP page

is developed with rich interactivity using JavaScript and HTML. It

shows all the twelve chromosomes in circular form with

interactivity. The user can visualize all the twelve chromosomes

together (‘All Chromosomes’ tab at the centre) or individually with

all or individual genomic features to have better comprehension

about tomato genome. On CMAP viewer, each genomic feature

contains links to get further information. The CMAP viewer

contains ‘Feature’, ‘Display’ and ‘Advanced’ options at the bottom

to control and reconstruct the map to view the features on the

physical map as per user’s option. For better utilization of space,

the overlapping features were collapsed. Choosing ‘No’ option for

‘Collapse Overlapping Features’ in ‘Feature’ option would

separate the features. Different features are color-coded. The

maps can be cropped and magnified for any particular region of

the chromosome to see the detail features. EXPEN-2000 genetic

markers are included because they are well known to the breeders

and, therefore, the other feature can be viewed with respect to the

positions of these markers. EXPEN-2000 markers are linked to

SGN site for detail information. Examples of two CMAP viewer

pages with all the genomic features are presented in figure 2.

Simple Sequence Repeats
We mined the reference genome of tomato for microsatellite

repeats. Total 68,641 microsatellite repeat motifs spanning

781 Mb assembled genome were identified. Dinucleotide repeats

Figure 1. Schematic illustration showing the flow of the organization of the data in tomato genome database.
doi:10.1371/journal.pone.0086387.g001

Tomato Genomic Resources Database
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Figure 2. Screenshots of a map view and a gene description page showing various features of tomato genome database.
doi:10.1371/journal.pone.0086387.g002
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(60.18%) are much more abundant than tri (19.56%) and other

repeats. Scaffolds assigned to twelve chromosomes spanning

760 Mb contain 66,823 sequence repeats of which, 55,396

(82.90%) and 11,427 (17.10%) were simple and compound

repeats, respectively. Of the 55,396 simple repeats, primer pairs

for 38,659 SSRs (69.78%) could be successfully designed.

Frequency and distribution of various SSRs were analyzed.

Chromosome-wise repeat statistics is presented in figure 3 and

table S1. All the SSRs, for which primer pairs were designed, were

anchored to individual chromosomes according to their coordi-

nates. Physical locations of the SSRs in the exon, intron or 2 kb 59-

upstream regions of the genes were assigned. The user can query

the database from ‘SSRs’ tab using motif sequence, chromosome

number, two coordinates of a chromosome or combination of

repeat length and minimum number of repeat. The SSRs present

in the gene coding (Genic SSRs) or in the 59-upstream sequences

of the genes (59-US SSRs) also can be searched. Total of 5841 and

4773 SSRs were present in 33,840 chromosome-assigned genes

and their 59-upstream sequences, respectively, with average

frequencies of 0.172 SSRs/gene and 0.14 SSRs/59US. The query

results information on marker ID, motif sequence, motif length,

motif repeat, repeat length, region, chromosomal location, start

and end positions, functional information in case of genic SSRs,

primer information and link to CMAP to view location on

chromosomes for each entry present in the database. These SSRs,

physically localized along the chromosomes, would serve as an

immense resource for comparative genome mapping, genetic

diversity study and identification of polymorphic marker for

quantitative trait loci.

Genes, Gene Families and microRNAs
According to ITAG2.3 annotation, tomato reference genome

contains 34,727 protein-coding genes, of which 33,840 are

assigned to twelve chromosomes so far. Chromosome 1 has the

highest estimated (108.0 Mb) and assembled (90.30 Mb) lengths

and accordingly, it codes for the highest number (4293) of genes.

Whereas, the assembled chromosome 11 possesses the least (2385)

number of genes, although its estimated (64.7 Mb) and assembled

(53.4 Mb) lengths are more than the estimated (53.8 Mb) and

assembled (46.04 Mb) lengths of the smallest tomato chromosome

6, which codes for 2813 genes [42,11]. Each gene record provides

information about chromosomal location, gene expression

(RPKM values), sequence information (gene, CDS, protein, 59-

US) and associated SSRs and SNPs at different locations of a gene.

