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Abstract
Temporal trends of total liver cancer have been well reported in China, especially the trends
caused by hepatitis B (HBV); however, the trends of liver cancer attributable to specific etiologies
have rarely been reported in China. Thus, this study aims to describe the temporal trends in the
incidence, mortality and DALYs of total and etiology-specific liver cancer in China from 1990 to
2019. We extracted the incidence, mortality and disability-adjusted life years (DALYs) of total and
etiology-specific liver cancer in China from 1990 to 2019 from global disease burden (GBD) 2019.
We plotted the trends in the age-standardized rates for incidence, mortality, and DALYs using
locally weighted regression (LOESS)-smoothed data from 1990 to 2019. The age-standardized
rate for the incidence of liver cancer was analyzed with an age-period-cohort method. The age-
standardized rates for incidence, death, and DALYs decreased by 258.8%, 263.8%, and 265.6%,
respectively, between 1990 and 2019. The age-standardized rates of incidence, mortality, and
DALYs of total liver cancer showed similar temporal patterns, presenting an overall decline, with
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the average annual percentage change (AAPC) ranging from 23.3% to 23.8%. People in the
period before 2007 had a higher risk, and people after 2007 had a lower risk. The cohort risk
ratios (RRs) showed decreasing patterns, with the most rapid decline observed in the 1910 to
1960 cohorts. Our study generally revealed favorable decreasing trends for total and etiology-
specific liver cancer in China from 1990 to 2019. Despite the overall decline in liver cancer due to
heavy alcohol use and obesity from 1990 to 2019, there have been apparent upward trends since
2006. Planned population-wide interventions targeting heavy alcohol use and obesity may mitigate
the increasing trends in liver cancer attributable to alcohol use and NASH.

Keywords
Liver cancer, disease burden, trend, incidence, age-period-cohort

Introduction

Liver cancer is the seventh most common cancer worldwide, with an estimated
841,080 incident cases in 2018, and is the second leading cause of cancer death
(781,631 deaths per year).1 The countries with the highest incidence of liver cancer
are mainly those with lower levels of economic development, and most cases of liver
cancer are located in several geographically diverse countries, including countries in
North and West Africa (Gambia, Egypt, and Guinea) and East and Southeast Asia
(Cambodia, Mongolia, and Vietnam). China is the region of the world most
affected by liver cancer, accounting for more than 50% of newly diagnosed cases
and deaths, despite accounting for only 19% of the world’s population.1

The main risk factors for liver cancer vary by region. In the most high-risk
regions for liver cancer (e.g. China and East Africa), the key risk factors are chronic
HBV infection and aflatoxin contamination in food, while in other countries (e.g.
Egypt, Japan), HCV infection is probably the main cause. In high-income coun-
tries, HCV, alcohol consumption, and obesity/diabetes are common causes of liver
cancer.2 In China, an estimated 83%292% of liver cancers are hepatocellular carci-
noma (HCC).3 Chronic HBV infection acquired through mother-to-child infection
in early life and exposure to dietary aflatoxins are the major causes of liver cancer
in China.4,5 Since the introduction of the HBV vaccine in the early 1990s and the
nationwide inclusion of HBV vaccination in China’s neonatal immunization pro-
gram since 2002, the prevalence of HBV and the risk of liver cancer have been
declining in the population, especially among young adults.6,7

Temporal trends of total liver cancer have been well reported in China. Zheng
et al.8 reported that the age-standardized incidence rates of liver cancer decreased
by approximately 2.2% per year in males and 2.5% per year in females between
2000 and 2014. The young generation, particularly for those under 40 years old,
showed a faster downward trend. Li et al.9 reported that the incidence and mortal-
ity of liver cancer were significantly higher in rural areas than in urban areas, and
the incidence and mortality of liver cancer declined significantly in both urban and
rural areas but was more pronounced in rural areas. Similar trends have also been
reported in previous studies.10–12 However, the trends of liver cancer attributed to
a specific etiology have rarely been reported and compared. Thus, this study aims
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to describe and analyze the temporal trends in incidence, mortality and DALYs of
total liver cancer and etiology-specific liver cancer in China from 1990 to 2019.
This study will provide helpful insights for understanding the changing disease
spectrum of liver cancer and allocation of health resources.

