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ABSTRACT

Assigning cancer patients to the most effective treat-
ments requires an understanding of the molecular
basis of their disease. While DNA-based molecu-
lar profiling approaches have flourished over the
past several years to transform our understanding
of driver pathways across a broad range of tumors,
a systematic characterization of key driver pathways
based on RNA data has not been undertaken. Here we
introduce a new approach for predicting the status
of driver cancer pathways based on signature func-
tions derived from RNA sequencing data. To iden-
tify the driver cancer pathways of interest, we mined
DNA variant data from TCGA and nominated driver al-
terations in seven major cancer pathways in breast,
ovarian and colon cancer tumors. The activation sta-
tus of these driver pathways were then characterized
using RNA sequencing data by constructing classi-
fication signature functions in training datasets and
then testing the accuracy of the signatures in test
datasets. The signature functions differentiate well
tumors with nominated pathway activation from tu-
mors with no signs of activation: average AUC equals
to 0.83. Our results confirm that driver genomic al-
terations are distinctively displayed at the transcrip-
tional level and that the transcriptional signatures
can generally provide an alternative to DNA sequenc-
ing methods in detecting specific driver pathways.

INTRODUCTION

To determine an optimal set of drugs for the treatment of
a particular cancer patient, the molecular characterization
of the activation status of cancer drivers in tumor cells of
patients is critical (1). Cancer driver genomic alterations
in tumors are most typically identified by sequencing tu-
mor DNA, often comparing the tumor DNA to germline
DNA (2). Increasingly, short-read next-generation sequenc-
ing (NGS) technologies are being used in both research
and the clinic (3) to determine point mutations and small

structural variants (deletions and insertions) via targeted se-
quencing panels as well as whole-exome and whole-genome
sequencing (WES and WGS, respectively) assays. From
WGS data and to some extent WES data (especially when
complemented with genome-wide genotype data), large
structural variants such as inversions and translocations
may be identified as well. Microarray (4) or WES/WGS (5)
data may also be used to determine somatic copy number
variation with respect to a normal control specimen from
the same individual. Genomic alterations in pathway driver
genes are usually taken as primary markers of oncogenic
activation (6–10).

Despite the impact DNA sequencing has had on the
molecular characterization of the key driver genes and path-
ways in a given tumor, genomic alterations alone may not
provide a complete picture of the activation status of driver
cancer pathways. First, genomic DNA NGS typically ex-
plores a limited subset of the genome, with targeted pan-
els generally covering <4 megabases and WES assays <65
megabases of an approximately 3 gigabase haploid human
genome. Thus, important mutations in non-coding regula-
tory regions may not be detected, and fine-grained mapping
of structural variation may not be possible. While WGS se-
quencing may cover the vast majority of the genome, cost
considerations and reimbursement are still dominant fac-
tors preventing routine adoption, and beyond this, identi-
fying and interpreting variants in regulatory regions are far
from solved problems, making interpretation of non-coding
variants very difficult. In addition, WGS still only effec-
tively covers roughly 85% of the genome (short read data
cannot effectively cover heterochromatin DNA comprising
>10% of the genome and complex repeat regions and other
such structural variants cannot be routinely assayed) (11).
Second, pathway activation can be achieved by alterations
in the expression of cancer driver genes that are not de-
tectable by DNA sequencing. For example, perturbations in
the signaling pathways of such genes, epigenetic changes or
even protein state changes that feedback onto transcription
can all result in changes in gene expression that would not
be detected via today’s standard WES/WGS assays. Third,
our ability to accurately interpret primary genomic alter-
ations is far from perfect. Mutations that do not change the
amino acid sequence (e.g. synonymous, intronic, and non-
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coding mutations) may have an effect on gene expression,
but interpreting them is far more challenging than codon-
changing mutations. For copy-number variation, the extent
to which large chromosomal gains or losses (which could
include tens or hundreds of genes) impact the expression of
specific pathway-relevant genes in the affected chromosome
segment is often unclear.

Therefore, it is both interesting and practically important
to explore alternative, complementary approaches to deter-
mine driver cancer pathways. Gene expression data are of
high interest for the prediction of activated pathways and
driver genes (12–23) and drug response (1,13,24–26), given
RNA reflects real time state information in the tumor.

The hypothesis underlying the relevance of RNA for
identifying cancer driver genes and pathways is that acti-
vating genomic alterations in major cancer driver pathways
are distinctively displayed at the transcriptional level. A typ-
ical tumor may have activated several driver cancer path-
ways. Therefore the direct interrogation of pathway acti-
vation in mouse models or cell lines using a limited num-
ber of pathway specific drugs may not be efficient to deter-
mine optimal treatment paths for any given combination of
pathways. Further, the systematic exploration of all possible
pathway combinations will be practically limited due to the
large number of combinations that obtain as the number of
relevant pathways grows (the growth can be exponential) as
well as the cost of the experiments. Thus, currently, the ac-
curate analysis of activated cancer pathways by experimen-
tal approaches cannot be scaled up to the population level.
Developing computational approaches that can reduce the
number of cancer driver hypotheses to consider for any par-
ticular tumor as a way of guiding subsequent experiments,
validations and treatment paths is critical.