Under the ‘GENE SEARCH’ tab, the user can search for any

gene by ID, chromosome number, gene function and two

coordinates of any chromosome. This tab is facilitated with

BLAST search to look for any homologous tomato gene.

Genes coding for transcription factors, heat shock proteins,

protein kinases and transporter proteins are generally highly

studied. Tomato has been extensively used as a model for disease

resistance and fruit development. Apart from various transcription

factors, enzymes and receptors for ethylene synthesis and

perception, and red-light photoreceptors influence fruit develop-

ment, ripening and quality. In addition, several enzymes related to

modification of cell wall architecture have agronomic importance

for fruit quality. Cytochrome P-450 family of genes involved in

toxic alkaloid production showed significant contraction in tomato

[11]. Therefore, genes encoding these protein families are

specifically mentioned under the tab ‘GENE FAMILIEs’. All

these genes can be viewed on CMAP viewer as a whole family or

individually on all the twelve chromosomes. Total 2505 transcrip-

tion factors assigned to the chromosomes are further subdivided

into 89 families according to the domains present in them.

Chromosome 1 possesses the highest number (287) of genes

encoding transcription factors, while chromosome 9 contains the

least (150). Similarly, 510 R genes are subdivided into eight

families including the receptor like protein kinases. Chromosome 4

contains the highest number (85) of R genes. Functional genomics

involves tissue-specific and treatment-specific expression of genes

at different developmental stages of plants to predict function of a

gene. We analyzed RNAseq data of tomato to reveal tissue-specific

expression profiles of tomato genes. Hierarchical expression of all

the genes in a family in leaf, root, flower and matured green fruit is

provided in the form of heat maps and in RPKM values for

individual genes. Total 6404 genes did not show any expression in

these four tissues at these developmental stages. 73 genes were

found to express preferentially in leaf while 665, 442 and 43 genes

were found to express preferentially in root, flower and mature

green fruit, respectively, at the specific developmental stage as

mentioned (Fig. 4 and table S2). Physical positions of all the genes

in a family can be viewed under this tab and, therefore, paralogous

genes can be identified. Further, functional divergence of the genes

present in collinear blocks can be analyzed from expression data as

shown for two collinear blocks on chromosome 1 and 2 (Fig. 5).

Integrated with QTL map, physical map of the genes provide an

opportunity to associate candidate genes with important agro-

nomic traits. 887 genes yet to be assigned to the chromosomes

were listed with their detail under chromosome zero separately.

Out of 96 conserved miRNAs annotated in genome sequence,

93 have been assigned to twelve chromosomes and can be

searched under ‘microRNAs tab. They are categorized in 26

families. As mentioned in the materials and methods, target genes

for these miRNAs have been predicted based on literature and

miRBase database. Each miRNA family contains information

about their target genes, chromosomal location, strand orienta-

tion, mature and pre-mature RNA and DNA sequences.

Single Nucleotide Polymorphisms (SNPs)
Cultivated tomato, which experienced a genetic bottleneck

while carried from South America to Europe, has narrow genetic

base with estimated ,5% genetic variation in their wild relatives

[43]. The wide genetic variation present in the self-compatible and

–incompatible wild tomato species is being investigated and

exploited in tomato improvement by introgression breeding. S.

pimpinellifolium is used to study tomato traits such as fruit size and

shape and to introduce bacterial spot resistance. High quality

genomic sequence reads of S. pimpinellifolium were mapped to the

tomato reference genome. Stringent filtering criteria were applied

to extract highly probable SNPs between these two accessions.