Materials and methods

Data source

The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD
2019) was developed and maintained by the Institute for Health Metrics and
Evaluation (IHME) at the University of Washington, which aims to provide rigor-
ous and comparable measurements of important health problems across the globe.
GBD 2019 estimated 286 causes of death, 369 diseases and injuries, and 87 risk fac-
tors across 204 countries and territories from a variety of relevant data sources,
including household surveys, censuses, vital statistics, and civil registrations. GBD
used DisMod-MR, a Bayesian meta-regression tool that allows the combination of
all available data, to estimate prevalence, incidence, and mortality for a disease.
More details about the data collection and modeling of GBD 2019 can be found
elsewhere.13,14

We extracted the incidence, mortality and disability-adjusted life years (DALYs)
of total liver cancer and etiology-specific liver cancer (HBV, HCV, alcohol and
nonalcoholic steatohepatitis (NASH)) in China from 1990 to 2019 by gender using
the Global Health Data Exchange (GHDx). The population was divided into four
age groups: 0–14 years, 15–49 years, 50–69 years, and 70+ years. This study
extracted publicly accessible data from the Global Burden of Disease Study 2019,
which contains deidentified data not directly linked to individuals. Thus, the insti-
tutional review board waived the requirement for ethical approval.

Statistical analysis

The age-standardized rates for incidence, mortality, and DALYs were all adjusted
by the world standardized population to account for differences in population age
distribution within countries over time,15 expressed as the rate per 100,000. The
age-standardized incidence, mortality, or DALY rate was calculated using the fol-
lowing formula:

Age Standardized Rate (per 100, 000 population)=

PA
i=1 aiwi
PA

i=1 wi

3100, 000

(ai refers to the incident cases or DALYs in the ith age group, and wi refers to the
number of persons in the same age group)

Absolute values and age-standardized rates for the incidence, mortality, and
DALYs were compared between 1990 and 2019. We plotted the trends in the age-
standardized rates for the incidence, mortality, and DALYs using locally weighted
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regression (LOESS)-smoothed data from 1990 to 2019 for the total liver cancer and
etiology-specific liver cancer cases.16 Joinpoint regression analysis was performed
to estimate the average annual percentage change (AAPC) over the entire analysis
period, the annual percentage change (APC) for each segmented line regression
with a maximum number of three joins, and their 95% confidence intervals (95%
CIs).17 The APC is calculated as APCi = ½ exp bið Þ � 1ð Þ� 3 100, where bi represents
the slope of the trend segment. We also estimated the average annual percentage
change (AAPC), assuming there was only one segment for the full range of our
study periods.

The age-period-cohort model, a parametric statistical model widely used in epi-
demiological studies, estimates the independent effects of age, period, and cohort
on disease incidence or mortality, providing important insights to understand the
social, historical, and environmental factors that influence incidence, mortality,
and DALYs. The typical APC model was Rap =exp (m+Aa+Pp+Cc), where
Rap is the incidence rate in age group a and in calendar period p. m denotes the
intercept or adjusted mean rate. Aa is the age component for age group a, Pp is the
nonlinear period component of period p, and Cc is the nonlinear cohort component
of the cohort. The age-period-cohort analysis was conducted using the age-period-
cohort model Web Tool (Biostatistics Branch, National Cancer Institute, Bethesda,
MD. https://analysistools.nci.nih.gov/apc/). The age-period-cohort model Web
Tool allows us to estimate the drift (log-linear trend) representing the average
annual change in the age-standardized rates over time based on the birth cohort
axis and calendar period axis, which includes the net drift suggesting the overall
percentage change per year and the local net representing the change in a specific
age group. In addition, we plotted longitudinal age curves that can show the spe-
cific age-standardized rates for the reference cohort when controlling for period
changes. Risk ratios (RRs) were estimated for cohorts/periods controlling for
chronological age and the nonlinear component of the period/cohort, which indi-
cates the relative risk of age standardization for each cohort/period compared to
the reference cohort/period.

