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Understanding the effects of gravity on biological organisms is vital to the success of future
space missions. Previous studies in Earth orbit have shown that the common fruitfly
(Drosophila melanogaster) walks more quickly and more frequently in microgravity, com-
pared with its motion on Earth. However, flight preparation procedures and forces endured
on launch made it difficult to implement on the Earth’s surface a control that exposed flies
to the same sequence of major physical and environmental changes. To address the uncertain-
ties concerning these behavioural anomalies, we have studied the walking paths of
D. melanogaster in a pseudo-weightless environment (0g*) in our Earth-based laboratory.
We used a strong magnetic field, produced by a superconducting solenoid, to induce a dia-
magnetic force on the flies that balanced the force of gravity. Simultaneously, two other
groups of flies were exposed to a pseudo-hypergravity environment (2¢*) and a normal grav-
ity environment (1¢*) within the spatially varying field. The flies had a larger mean speed in
0g* than in 1¢*, and smaller in 2¢*. The mean square distance travelled by the flies grew more
rapidly with time in Og* than in 1¢*, and slower in 2¢*. We observed no other clear effects of
the magnetic field, up to 16.5 T, on the walks of the flies. We compare the effect of dia-
magnetically simulated weightlessness with that of weightlessness in an orbiting spacecraft,
and identify the cause of the anomalous behaviour as the altered effective gravity.

Keywords: diamagnetic levitation; microgravity; Drosophila melanogaster;
motility; diffusion

1. INTRODUCTION

Life has evolved under the gravitational field of Earth
since it began; so it is fascinating and fundamental to
find out how living things respond to an environment
with different gravity. Experiments on Drosophila
melanogaster, the common fruitfly, in microgravity con-
ditions on-board the Columbia Space Shuttle (STS-65)

[1] and during the Cervantes mission on the International
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Space Station (ISS) [2] showed a striking increase in
the frequency of locomotor activity and walking speed,
compared with controls performed on the ground.

Drosophila melanogaster is an ideal model organism
on which to study the effects of gravity: the flies are
small enough that many individuals can be contained
in compact cells suitable for space-flight, yet complex
enough to possess a sophisticated gravity sense mechan-
ism [3]. Their use is ubiquitous in studies of biological
developmental processes and in endeavours to under-
stand cellular mechanisms in higher organisms, and
they have been used in a number of studies on the
origin of the biological gravity sense mechanism [4,5].
The motility of these flies has been linked to molecular
ageing responses that could be of significance for future
human space exploration [6].
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In these experiments, we set out to investigate the
walks of D. melanogaster (henceforth referred to as ‘fruit-
flies’) in a ground-based ‘simulation’ of the microgravity
environment in space. We have used a relatively new
technique called diamagnetic levitation to provide a
pseudo-weightless environment, which requires a power-
ful magnetic field with a large field gradient to levitate
the flies. Ground-based experiments are essential for
selecting feasible and interesting experiments for space-
flight studies. A primary aim of our experiments is to
demonstrate the usefulness of diamagnetic levitation as
a viable alternative to more established ground-based
techniques for simulating the effects of microgravity on
a complex organism, such as the random positioning
machine, or parabolic flights.

An additional aim of the experiments is to validate
findings of the original space-flight experiments on fruit-
flies. In the experiments aboard the Columbia Space
Shuttle [1], six groups of 50 male flies remained in orbit
for nearly 15 days. The flies were hatched and incubated
on the ground until they reached the adult stage.
Approximately 8 h after launch, two of the groups were
installed in a 1g centrifuge aboard the Shuttle. Every
2 days the containers were transferred to a glove box,
where they were recorded with a video camera for
15 min to observe their behaviour. All groups of flies
(including those from the 1g centrifuge) showed pro-
nounced increases in the frequency of locomotor
activity and walking speed. It was necessary to remove
the flies from the 1g centrifuge aboard the Shuttle
during periods of video recording. Hence, the centrifuge
cannot be regarded as a control in these experiments,
at least as far as the behaviour is concerned. Any beha-
vioural abnormalities were identified by comparison
with experiments performed on the ground. Although
great efforts were made to ensure a close match between
the environmental conditions of the flies on the ground
and those of their counterparts on the Shuttle, the flies
on the ground did not experience the conditions of the
Shuttle launch, which were difficult to reproduce exactly
in the ground-based experimental control. Indeed, sub-
sequent experiments performed on the ISS showed that
the behaviour of the flies on the ISS was sensitive
to launch procedures [2]. There is thus some doubt
about the root cause of the observed motility increase
in microgravity.

By using diamagnetic levitation, we were able to ensure
that all groups of flies were treated in the same way, except
for their differing positions in the magnetic field, and that
all experiments were performed simultaneously.

In diamagnetic levitation, diamagnetic materials such
as water and many organic-based materials including
oils, plastics and biological material are levitated using
a strong, spatially varying magnetic field [7]. Diamag-
netic material is weakly repelled from magnetic fields,
compared with the more commonly known ‘magnetic’
(i.e. ferromagnetic) materials such as iron, which are
strongly attracted to a magnetic field. The diamagnetic
force, balancing the weight of the levitating object, acts
at the molecular level throughout the body of the
object, just as the centrifugal force balances the gravita-
tional force on an object in Earth orbit. The forces on a
diamagnetically levitated object differ importantly
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from those on a floating, neutrally buoyant object (such
as the forces on an SCUBA diver), in that the weight of
the levitated object is balanced throughout the body of
the object, not just at its surface.

Levitation of water and organic materials was
reported first by Beaugnon & Tournier [8,9]. The poten-
tial of diamagnetic levitation for studying living
organisms in weightlessness was first demonstrated by
Valles et al. [10,11] who levitated frog embryos, and by
Geim and colleagues, who levitated a variety of small
living organisms, including a live frog ([12—14], see also
[15]). Levitation has since also been used in studies of
micro-organisms [16-19], single-cell cultures [20-23],
biomolecule aggregation in vitro [24] and protein crystal
growth [25].