Total 2,971,025 high quality SNPs were obtained of which

290,445 are in protein-coding genes. Chromosome 7 and 12

possesses the highest (5361/Mb) and lowest (2551/Mb) frequen-

cies of SNPs, respectively (table S3). Frequency distribution of

genomic and genic SNPs and genes in each million base interval

were plotted for each chromosome (figures S2 and S3) for better

understanding of SNP distribution across chromosomes and

especially in euchromatic regions. Except chromosome 12,

heterochromatic regions of all the chromosomes showed higher

sequence divergence than the euchromatic part (figure S2).

Comparison of distributions of genes and genic SNPs (figure S3)

identified ten regions of 1 Mb interval with twenty or more SNPs

per gene and all these regions are in the low-gene heterochromatin

regions of the respective chromosomes (table S4). A list of genes

containing more than ten SNPs is listed in table S5. Most of them

encode unknown proteins. Three genes encoding calcium-

transporting ATPase, two encoding WD-repeat proteins and one

encoding receptor-like protein kinase are among the annotated

Tomato Genomic Resources Database
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high SNP-containing protein-coding genes. All the genic SNPs are

anchored to their respective locations in each chromosome and

can be accessed directly from map or from the genes. Flanking

sequences of 100-base length for each SNP are provided for

designing primers to convert them as markers.

The genic SNPs identified can be utilized in finding allelic

variation of known genes of economic importance and may initiate

new studies. As an example, fruit size locus fw2.2 is one of the

QTLs selected during tomato domestication and accounts for as

much as 30% of the difference between the fruit sizes of small-

fruited wild S. pennellii and large-fruited domesticated S. lycopersicum

[44]. fw2.2 corresponds to a gene (Solyc02g090730.2.1, Chr

02:46830407-46831197) that encodes a protein ‘Cell number

regulator 19 having structural similarity to human oncogene Ras.

Of 42 SNPs between two alleles, only three SNPs change three

amino acids within first nine residues of the protein. Therefore, the

allelic variation in fw2.2 was thought to modulate fruit size by

differentially regulating carpel cell number due to differential

expression of two genes rather than structural differences in

proteins [45,46]. Sequence comparison of Solyc02g090730.2.1 of

domesticated Heinz1706 and another small-fruited wild S.

pimpinellifolium LA1589 detected only two SNPs in the open

reading frame. Of them, only one (SNP-Chr-02-23437), common

for both S. pennellii and S. pimpinellifolium, changes the third amino

acid. However, the 59-upstream sequence (2 kb from translation

start site), which regulates transcriptional expression of a gene,

showed twenty one structural variations between Heinz1706 and

LA1589, of which 15 are SNPs and six are in-dels (table S6).

Significance of these allelic variations in regulating fruit size awaits

experimental validation.

Quantitative Trait Loci
Genetic mapping of a QTL allows researchers to look for

candidate genes segregating around a trait locus, which ultimately

results in QTL characterization. However, use of different

mapping populations for QTL mapping hinders unified physical

localization of multiple QTLs on a single physical map. We tried

to anchor some QTLs to tomato chromosomes according to the

physical locations of their flanking markers. We used QTLs

described in SGN QTL map. This map is based on a mapping

population derived from a cherry tomato line Cervil and a round

large-fruited line Levovil, which was different from the mapping

population (S. lycopersicum M82 X L. pennellii LA716) used for

EXPEN2000 map [20]. Hence, the boundaries of QTLs could not

be delineated accurately due to unavailability of sequence-

characterized flanking genetic markers. The nearest sequence-

Figure 3. Relative frequency and number of selected microsatellite repeat-motif types in tomato genome.
doi:10.1371/journal.pone.0086387.g003
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Figure 4. Heat map showing genes preferentially/specifically expressed in four tissue samples. The number of genes and tissue
specificity is noted at the right side. The color scale (0–50) represents RPKM values.
doi:10.1371/journal.pone.0086387.g004

Figure 5. Differential expression profiles of genes present in two collinear blocks located on chromosome 1 and 2. The color scale (0–
20) represents RPKM values. IDs of the genes in the collinear blocks in chromosome 1 and 2 are mentioned in the left and right sides, respectively.
doi:10.1371/journal.pone.0086387.g005
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characterized genetic markers or the corresponding EXPEN2000

genetic locations were, therefore, used to physically localize the

QTLs, which resulted in assignment of a little wider physical

length than the actual. Following this approach we could localize

fifty-four QTLs to eight chromosomes. According to the

recombination nodule frequency map the assigned QTLs are in

high recombination frequency regions of the corresponding

chromosomes [11]. Diseases caused by different bacteria, fungus

and viruses tremendously attenuate yield potential of tomato.