Results

Table 1 presents the absolute number and rate change in the incidence, mortality
and DALYs between 1990 and 2019 for the total number of liver cancer cases by
gender and age group and for etiology-specific liver cancer cases. In general, sub-
stantial reductions in the numbers and rates of incidence, death, and DALYs of
total liver cancer cases were observed between 1990 and 2019. The declines were
more pronounced in people at 15–49 years of age and for HBV-attributable and
HCV-attributable cancer cases. Despite population growth, the absolute numbers
for the incidence, deaths, and DALYs of liver cancer cases decreased in China
between 1990 and 2019. However, the age-standardized rates exhibited a more pro-
nounced decline. The age-standardized rates for incidence, death, and DALYs
decreased by 258.8%, 263.8%, and 265.6%, respectively. Generally, males had a
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higher incidence, death, and DALY burden than females, and this disparity was
more apparent in 2019 than in 1990. The liver cancer disease burden is the highest
in people at 50–69 years of age, followed by people at 15–49 years of age. However,
people at 15–49 years of age experienced a larger decline in incidence, deaths, and
DALYs between 1990 and 2019 than people at 50–69 years of age. HBV and HCV
are the two major etiologies of liver cancer in China, and there were substantial
reductions (nearly 60%) in the age-standardized incidence rates for liver cancer
due to HBV and HCV, which were larger than the incidence rate reductions for
other etiologies of liver cancer.

Figure 1 presents the temporal trends of the age-standardized incidence rates
for the total number of liver cancer cases and etiology-specific liver cancer cases in
males and females between 1990 and 2019. In general, males and females present
different temporal patterns of total liver cancer and etiology-specific liver cancer.
For example, males generally had higher incidence rates for total liver cancer, liver
cancer attributable to HBV, and liver cancer attributable to alcohol use than
females. The incidence rates of liver cancer due to HCV and liver cancer due to
NASH were comparable between the two sexes; females had higher incidence rates
of liver cancer attributable to HCV in the early 1990s than males. Our analysis
reveals a rapid decline between 1995 and 2010 and a small upward trend in 2019
for total liver cancer and etiology-specific liver cancer in both males and females.
However, for total liver cancer, liver cancer attributable to HBV, and liver cancer
attributable to alcohol use, there was also an upward trend in the early 1990s,
whereas the other liver cancers had a flat trend in the early 1990s.

Figure 2 presents the AAPC for etiology-specific liver cancer and age groups
between 1990 and 2019. Total liver cancer and etiology-specific liver cancer cases
showed a negative AAPC, which indicates declining trends between 1990 and 2019.
Among the total liver cancer and etiology-specific liver cancer cases, people at 50–
69 years of age had the largest AAPC, indicating the largest decline in age-
standardized incidence rates. People at 15–49 years of age and people at 70+
years of age had similar AAPC values, yet the 95% CI of the AAPC for people at
15–49 years of age was substantially wide, indicating the low reliability of the
AAPC estimate. The AAPC was larger in liver cancer due to HBV and HCV than
in liver cancer due to other etiologies, and this finding was consistent for all age
groups.

Table 2 presents the results of joinpoint regression analysis for liver cancer
between 1990 and 2019. In general, the temporal liver cancer trends are character-
ized by three distinct periods (approximately 1990–1999; 1999–2006; and 2006–
2019). The age-standardized rates of incidence, mortality, and DALYs of the total
liver cancer cases showed similar temporal patterns, presenting an overall decline
in the AAPC ranging from 23.3% to 23.8%, which was mainly driven by rapid
declines between 1999 and the mid-2000s, with AAPC values of approximately
215%. The temporal pattern of etiology-specific liver cancer generally resembled
that of total liver cancer. Of note, liver cancer attributable to HBV appeared to
have a more pronounced decline (a larger AAPC) between 1999 and the mid-2000s
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Table 2. Joinpoint regression analysis of liver cancer between 1990 and 2019 in China.

Disease Metric Statistics Period Values

Total liver cancer Incidence
rates

APC 1990–1999 20.2 (20.6, 0.9)

APC 1999–2006 213.7 (214.9, 212.4)
APC 2006–2019 20.4 (20.1, 0.8)
AAPC 1990–2019 23.3 (23.7, 22.9)

Mortality
rates

APC 1990–1999 0.4 (20.5, 1.3)

APC 1999–2005 215.7 (217.6, 213.7)
APC 2005–2019 20.8 (21.3, 20.3)
AAPC 1990–2019 23.7 (24.3, 23.2)