We used a superconducting solenoid magnet with a
vertical bore to levitate fruitflies. Water, being diamag-
netic, is repelled by the strong magnetic field generated
by the solenoid, with a force given by the product of the
magnetic field strength and the field gradient [13].
Because the field is strongest in the central region of
the solenoid bore, the diamagnetic force acts in the
direction opposite to gravity in the upper region of
the bore, and in the same direction as gravity in the
lower region. In our magnet, when the magnetic field
at the geometric centre of the solenoid is 16.5T,
water levitates approximately 80 mm above the centre
of the solenoid, where the diamagnetic force is equal
in magnitude to the gravitational force on it. The tech-
nique of stable diamagnetic levitation has been
described in detail elsewhere [8,10,13—15,26]. The flies
levitate at approximately the same position as water,
owing to their high water content (in the region of
70 per cent by mass), as in any animal, and because
the dry mass of the insect has a magnetic susceptibility
similar to that of water. Further details about the
levitation forces are given in §4 and the electronic sup-
plementary material.

Temporal and spatial variations in the walking
patterns of fruitflies have been studied as indicators
of brain activity in response to environmental cues
[27—-30]. Here, we concentrate on the measurement of
the velocity of the flies and the mean square distance
travelled as a function of time, in different effective
gravities in the magnetic field.

The fruitflies were confined within three cylindrical
‘arenas’, 25 mm in diameter and 10 mm tall, stacked
inside the magnet bore, one at the centre of the sole-
noid, one near the top of the solenoid, and one near
the bottom, as shown in figure 1. Flies in the central
arena experienced normal gravity. In the arena located
near the top of the solenoid, where the diamagnetic
force balances the gravitational force, flies experienced
pseudo-weightless conditions. Below the normal gravity
arena was a pseudo-hypergravity arena where the grav-
itational and magnetic forces sum together so that the
effective weight of the flies is twice that outside the
magnet [18]. For convenience, we label the three
arenas inside the bore as 0g*, 1¢* and 2¢*, as shown
in figure 1; the asterisk indicates the presence of a
strong magnetic field (16.5T in 1¢*, 11.5 T in 0g* and
2¢%). We label a zero magnetic field control, outside
the magnet, as ‘1¢’. The flies could not escape from
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Figure 1. (@) One of the arenas contained within a transparent
plastic tube (diameter: 25 mm; height: 50 mm), viewed from
the side. The arena floor is a semi-solid culture medium (off-
white material at the bottom of the tube), which provided a
food source and maintained humidity in the arena at close
to 100 per cent. The ceiling of the arena is a disc of transpar-
ent cellophane (just visible between the two retaining black
rubber o-rings in the image, 25—30 mm above the tube’s
base) punctured around its perimeter to allow gas exchange.
(b) Three arenas held in a scaffold, before insertion into the
magnet bore. (¢) Each tube was lit around its circumference
by six white light-emitting diodes (LEDs), imaged from
above by a charge-coupled device (CCD) camera, and its
temperature monitored by a thermocouple. The lighting, cam-
eras and temperature sensors have been removed from the
scaffold in these images for clarity. (Online version in colour.)

the arenas. We used the calculated effective gravity of
water in the magnetic field, computed from the solenoid
geometry [26] and measurements of the magnetic field,
to determine the vertical position of each of the three
arenas in the magnet bore. The 0¢g* arena was placed
to enclose the stable levitation point of water [26].
The 1¢* and 2¢* arenas were placed to enclose the
point where the effective gravity on water is 9.8 ms >
and 19.6 ms™?, respectively. Additional details about
the apparatus are given in §5; details on the calculation
of the effective gravity are given in the electronic
supplementary material.

2. BEHAVIOUR OF FRUITFLIES IN THE
MAGNET

For most of the time, the flies remained in contact with the
walls, floor and ceiling of the arena. In common with the
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findings of previous studies [27-29], the flies alternated
between stationary periods (during which they may per-
form other activities, such as grooming) and active
periods in which they moved around the arena. A technical
problem owing to the slight degradation of the charge-
coupled device (CCD) video images in the strong magnetic
field prevented us from identifying any differences in more
complex behaviour of the flies, such as grooming or wing
beating. Nonetheless, major differences in walking speed
could be observed clearly in the three different positions
in the magnet bore. It is immediately apparent from the
video images that the flies in the 0g* arena walked more
quickly and more frequently (electronic supplementary
material, movie). Although the flies did perform short
flights occasionally in all arenas, flights occurred so infre-
quently in the confined space of the arena that we could
obtain no information on the effect of levitation, or of
hypergravity, on flight.

A small number of flies, typically two to four at any one
time, levitated freely in the Og* arena, i.e. not in contact
with any surface. These flies levitated within 1-2 mm of
the observed levitation point of water, owing to the
large water content of the flies. Hence, as a first approxi-
mation, we assume for the moment that the effective
gravity acting on the organism is the same as that
acting on water. We shall discuss the limits to this
approximation in §4. The exact position of the levitation
point depends on the hydration of the flies. In fact, we
observed the levitation point changing during the life
cycle of the fruitfly, from egg to larvae to pupae to
adult, owing to the difference in water content between
each stage of the fruitfly’s life cycle. We fine-tuned the
solenoid current until the stable levitation point of
the adult flies was located in the centre of the 0g* arena.

Freely-levitating flies are drawn towards the stable
equilibrium levitation point by the combined gravita-
tional and diamagnetic forces on them, but the flies
could escape this ‘trap’ easily by taking flight, as can
be seen on the video recording. Some flies held in the
‘trap’ remained motionless for several minutes, while
others attempted to walk by climbing over their fellows
held in the trap. The camera resolution in this position
is too poor (owing to the effect of the magnetic field on
the camera) to resolve more detailed behaviour.