Resistance loci associated with diseases caused by Tomato yellow

leaf curl virus (Ty1/3), Pseudomonas syringae (Pto), Xanthomonas

campestris (Bs4), Cladosporium fulvum (Cf-9), Verticillium albo-atrum

(Ve) and root knot nematode (Mi) were identified by map-based

cloning (32–37). Physical locations of these pathogen-resistance

loci, as derived from their marker or gene sequences, were also

shown on the map as references.

Conclusion

Tomato genome sequence has created a huge impact on

Solanaceae research. The reference genome is increasingly being

used for sequence-based approaches to answer basic biological

questions of plant development as well as for agricultural

improvement of fruit quality and quantity. Although several

databases for tomato in addition to SGN exist, we tried to provide

the most sought-after basic information about a genome in TGRD

in a user-friendly way and we feel that graphical presentation of

this important genomic information will facilitate a better use of

tomato genome. A tutorial with graphical and video description

has been provided for better use of the site. Regulation of gene

expression is equally important as the gene sequence in influencing

traits of an organism. For this reason we provided 2 kb-long 59-

upstream sequences with all the genes. Incorporation of SSR- and

SNP-information within this region will be useful in exploiting

intra- and inter-specific polymorphic sequences in studying

functional divergence of homologous genes. Focus of the breeding

programs carried out in the last century has been on increase in

yield while fruit quality traits did not receive proper importance

[47]. Improvement in traits such as, flavor, taste and nutrient

content is challenging because these are regulated by biochemi-

cally complex processes. Recent advances in mapping some of the

QTLs for these traits will lead to our understanding of these

complex traits. Availability of tomato genome sequence and effort

to assign physical locations of some of the flavor-related QTLs on

the reference genome integrated with SSRs and SNPs in TGRD

may facilitate biochemical characterization of these traits. Tran-

scriptome sequences of a few wild relatives of tomato are now

available [48]. We will keep on updating our site by incorporating

SNP data of those wild accessions once their genome sequence

data are available to allow robust mining of SNPs with stringent

filtering criteria.
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Figure S1 Description of schema used to construct
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Figure S2 Graphical distribution of frequency of geno-
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Figure S3 Graphical distribution of frequency of genic
SNPs (in red) between Heinz1706 and LA1589 and genes
(in black) in each million base interval of each
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Table S1 Chromosome-wise and motif-wise distribu-
tion of simple sequence repeats in tomato genome.

(XLS)

Table S2 Genes preferentially/specifically expressed in
each tissue sample, as compared to others in a tissue-
by-tissue comparison. Genes showing at least two-fold change

(upregulated above the blank cell and downregulated below the

blank cell) as compared to the other tissue samples were given.
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Table S3 Chromosome-wise distribution and frequency
of single nucleotide polymorphic sites between S.
lycopersicum Heinz1706 and S. pimpinellifolium
LA1589.

(XLS)

Table S4 Genomic regions showing high frequency of
SNP per gene in 1 Mb interval between S. lycopersicum
Heinz1706 and S. pimpinellifolium LA1589.

(XLS)

Table S5 A list of genes containing ten or more SNPs
(between S. lycopersicum Heinz1706 and S. pimpinelli-
folium LA1589).
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Table S6 Structural variations between S. lycopersicum
Heinz1706 and S. pimpinellifolium LA1589 in the 59-
upstream region of gene ‘Cell number regulator 19
(Solyc02g090730.2.1).
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