DALYs rates APC 1990–1999 214.7 (216.2, 213.1)
APC 1999–2006 20.1 (20.6, 0.5)
APC 2006–2019 23.9 (24.4, 23.3)
AAPC 1990–2019 23.8 (25.5, 22.1)

Liver cancer attributable
to HBV

Incidence
rates

APC 1990–1999 0.4 (20.4, 1.2)

APC 1999–2006 214.0 (212.7, 221.1)
APC 2006–2019 0.3 (20.2, 0.7)
AAPC 1990–2019 23.3 (23.8, 22.9)

Mortality
rates

APC 1990–1999 0.7 (20.2, 1.6)

APC 1999–2005 217.8 (214.1, 216.5)
APC 2005–2019 20.9 (21.4, 20.5)
AAPC 1990–2019 23.8 (24.3, 23.3)

DALYs rates APC 1990–1999 0.4 (20.6, 1.4)
APC 1999–2005 216.6 (218.5, 214.5)
APC 2005–2019 20.8 (21.3, 20.3)
AAPC 1990–2019 23.9 (24.5, 23.4)

Liver cancer attributable
to HCV

Incidence
rates

APC 1990–1999 20.5 (21.2, 0.3)

APC 1999–2006 213.0 (214.2, 211.8)
APC 2006–2019 20.1 (20.5, 0.3)
AAPC 1990–2019 23.5 (23.9, 23.1)

Mortality
rates

APC 1990–1999 20.6 (21.6, 0.4)

APC 1999–2006 213.3 (214.9, 211.7)
APC 2006–2019 20.6 (21.6, 0.4)
AAPC 1990–2019 23.8 (24.4, 23.3)

DALYs rates APC 1990–1999 20.9 (21.9, 20.2)
APC 1999–2006 214.0 (215.7, 212.3)
APC 2006–2019 20.5 (21.1, 0.1)
AAPC 1990–2019 24.0 (24.6, 23.5)

Liver cancer attributable
to alcohol use

Incidence
rates

APC 1990–1999 20.2 (21.0, 0.6)

APC 1999–2006 213.2 (214.5, 211.9)
APC 2006–2019 1.5 (1.1, 2.0)
AAPC 1990–2019 22.8 (23.2, 22.3)

Mortality
rates

APC 1990–1999 20.3 (21.3, 0.7)

(continued)
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than liver cancer of other etiologies. In addition, we observed upward trends from
2006 to 2019 for liver cancer due to alcohol and NASH.

Figure 3 presents the results of the age-period-cohort analysis of the incidence
rate of total liver cancer between 1990 and 2019. Age-period-cohort analysis gener-
ally revealed the overall decline in the age-standardized incidence rates of the total
liver cancer cases, the total liver cancer risk peak in people at 55–59 years of age,
the period RRs of the liver cancer incidence rates in China changed in the 2000s,
with higher RRs before 2007 and reduced RRs after 2007. Figure 3(a) shows the
local net age-specific range of change between 1990 and 2019. The local drifts were
negative in all age groups, representing a decline in the age-standardized incidence
rates of the total liver cancer cases. The local net drifts were relatively lower among
people at 40–59 years of age, which may suggest that the decline in liver cancer inci-
dence rates was more apparent in those age groups. Figure 3(b) illustrates the long-
itudinal age curves of the incidence rates for the total liver cancer cases between
1990 and 2019. In the same birth cohort, total liver cancer risk increased rapidly in
people at age 30 and above and then peaked in people at 55–59 years of age.
Although people at age 60 and above had a relatively lower risk than people at 55–
59 years of age, they still had a substantially higher risk than people at a young age.
The period RRs showed decreasing trends for liver cancer incidence rates in China

Table 2. (Continued)

Disease Metric Statistics Period Values

APC 1999–2006 213.5 (215.1, 211.9)
APC 2006–2019 1.0 (0.4, 1.6)
AAPC 1990–2019 23.1 (23.7, 22.6)

DALYs rates APC 1990–1999 20.7 (21.7, 0.4)
APC 1999–2006 214.2 (215.8, 212.5)
APC 2006–2019 1.0 (0.4, 1.6)
AAPC 1990–2019 23.4 (24.0, 22.8)

Liver cancer attributable
to NASH

Incidence
rates

APC 1990–2000 20.5 (21.2, 0.1)