3. ANALYSIS OF THE WALKING PATHS

Figure 2 shows the walking paths of flies moving over
the floor of the arena, observed during three consecutive
33 s periods. Note that these continuous paths include
pauses in walking activity when the flies are stationary.
During these pauses, the recorded position of the fly
does not change, or changes insignificantly, from one
video frame to the next. It is immediately apparent
that the flies travelled significantly farther, on average,
over the arena floor during each 33 s period in the 0g*
arena than in normal gravity (1¢g and 1¢* arenas), and
that the flies travelled shorter distances in 2g*.

3.1. Velocity distribution and activity of the flies

From the walking paths, we determined the velocity com-
ponents of the flies parallel to the arena floor (v,, v,).
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Figure 2. Trajectories of fruitflies walking on the floor of cylindrical arenas (25 mm diameter) shown for three consecutive 33 s
periods. The video still-images show the positions of the flies at the start of each period. The position of the head at the start of
the period is shown by a dot. The large red circle marks the edge of the arena floor. The flies travelled significantly farther during
each period in the pseudo-weightless arena (0g*) than in normal gravity (1g and 1¢*). The flies travelled shorter distances in
pseudo-hypergravity (2¢*). The vectors z and y lie in the horizontal plane, perpendicular to the magnetic field and the direction

of gravity (z). (Online version in colour.)

Here, v, = Az/At, where Az is the displacement of the fly
along the z direction between consecutive video frames
and At =1/15s (~0.067 s) is the time between the cap-
ture of one video frame and the next, and similarly for
v,. The zand y directions are labelled in figure 2. Defined
this way, the vector (v,, v,) is the mean horizontal vel-
ocity of the fly during the interval A#, not the
instantaneous velocity of the fly. In determining the
velocity, we make no distinction between ‘active’ and
stationary periods of the flies, i.e. when the flies are
stationary, we simply record the velocity as (v,, v,) =
(0, 0). We also determined the speed u= (v + vz)l/ 2,
which is the magnitude of the mean velocity vector
of the fly during the time At between consecutive
video frames.

The histograms in figure 3 show the distributions
p(v,) and p(v,) of the velocity components v, and wv,,
respectively, in each arena. The data show the distri-
bution for the population, and are normalized such
that p(v,)Awv, is the probability of finding a fly, ran-
domly selected from the population, with a velocity
component between v, — Av,/2 and v, + Av,/2 at any
particular time, and similarly for p(v,). The histogram
bins are Av,, Av,=2mm s ' wide. Note that p(v,)
and p(v,), as we have defined them, differ, in general,
from the distribution of the instantaneous velocity
vector (dz/dt, dy/dt), and depend on the choice of At.
Nevertheless, they serve as a useful measure of the walk-
ing speed of the flies. We observed no significant
difference between the distributions p(v,) and p(v,),
showing that there is no bias towards any particular
horizontal direction.

Figure 4 shows a cumulative histogram plot (some-
times called a rank/frequency plot) of the speed
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Figure 3. Histogram showing the distribution of the horizontal
velocity of fruitflies (v,, v,) in each of the arenas. The distri-
bution of v, is shown by solid symbols (red triangles, 0¢g* (11.5
T); green circles, 1¢g* (16.5 T); blue inverted triangles, 2¢*
(11.5 T); black squares, 1g control (0 T)) and v, by open sym-
bols. Here v, = Az/At, where Az is the displacement of the fly
along the z direction between consecutive video frames, and At
is the time interval between the capture of one video frame
and the next, and similarly for v, Hence (v,, v,) is the mean vel-
ocity of the fly during the interval At, not the instantaneous
velocity of the fly. The data show the distribution for the popu-
lation, normalized such that p(v,)Av, is the probability of finding
a fly, randomly selected from the population, with a velocity
between v, — Av,/2 and v, + Av,/2 at any particular time; simi-
larly for v, The bin-width Av, of the histograms are 2 mms™".
The solid lines are fits to the tails of the distributions with
p(vy) ~ exp(—blv,); see §4.4. (Online version in colour.)



1442 Fruitfly walks in altered R. J. A. Hill et al.

10—1 J

]0—2 J

probability P(>u)

1073 ;

1074

1 10 10°
speed, u (mms™)

Figure 4. Cumulative histogram showing the distribution of
speeds u in each of the arenas. The data show the probability
of observing a fly (randomly selected from the population)
that has a speed greater than u. Here u= Ar/At, where
Ar= (Az® + Ay?)"/? is the distance moved between consecu-
tive video frames, and At is the time interval between the
capture of one video frame and the next. Hence, u is the mag-
nitude of the mean velocity of the fly during the interval At,
not the instantaneous speed of the fly. Error bars give an indi-
cation of the counting error. Red triangles, 0¢g* (11.5 T); green
circles, 1g* (16.5 T); blue inverted triangles, 2¢* (11.5 T);
black squares, 1g control (0 T). (Online version in colour.)

distribution w. In this plot, P(>wu) is the probability of
observing a fly (randomly selected from the population)
that has a speed greater than u. Unlike the standard
histogram, this type of plot does not require us to bin
the data, avoiding the need to define a bin width [31].

From the velocity distribution shown in figure 3, we
see that the flies in the 0¢* arena spent more time walking
at higher velocity (on average) than in the other arenas.
For example, at any particular moment, it is approxi-
mately six to seven times more probable to observe a fly
with velocity component |v,| or |v,| between 9 and
11mms~'in 0g*, thanin 1g¢. It is less probable to observe
a fly in 0¢g* moving with velocity |v,| or |v,| smaller than
1 mms ™', than in the other arenas. When we averaged
the velocity (v, v,) over a larger time At, we obtained
qualitatively similar results: flies in 0¢g* reached higher
velocity more frequently. The difference in velocity distri-
bution between the 1¢g*, 19 and 2¢* arenas is less clear
from the histogram plot. However, a difference in the
walking speeds u between flies in 2¢* and the normal
gravity controls (1g* and 1g) becomes apparent in the
cumulative histogram shown in figure 4. The probability
of observing a fly with speed u greater than approxi-
mately 10 mms~ ' is similar in both 1¢* and 2¢*, but
beyond 10 mm s~ !, the probability decreases markedly
in 2¢*, compared with that in 1¢* and 1g.