APC 2000–2006 214.3 (215.9, 212.7)
APC 2006–2019 1.7 (1.3, 2.1)
AAPC 1990–2019 22.6 (23.0, 22.2)

Mortality
rates

APC 1990–1999 0.3 (20.5, 1.2)

APC 1999–2006 213.3 (214.7, 211.9)
APC 2006–2019 1.1 (0.6, 1.6)
AAPC 1990–2019 22.8 (23.3, 22.4)

DALYs rates APC 1990–1999 0.1 (20.8, 1.1)
APC 1999–2006 214.3 (215.8, 212.8)
APC 2006–2019 1.0 (0.5, 1.6)
AAPC 1990–2019 23.2 (23.7, 22.7)

AAPC: the average annual percentage change; APC: the annual percentage change; DALYs: disability-adjusted

life years; HBV: hepatitis B; HCV: hepatitis C.
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(Figure 3(c)). People in the period before 2007 had higher risk, people after 2007
had lower risk, and after 2007, there was no further decline in risk. The cohort
RRs showed decreasing patterns, with the most rapid decline observed in the 1910
to 1960 cohorts (Figure 3(d)).

Discussion

To our limited knowledge, this study is the first to describe the long-term secular
trends in the incidence, mortality, and DALYs of etiology-specific liver cancer in
China. Several key messages could be derived from our investigation. Our study
revealed that total liver cancer and etiology-specific liver cancer cases all showed a
decreasing trend in incidence, mortality, and DALYs from 1990 to 2019 in China.
Remarkably, the most rapid decline in liver cancer and etiology-specific liver can-
cer cases occurred between 1999 and the mid-2000s. For etiology-specific liver can-
cer cases, the magnitude and rate of decline were more pronounced for liver cancer
attributable to HBV and HCV than for liver cancer attributable to other etiologies.
There were recent upward trends in liver cancer due to alcohol use and NASH.
The age-period-cohort analysis results revealed that the period RRs of the liver
cancer incidence rates in China changed in the 2000s, with higher RRs in the years
before 2007 and reduced RRs after 2007. People born after 2000 had a low risk,
and there was no further decline in risk thereafter.

Liver cancer used to be one of the most frequently diagnosed cancers in China
and has claimed many lives. Chronic HBV infection has been widely acknowledged
as the leading cause of liver cancer in China.18 In 1992, the prevalence of HBV
among the population at 1–59 years of age was reported to be as high as 9.75%.19

To control the disease, China included HBV vaccination for newborns in its
national immunization program beginning in 1992; however, vaccine coverage was
still suboptimal. Subsequently, China’s Ministry of Public Health included neona-
tal HBV vaccination in the national immunization program beginning in 2002,
with the vaccine provided entirely by the government, and since then, the overall
coverage of hepatitis B vaccine in infants has increased steadily and reached more
than 95.0% in urban and 97.0% in rural areas.20 Neonatal hepatitis B vaccination
has proven efficient in many countries, including China, to prevent HBV-related
liver cancer, and this effect does not necessarily take a long time; the decline in
related liver cancer cases usually occurs after the vaccination program begins.21

Our study revealed that a rapid decline in HBV-related liver cancer was observed
between 1990 and the mid-2000s, which approximately coincided with the timeline
of China’s HBV immunization plan. In addition, abundant epidemiological evi-
dence suggests that aflatoxin exposure synergizes with chronic hepatitis B virus
(HBV) infection to increase liver cancer.22 Food policy reforms in China resulted
in a dramatic decrease in aflatoxin exposure, which was independent of the HBV
vaccination or combined effects involving HBV vaccination, reducing liver cancer
incidence in endemic areas.12,23–25
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Chronic HCV infection is an increasingly common cause of liver cancer in
China. The prevalence rate of HCV was only 0.4% among the population less than
60 years old in China, which is substantially lower than the prevalence of the sur-
face antigen of the hepatitis B virus (HBsAg).26 However, because of the large pop-
ulation size, there are still many liver cancer cases due to HCV. Unlike HBV, there
is no efficient vaccine for HCV prevention. Since the early 1990s, China implemen-
ted routine screening for HCV, and many HCV-infected people have been diag-
nosed. However, early treatment of HCV is not efficient, and only 6%–16% of
patients can be effectively treated.27 PEG IFN/RBV treatment, as the mainstream
treatment for hepatitis C, significantly improved the patient sustained virologic
response (SVR) from 2004 to 2014. China’s rapid decline in HCV-attributable liver
cancer may be the result of the combination of routine screening for HCV and
rapid improvements in HCV treatment. However, after 2010, there was no further
decline in HCV-attributable liver cancer. Novel direct-acting antivirals (DAAs)
represent a significant breakthrough in HCV treatment, with reported SVR rates
as high as 97%.28,29 Previous modeling studies have suggested that with the wide
use of DAAs, there will be a tremendous decline in HCV-related complications,
including liver cancer.30