Martin studied the temporal frequency of ‘activity’ and
‘inactivity’ in the fruitfly [29]. He considered flies moving
greater than 4mms™' as ‘active’ and those moving
slower than 2 mms™~ ' as ‘inactive’ (he classed as ‘unde-
fined’, those flies moving between 2 and 4mms™').
Using this definition of activity, we see from the
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Figure 5. Graphic showing how our measure of the mean
square displacement (MSD) of the fruitfly versus time is
obtained. Circles represent the position of a single fly in
each video frame. Consecutive frames are separated by the
time At=1/15 s. The period of observation is divided into
non-overlapping intervals of 25 video frames each (1.7s).
For each interval n, we measure r,(t), which is the displace-
ment away from the fly’s initial position at the start of the
interval (‘frame 1), as a function of time. The MSD (r?) is
obtained by averaging the square of the displacement 72 =
1, - I, over all intervals n and all flies. The distance moved
between consecutive frames Ar is used to obtain the average
speed u = Ar/At, as described in the text.

cumulative histogram that flies in 2¢* and 1¢* (and 1g)
are ‘active’ for similar fractions of time, whereas the flies
in 0g* spend more than twice as much of their time
‘active’ compared with flies in 1¢* and 2¢4*.

3.2. Mean square distance travelled by the flies

In the previous section, we determined the mean velocity
(v v,) of the flies during the time At between video
frames, and the distribution of this velocity in the popu-
lation. Although one can approach a measure of the
distribution of instantaneous velocities of the flies by
using a high-speed, high-resolution video camera, this
requires intense lighting, which would disturb the behav-
iour of the flies. An alternative quantitative measure of
the walking speed of the flies, which is independent
of At, can be obtained from the mean square displace-
ment (MSD) of the flies as a function of time ¢> At.
We divided the period of observation (100 s) into 20
non-overlapping intervals of 25 frames each, which corre-
sponds to a duration of 7= 1.67 s. For each fly and each
interval n, we measured 1,(t) - r,,(t) = r,(t)%, where the
vector r,(t) is the displacement of the fly away from its
position at the start of the interval, as a function of the
time elapsed ¢ since the beginning of the interval
(figure 5). We calculated the MSD as the average of
7,(t)? over all intervals 7 and all flies. Within a particular
interval, we excluded any trajectories of flies that made
contact with the walls. This removed the circular arcs
of flies crawling around, or walking on, the walls of the
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Figure 6. (a) MSD (r°) asa function of ¢ < 7, where the period of
observation has been divided into 7= 1.67 s intervals. The
mean is taken over several intervals and all flies. (b) The
graph of log(r?) versus log t is a straight line, with slope y &
1.5. The lines are offset along the y-axis by logD. The values
of y and D, determined from a least-squares fit to the data,
are given in table 1. Error bars show the standard deviation of
(r®). Red triangles, 0g* (11 5 T); green circles, 1g* (16.5 T);
blue inverted triangles, 2¢* (11.5 T); black squares, 1g control
(0'T). (Online version in colour.)

arena, from the analysis. The MSD (%) is shown in
figure 6. Error bars show the standard deviation of (r2).
Note that the maximum variation in the mean square
between individuals is generally substantially larger
than the standard deviation of (r%). The graphs show
that the MSD of flies in 0g* grows considerably faster
with time than flies in 1g and 1g*. Conversely, the
MSD of flies in 2¢* increases more slowly with time
than in 1g and 1¢g*. We performed a least-squares fit to
the data in figure 6 with the power law (r®)= Dt?,
where D is an ‘effective diffusivity’. The exponent 7,
which is the slope of the log—log plot of the data
(figure 6b), is approximately the same in all gravities,
v~ 1.5, including outside the magnet. The coefficient
D, which is directly proportional to the rate at which
(r?) increases with time, varies considerably with the
effective gravity, as is immediately apparent by examin-
ing the gintercept of the straight line fits to the
log—log plot of the data, as shown in figure 60.
The values of D obtained from the least-squares fit are
given in table 1. Figure 7 shows the MSD calculated
using a longer time scale. In these plots, the interval
time used in the analysis is 7= 16.7 s. Just as in the
analysis on the shorter time scale, flies in 0g* increase
their MSD more rapidly with time, and more slowly in
2¢*, than in 1g and 1¢g*. The MSD of flies in 1¢* increases
at a similar rate as those in 1g in both analyses, as shown
in both figures 6 and 7.

The analysis that uses intervals of 7= 16.7 s generates
more noisy data with correspondingly larger error bars,
than with 7= 1.67 s, as can be seen by comparing
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Figure 7. (a) MSD (r?) as a function of ¢ < 7, where the period
of observation has been divided into 7= 16.7 s intervals. The
mean is taken over several intervals and all flies. (b) Graph of
log(r®) versus logt. Error bars show the s.d. of (+*). The dashed
lines are least squares fit to the data with y=1.3. Red tri-
angles, Og* (11.5 T); green circles, 1¢g* (16.5 T); blue
inverted triangles, 2¢g* (11.5 T); black squares, 1g control
(0 T). (Online version in colour.)

Table 1. Coefficient D and exponent 7y in the fit to the data
(r*) = Dt” shown in figure 6.

D (mm?s™?) v
0g* 3.47 4 0.03 1.50 £ 0.01
1g* 0.575 + 0.005 1.56 + 0.01
2g* 0.297 + 0.005 1.51 4+ 0.01
1lg 0.64 + 0.01 1.49 + 0.02

figure 7 with figure 6. This is owing to the increased like-
lihood of any particular fly meeting the arena walls
during the longer interval 7= 16.7s: any trajectory
that meets the arena walls within time ¢ < 7 is excluded
from the measurement of the MSD, thus reducing
the size of the set of trajectory data over which the
mean is calculated.