The changing pattern of liver cancer attributable to other etiologies has rarely
been reported in the literature. Generally, liver cancer attributable to NASH and
alcohol use constitute only a small fraction of the total liver cancer cases and is
declining overall. However, it is notable that liver cancer attributable to NASH
and alcohol use showed increasing trends after 2006. Alcohol use and obesity are
common risk factors for liver cancer in Western countries.31 Many studies have
revealed that there are increasing trends in alcohol-related or obesity-related liver
cancer in high-income countries.32,33 The recent increase in liver cancer attributable
to NASH and alcohol use in China may reflect the changing lifestyles of Chinese
people. Many studies have suggested that an increasing number of people have
engaged in harmful drinking behaviors over the past decade, especially younger
adults.34,35 Meanwhile, the prevalence of obesity has increased in most areas of the
world, including China.36 Note that a NASH diagnosis may require liver biopsy,
which is difficult to implement to determine liver cancer etiologies in the real world.
Liver biopsy for NASH diagnosis is usually recommended for people who have cer-
tain indications, including elevated liver enzyme levels or clinical signs of liver dis-
ease.37 Therefore, many people with NASH that does not necessitate liver biopsy
may miss the opportunity to get diagnosed. Due to a lack of awareness about
NASH and due to missed diagnoses, the actual incidence of NASH-related liver
cancer might be underestimated. There is no valid pharmaceutical intervention or
treatment for the control of alcohol or obesity. Lifestyle interventions for heavy
alcohol use and obesity are urgently needed in China to address the increasing bur-
den of liver cancer related to alcohol and NASH.

The results also showed that the RRs of liver cancer incidence rates in China
changed in the 2000s, with higher RRs in the years before 2007 and lower RRs after
2007. The reduced RR period after the 2000s was largely attributable to the
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nationwide HBV immunization program beginning in 2002, the improvement of
HCV screening and treatment for HCV in the early 2000s. Our analysis also
revealed a consistent decline in cohort effects, which can be explained by improve-
ments in socioeconomic status, access to treatment, sanitation, hygiene, and clean
water in China. There are no hepatitis data in China from the early 20th century,
yet life expectancy soared by approximately 30 years after the establishment of New
China in 1949.38 We also found that people born after 2000 have low risk, and there
is therefore no further decline in this risk. This finding is consistent with the time-
line of HBV vaccine implementation in newborns, which may substantially reduce
the risk of HBV-related liver cancer in China.

There are several limitations that must be acknowledged before interpreting our
results. First, detailed data within China, including provinces and urban or rural
areas, were not included in the GBD datasets. Therefore, further studies involving
comprehensive and detailed liver cancer data are warranted. Second, the GBD
study used sophisticated statistical modeling to derive estimates from limited raw
data, which depends on heavy assumptions on the modeling process. Therefore,
the temporal trends of liver cancer in China should be interpreted with caution.
Finally, we could only study the temporal trend in liver cancer by each etiology,
and the interactions of several etiologies, including the interactions of HBV and/or
HCV and alcohol and/or obesity, were not considered in this study.

Our study generally revealed favorable decreasing trends for total liver cancer
and etiology-specific liver cancer in China from 1990 to 2019. The decline in liver
cancer attributable to HBV and HCV may be the result of the HBV immunization
program and massive screening and treatment for HCV. Despite the overall decline
in liver cancer due to heavy alcohol use and obesity from 1990 to 2019, there have
been apparent upward trends since 2006. Planned population-wide interventions
targeting heavy alcohol use and obesity may mitigate the increasing trends in liver
cancer attributable to alcohol use and NASH.
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