4. DISCUSSION

The rate at which the MSD increases with time (pro-
portional to D) depends on the effective gravity in our
experiments: the MSD of the flies grows more rapidly
with time in 0g* than in 1¢*, and more slowly with
time in 2¢*. These results corroborate the findings
from the experiments performed aboard the Columbia
Space Shuttle and the ISS that fruitflies walk more
quickly in the microgravity environment and are
‘active’ more frequently. For example, it is twice as
likely to observe a fly in 0g* with speed u= Ar/At (as
defined in §3.1) greater than 4mms~ ' than in the 1g*
and 1g arenas, at any particular moment.
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We also observed that flies in 2¢* had a speed distri-
bution similar to those in 1¢* and 1g, up to
approximately 10 mm s~ ', but beyond this, the prob-
ability that flies in 2¢* reach higher speed falls relative
to the 1g and 1g* arenas. For example, the chance of
observing a fly in 2¢* with u greater than 16 mms™~ " is
approximately three times smaller than in 1¢* and 1g,
at any particular moment. The coefficient D of the
walks of flies in 2¢* is correspondingly smaller than in
the other arenas.

In experiments in larger arenas under normal grav-
ity, Valente et al. [30] observed a dependence of the
velocity distribution on position within the arena,
which we do not observe. However, our arena diameter
is approximately six times smaller than in Valente
et al’s work, in order to fit within the 5 cm diameter
bore of the magnet.

4.1. Interactions with magnetic field

Before concluding that the anomalous walking speed and
activity observed in the magnet can be attributed to the
altered effective gravity, we need to consider the differ-
ences between the pseudo-weightless condition of
diamagnetic levitation and the ‘true’ microgravity
environment in orbit—in particular, the effect of the
strong static magnetic field (which is, of course, not pre-
sent in space-flight experiments). In this section, we give
a brief overview of magnetic field interactions that can
occur in the fruitflies, besides that of the linear diamag-
netic force that we use to balance the gravitational
force. In §4.2, we discuss the uniformity of the effective
gravity acting on the flies.

Mechanical stresses within the organism can be intro-
duced through alignment of biostructures by the
magnetic field. Many biological structures contain long
sequences of regularly oriented peptide groups. There is
a torque on such structures in a magnetic field, owing
to the diamagnetic anisotropy of the peptide bond [32].
Some cell structures contain enough of these sequences
that the magnetic torque on the structure in relatively
weak fields of approximately 1 T can overcome the rando-
mizing effect of thermal motion, resulting in some degree
of magnetic alignment [33—36]. Other regularly oriented
long chain organic molecules can be aligned by the
magnetic field in a similar way [37].

We control for effects of magnetic alignment on be-
haviour, and any other interactions with the magnetic
field, such as magnetohydrodynamics effects [38], by
comparing the motion of the flies in the 1¢* arena
with the flies in the arena positioned well away from
the magnet (lg arena). The strong 16.5T magnetic
field present in the 1¢* arena had no clearly identifiable
effect on the flies” walking behaviour: the velocity distri-
bution of flies in 1¢* is the same (i.e. within the scatter
of the data) as that in 1g, and D and vy characterizing
the MSD are similar. Although the exponent y appears
to be slightly higher in 1¢* from that in the other
arenas, the difference in y between 1¢* and 1g is not
large enough, compared with the error in the measure-
ment, to attribute unambiguously to the magnetic field.

Because the fruitfly can sense the Earth’s magnetic
field [39], it might be expected that the strong field in
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the superconducting magnet, being of order 10° times
larger than the Earth’s field at the surface, should dis-
rupt their magnetic sense. Gegear et al. [39] reported
that flies introduced to a ‘T-maze’ showed different pre-
ferences for each arm of the maze depending on their
exposure to a magnetic field. Gegear et al. used a field
of 5x 107%T in their experiments, which is 3 x 10°
times smaller than that generated by the superconduct-
ing magnet we use in these experiments, yet we observe
no effect of the field on the walking patterns of the flies.
One reason for this discrepancy may be the lighting
used in our experiments. Gegear et al. showed that
the magnetic sense is light-dependent: flies exposed to
broad-spectrum illumination displayed sensitivity
to the magnetic field, but did not respond when a
filter blocking wavelengths of less than 420 nm was
employed. In our experiments, the only illumination is
by white light emitting diodes (LEDs). Because such
lights emit only a small fraction of their energy at less
than 420 nm, we speculate that this may explain why
we do not observe significant differences in the walking
patterns of the flies in the field compared with the
control outside the magnet.

According to Faraday’s law of induction, electric
fields and corresponding electric currents can be gener-
ated in the organism if it moves through a static
magnetic field with a field gradient, such as is present
in the 0g* and 2¢* arenas. Glover et al. [38] have studied
the disorientating effects of such induced currents on
human subjects. The induced electric field depends on
the rate of change of magnetic flux through the organ-
ism, which is proportional to the product of the velocity
of the organism and the magnetic field gradient in the
direction of motion. Because the direction in which
the magnetic field gradient is largest is close to vertical
in both the 0¢g* and 2¢* arenas, an electric field can be
generated through small vertical motions of the fly as it
walks horizontally over the arena floor. Because the
magnitude of the magnetic field gradient is the same
in the 2¢* arena as in the Og* arena, the magnitude of
the induced electric field is the same in both the 2¢*
and 0g* arenas. Evidently then, the behavioural differ-
ences between 0g*, 1¢g* and 2¢* cannot be attributed to
an electric field (or associated electric current) induced
by linear movement through the magnetic field. An
electric field can also be induced by rotational move-
ment (of the head for example) in the magnetic field
by the same mechanism [38], but because this can
occur even where there is no magnetic field gradient,
we can use the comparison between 1¢* and 1¢g arenas
to conclude that behaviour is not affected significantly
by this mechanism.

4.2. Effective gravity

We now discuss in more detail the effective gravity acting
on the flies. The linear diamagnetic force on the flies is
proportional to the product of three quantities: the mag-
nitude of the magnetic field (N.B., although the magnetic
field is a vector field, its magnitude is a scalar quantity),
the spatial gradient of the magnetic field magnitude and
the magnetic susceptibility of the material. The magnetic
force acts on each molecule of the material. The effective
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gravitational force is defined as the sum of the linear dia-
magnetic and gravitational forces, per unit mass; the
mathematical definition can be found in the electronic
supplementary material.

Unlike the other magnetic field interactions discussed
earlier, the effective gravitational force depends on the
direction of the magnetic field gradient relative to the
direction of the gravitational force. Note that the direc-
tion of the magnetic field gradient with respect to
gravity is the key difference between the environment
in the 0¢g* arena and the 2¢g* arena: in the 0g* arena the
magnetic field increases in the same direction as the grav-
itational force (the diamagnetic force acts opposite to the
direction of gravity), whereas in the 2¢* arena, the field
decreases in the direction of gravity (the diamagnetic
force acts in the same direction as gravity).

Because the flies levitated close to the levitation
point of water (within 1-2mm) we have, so far,
assumed that the effective gravity acting on the flies
is approximately the same as that acting on water.
We now discuss a number of caveats to this assumption
and their significance in these experiments.

On Earth, the weight of a biological organism is sup-
ported by mechanical stresses within it. In orbit, or in
deep-space, there are no such gravitationally induced
stresses. The aim of levitating the organism is to reduce
these gravitational stresses to as near to zero as possi-
ble by balancing the force of gravity with the linear
diamagnetic force, in order to simulate a weightless
environment. The effective gravity acting on the levitat-
ing material depends on its magnetic mass susceptibility
Xm In a homogeneous material (for example, a well-
mixed diamagnetic aqueous solution or organic oil) x,,
is a constant, and hence the effective gravity acting on
the material, and the resulting stresses, are relatively
simple to calculate [26]. The situation is different for a bio-
logical organism. Differences in y,, between the biological
structures within the organism causes the effective grav-
ity to vary from point to point within the organism,
generating additional internal stresses. Further details
are given in the electronic supplementary material.
Fortuitously for our experiments, in the case of soft bio-
logical tissues, x,, differs by only up to approximately
10 per cent from the susceptibility of water [40]. Hence,
in many organisms, we expect any influence of the spatial
variation in effective gravity to be small compared with
the overall reduction in gravity. Valles et al. [10] estimated
the internal stresses induced in a levitated frogs egg
from the measured susceptibilities of a few major cellular
constituents. They concluded that the stresses induced
by the spatial variation in effective gravity were con-
siderably smaller than (typically approx. 10% of) the
gravitationally induced stresses in 1g.

In our experiments, we can observe the relative
importance of the spatial variation in y,, by comparing
behaviour in the 0¢* arena with that in 2¢*. The spatial
variation in effective gravity, owing to variation in y,,
between tissues, is similar in both the 0¢* and 2g*
arenas, as explained in the electronic supplementary
material. Hence, if the spatial variation of the effective
gravity had a significant influence on the flies’ behav-
iour, we would expect to find behaviour in 2¢* similar
to that in Og*, or behaviour dependent on the flies’
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orientation with respect to the direction of the field gra-
dient. However, we observe that walking speed is
significantly enhanced in 0g* compared with 2¢*, what-
ever the orientation of the flies in the magnetic field, as
can be clearly seen in the electronic supplementary
material video. Hence, we conclude that the difference
in behaviour between arenas is not significantly influ-
enced by the variation in effective gravity compared
with the overall reduction in the effective gravity.
This means that, as far as the walks of the flies is con-
cerned, we expect the effects of levitation to be
comparable to the effects of space flight or free fall.
Even for a homogeneous substance, like water, there
is some spatial variation in the effective gravity, owing
to the spatial variation of the magnetic field. By confin-
ing the flies inside the arenas, we have restricted the
range of the effective gravity acting on water to less
than 6 per cent of g; the variation within each of the
arenas is shown in the electronic supplementary
material. The stresses resulting from the spatial vari-
ation of the magnetic field can be thought of as tidal
forces (the spatial variation, i.e. gradient, of the
Moon’s gravitational force over the Earth’s surface is
responsible for the sea tides). In our experiments, the
tidal forces are weak compared with the surface tension
of water: the effect on the surface oscillations of a levi-
tated cm-scale water droplet are slight [26], suggesting
that such tidal forces should have little effect on
similarly sized, or smaller, biological organisms.

4.3. Response to reduced gravity

We speculate that the enhanced walking speed and
activity in the 0g* arena can be explained by a simple
physical effect: the flies moved more rapidly and more fre-
quently in 0g* because locomotion expends less energy,
there being no work to do against the gravitational
force. Consistent with this hypothesis, flies were measur-
ably slower in the 2¢* arena than in the 1¢* or 1¢ arenas.
Detailed studies of the energy efficiency of different
modes of insect flight have been performed recently
[41,42]. For walking, it is clear that the flexing of the
flies’ joints and muscles would expend less energy in simu-
lated microgravity than 1gor 2¢. Simulation of increased
gravity in a centrifuge results in a corresponding decrease
in the motility of fruitflies [43].

Alternatively, the abnormal walks observed in the 0g*
arena could emerge from a change in the flies’ perception
of gravity. The flies can respond to gravity using senses
that measure the stresses on, and the angle of, joints in
the body [3]. Such senses are responsible for directing
normal gravitactic behaviour [5]. These senses should
perceive the reduction in the weight of the organism. It
is also possible that these senses could be influenced by
a spatial gradient in effective gravity owing to the differ-
ences in magnetic susceptibility between tissues, as
discussed in §4.2. Studies investigating this mechanism
in human subjects in magnets used for high-field (B =
3-7 T) magnetic resonance imaging have shown that
the human vestibular system responds to a (static) mag-
netic field x field-gradient product as low as 1 T?m ™"
[38] (cf. the 1360 T> m ™" required to levitate the flies in
our experiments). Nevertheless, even if the gravity
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sense of flies is affected by stresses resulting from the vari-
ation in magnetic susceptibility, these experiments show
that the walking speed of the flies, however governed, is
primarily influenced by the mean effective gravity, not
the spatial gradient in effective gravity, as we have
discussed already.

One way to distinguish whether the anomaly in walk-
ing speed in 0g* is primarily owing to the flies’” altered
perception of gravity, or whether it is because walking
simply expends less energy in 0¢g*, would be to compare
the walks of different sized flies in different effective gravi-
ties. If energy is important, we might expect the anomaly
in speed to be more pronounced in more massive flies.
Owing to the small number of flies that can be contained
simultaneously within the small arenas within the
magnet, we were not able to observe statistically sig-
nificant differences in the motility of different-sized
individuals. This would be a good topic for future
study, using a centrifuge, for example. Further studies,
using altered-gravitropic strains [44], are planned in
order to determine the mechanism by which the flies’
walk is altered by changes in gravity, or whether several
mechanisms are important here.

The observations in this paper were made for flies
confined to 25 mm diameter arenas. The size of the
arena used in diamagnetic levitation experiments is lim-
ited by the size of the magnet bore (and ultimately by
the present limit of high magnetic field technology).
The earlier experiments on board the ISS and Shuttle
demonstrated that the increased walking speed could
be observed in larger arenas [1,2], showing that confine-
ment of the flies to such small volumes is not necessary
to induce the anomalous behaviour.

4.4. Form of velocity distribution and mean
square displacement

The velocity distribution of the population, shown in
figure 3, is evidently non-Gaussian (i.e. it does not
behave like Brownian motion, which has a velocity dis-
tribution of the form p(v,) ~ exp(—av2)). The tails of
these distributions decay more slowly, as p(v,) ~
exp(—blv,]), as shown by the straight line fits to the
log plot of the distribution (figure 3). Valente et al.
[30] have observed that individual flies confined in
a circular arena exhibit a non-Gaussian velocity distri-
bution, and the distribution we observe for the
population may reflect this. Alternatively, the slower
decay can result from pooling the data from a popu-
lation containing some variation between individuals
[45], just as we have done here.

We now discuss briefly our finding that y > 1, which
represents a so-called superdiffusive walk. There has
been some debate recently on whether or not the move-
ments of a wide variety of animals, including deer,
bumblebees and wandering albatross, can be modelled
as a special type of random walk, known as a Lévy
flight or Lévy walk [46]. Sims [47] show that some
marine predators can be modelled this way. Cole
found fractal patterns of activity in D. melanogaster,
which can generate a Lévy flight [27]. Such walks give
rise to superdiffusive motion, but this is not the
only way that superdiffusion can arise. Temporal
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correlations in the velocity can also produce superdiffu-
sion [48], as follows. There is a tendency of the flies to
maintain their direction of travel over short time
scales. At very short time scales, the path of the fly
approaches an uninterrupted straight-line (so-called
ballistic) motion, for which the MSD increases quadra~
tically with time, i.e. y= 2. With increasing time, the
direction of motion becomes less correlated, and vy
falls accordingly. For a Gaussian random walk, such
as Brownian motion, in which there is no correlation
between time steps, we have y= 1. Our finding that y
falls between 1 and 2 is consistent with the fact that
we measure the MSD on a time scale in which we
expect the direction of motion to exhibit some corre-
lation in time.

The value of +y for the population depends also on the
spread in the behaviour of individuals. For example,
a population consisting of flies that maintain their
direction of travel over relatively long times (i.e.
having a relatively long velocity autocorrelation time)
and flies that alter their direction frequently (i.e.
having a relatively small velocity autocorrelation time)
would also generate a vy for the population intermediate
between 1 and 2.

The movements of the flies are obviously also influ-
enced by their confinement inside the arena (see also
[30]): as we increase T up to 17s, we observe that y
falls to approximately 1.3 (figure 7). We might expect
v to fall with increasing time scales owing to confine-
ment of the flies by the arena walls, which provides an
upper limit to the MSD. From this data, we cannot
rule out the possibility that 7y might fall to 1, when
measured over a long enough time scale.

The focus of this paper is to determine the effect of
different effective gravities on the walks of the flies,
requiring us to use relatively small arenas and relatively
small populations in order to fit within the confines of
the magnet bore. Experiments performed in large or
open arenas with much larger populations would be
valuable in determining which of the earlier men-
tioned possibilities is responsible for the apparent
superdiffusive behaviour.

It is striking that the effect that levitation has on the
speed distribution is much more pronounced than the
effect that pseudo-2¢ hypergravity has, below 10 mms ™.
Only above approximately 10 mm s~ does doubling the
effective weight of the organism (i.e. in the 2¢* arena)
begin to limit significantly the frequency that flies exceed
a particular speed, compared with flies in normal gravity
(1g, 1g*). The reason for this is not well understood,
because it is a difficult problem to model the relationship
between speed and weight. Future experiments are
planned at intermediate effective gravities to study
this effect.

A corresponding effect is observed in the measure-
ments of MSD. On short time scales, 7= 1.67s, the
difference between D in the 0g* arena and D in the
1g* (and 1g) arena is much larger than the difference
between D in the 2¢* arena and 1¢* (and 1g). When
measured over the longer time interval 7= 16.7 s, how-
ever, the increase in D in 0g* is less pronounced: D =
1.55, 0.68, 0.19 and 0.58 for the Og*, 1¢*, 2¢* and 1g
arenas, respectively, for y=1.3. This is an effect of
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confinement of the flies. In our analysis, a trajectory
that meets the arena walls within time ¢ < 7 is excluded
from the calculation of the MSD. Doing this removes
predominantly those trajectories with larger MSD
from the analysis, reducing the corresponding value
of D. Because the likelihood of any particular trajectory
meeting the arena walls is greater for longer intervals 7
and trajectories with larger MSD, the measured D is
smaller at longer 7, with the greatest reduction of D
observed in populations with larger MSD.

4.5. Comparison with experiments performed
in Earth orbit

Our observations agree with experiments performed on
the Columbia Space Shuttle and the subsequent mission
to the ISS: we observed a pronounced increase in the fre-
quency of locomotor activity and the walking speed of
the fruitfly in pseudo-weightless conditions. All the
experiments in the magnet and the 1g control outside
the magnet were performed simultaneously, under the
same conditions of atmospheric pressure, temperature,
humidity, lighting and with the same batch of fruitflies.
As we have discussed earlier, the differences in the
observed behaviour within the magnet are owing to
differences in the effective weight of the flies. There
were no additional effects of the strong magnetic field
on the walks of the flies. While there remains the possi-
bility that the magnetic field affects the flies in some
other way mnot revealed by the analysis of walking
patterns, our analysis strongly suggests that the weight-
lessness of microgravity was responsible for the increased
motility observed in the original experiments on board
the Shuttle and ISS. Although the experiments on the
ISS showed some sensitivity to launch procedures, our
study indicates that launch procedures are not the
cause of the increase in motility per se.

4.6. Conclusion

This study shows that the walking speed of fruitflies
and their ‘activity’ is altered significantly by counter-
acting the gravitational force. Diamagnetic levitation
enabled us to maintain tight control over the exper-
imental conditions of all the experimental subjects.
This allowed us to identify, unambiguously, the altera-
tion of effective gravity as the cause of the anomalous
behaviour. We have shown how diamagnetic levitation
can be used to assess, quantitatively, the behavioural
response of a macroscopic organism to zero-gravity.

Four billion years’ of evolution have equipped life on
Earth to withstand the stresses generated by the
ever-present pull of gravity. Here, we have shown that dia-
magnetic levitation can be used to investigate directly the
influence of changing gravity on the locomotion of a com-
plex multi-cellular organism, and that close comparison
can be made with experiments performed in space.

5. MATERIAL AND METHODS
5.1. Superconducting magnet

The superconducting solenoid magnet (Oxford Instru-
ments Nanoscience, Abingdon, UK) has a room
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temperature, vertical, 5 cm diameter bore that is open
to the laboratory at both ends. At maximum current,
it produces a magnetic field of 16.5 T at the geometric
centre of the solenoid. The solenoid is cooled by a
closed-cycle refrigeration system, which enables the
magnet to run for several months continuously at
high fields.

5.2. Arenas

The flies were confined to 25 mm diameter, 10 mm tall
arenas. The 1¢* arena was placed at the centre of the
solenoid. The 0g* arena was located 80 mm above the
1g* arena. The 2¢* arena was 80 mm below the 1g*
arena. Each of the arenas were contained within a trans-
parent plastic specimen tube (diameter: 25 mm; height:
50 mm). The arena floor was formed from a semi-solid
culture medium. This is visible as the off-white material
at the bottom of the tube in figure 1. The culture
medium was poured into the tubes and allowed to set.
The culture medium provided a food source for the
flies and maintained humidity in the arena at close to
100 per cent. The ceiling of the arena was a disc of trans-
parent cellophane, 10 mm above the floor, retained
between two black rubber o-rings. These can be seen in
figure 1, 25—30 mm above the base of the tube. The disc
was punctured around its perimeter to allow gas
exchange. The 0g*, 1¢* and 2¢* tubes were located in a
non-magnetic scaffold and held in place by plastic rings,
as shown in figure 1. The scaffold, with the tubes, was
inserted into the bore of the magnet. The position of the
0g* retaining ring on the scaffold was adjusted so that
the 0g* arena enclosed the levitation point of water. The
positions of the 1¢* and 2¢* rings were similarly adjusted.
The experiments inside the magnet were conducted simul-
taneously with an external control in an incubator (1g
arena), well away from the magnet.

5.3. Fruitflies

Approximately thirty 1-2 day-old Oregon R D. mela-
nogaster flies, with equal number of males and
females, were sealed into each arena a few hours
before the beginning of the observation period, to
allow them to acclimatize to the environment inside
the magnet.

5.4. Lighting

Each tube was lit around its circumference by six
equally spaced surface-mount white light (InGa)N
LEDs, on a printed circuit board ring attached to the
scaffold. The LEDs (OSRAM Optosemiconductors
GmbH) had a dispersion angle of 120° and a luminous
intensity of 495 mcd, when a 20 mA current was
applied. The LEDs provided the only source of light,
once the scaffold was located in the magnet bore.
Care was taken to avoid ambient light entering the
magnet bore.

5.5. Temperature control

The temperature of the bore was maintained at 24°C by
passing dry air at atmospheric pressure, supplied from a
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compressor, through the magnet bore at 1 1 per second.
The temperature of the pumped air was brought up to
24°C, prior to entering the magnet bore, by passing it
through a coiled copper pipe immersed in a temperature-
controlled water bath. Each plastic specimen tube was
fitted with two thermocouples to monitor the tempera-
ture. During the experiments, the temperature of the
tubes were maintained with less than 0.1°C variation
between them. The 1g control arena was inserted into a
dummy magnet bore: a brass tube with the same
dimensions of the bore. The temperature of the dummy
bore was maintained at 24°C by placing it in an incubator,
placed well away from the magnet.

5.6. CCD cameras

Each tube was imaged from above by a CCD camera
(Fire-i Digital Board Cameras, Unibrain Inc.), modified
for use in high magnetic field, mounted on the scaffold
10 mm above the top of each tube. The cameras
recorded video footage of the flies at 15 frames per
second (0.067s per frame). The spatial resolution of
the images of the flies is approximately 20 pixels per
mm (0.05 mm per pixel) and was calibrated against
the dimensions of the tube. The position of the head
of each fly was determined for 1500 consecutive
frames, i.e. for 100s of footage, by eye. We recorded
only the movement of flies walking on the floor of the
arena. We ignored flies walking on the other surfaces,
flies not in contact with any surface (i.e. levitating
freely), and also flying, which they did infrequently in
the confined space of the arena.
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