Nomination of activated pathways can be done using
GSEA (15) or more complicated SPIA (16) methods. How-
ever, these methods are not practically accurate (18), in par-
ticular, because they do not take into account genomics in-
formation. Rapid accumulation of genomic and gene ex-
pression data motivated development of new approaches
to study mutation impact on gene expression in cancer
(18–23). These approaches are classified (17,23) by specifics
tasks, computational methods and data used, and by appli-
cability for interpretation of individual tumor profiles. All
reviewed approaches (MOCA (19), CONEXIC (20), EPoc
(21), DriverNet (22), xseq (23)) are aimed on prediction
driver genes or driver pathways (PARADIGM (18)). All ap-
proaches except of MOCA (19), use gene interaction net-
works or pathway information. However, neither of the ap-
proaches is specifically developed for prediction of driver
genomic alterations in cancer pathways from an individual
gene expression profile.

The development of computational approaches has its
own set of difficulties and uncertainties. First of all, tumors
have to be categorized by driver alterations in specific path-
ways. This is not trivial both practically and biologically,
given the concept of ‘activated pathway’ is a useful simplifi-
cation of the coherent activity of certain components of the
cell’s more complex gene interaction network. In the general
case, there is no guarantee that any combination of genomic
alterations will lead to distinct phenotypic signals. However,
major driver alterations in cancer have a strong tendency to

be mutually exclusive (6–10), which supports the hypothesis
of distinct transcriptomic phenotypes associated with ma-
jor types of driver alterations in cancer.

Activation of a particular oncogenic pathway in a par-
ticular type of cancer can be associated with a number of
moderate or weak changes in gene expression levels, neither
of which is a strong predictive marker on its own. Differ-
ently from the above-reviewed methods (18–23), we intro-
duce a new statistical approach for the recognition of altered
cancer pathways using a ‘molecular signature’––a weighted
sum of gene expression levels, where the biomarker genes
and their weights are determined from a training set. Thus,
formally we solve the same task as PARADIGM (18), how-
ever we do not limit a search for a pathway marker genes to a
particular set of pathway genes as does PARADIGM (18).
Our method takes into account all genes and determines
those, which expression levels are associated with the acti-
vated status of a given pathway determined from both mu-
tation and gene copy numbers alterations. The method does
not use the gene network inference models (18,20,23) which
are limited by not always accurately known conditional de-
pendencies, and it does not predict the specific driver roles
of individual genes (18,20–23). We compared our approach
to ten well-established classification methods (27–36) and
found that our method outperformed all of them.

In our study, determining genes-biomarkers and tran-
scriptional signatures of specific cancer pathways serves two
goals: first, to provide an alternative and complementary
approach to DNA sequence based approaches to nominate
driver pathways in a given tumor; and, second, to expand
our knowledge by identifying new genes that may act as
potential participants in cancer pathways. Such genes can
point to associated cellular processes as well as new thera-
peutic targets.

MATERIALS AND METHODS

The computational protocol we developed to derive predic-
tive cancer pathway signatures consists of two parts: (i) a
statistical algorithm for determining candidate gene expres-
sion biomarkers that are associated with pathway-specific
genomic alterations; (ii) a machine learning algorithm for
determining the optimal weights of combinations of candi-
date biomarkers in order to derive scoring functions––a sig-
nature for predicting key driver alterations in major cancer
pathways.

Statistical framework for identifying candidate biomarkers

The algorithm used to identify candidate biomarkers is de-
picted in Figure 1. To map genomic alterations on cancer
driver pathways, we started with the original gene-based
profiles of mutations and DNA copy numbers and com-
bined them into one profile of genomic alterations (Figure
1A). In the combined profile, homozygous gene deletions
and genes affected by predicted functional mutations (37)
were considered as ‘inactivated’. Genes affected by ampli-
fication and known oncogenes affected by predicted func-
tional mutations were considered as ‘activated’; other genes
were considered as ‘normal’. For example, PTEN was con-
sidered as a driver gene if both copies of the gene were
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Figure 1. The general schema of the computational protocol. (A) Subdivision of tumor molecular profiles into classes based on nominated driver alterations.
Tumors with nominated driver alterations in the key genes of a given pathway form a class of tumors with activated pathway (class 1); tumors with no
alterations in pathways genes form a class of no pathway activation (class 0). (B) Ranking potential biomarkers by significance and occurrence. Tumors
are divided by random into two sets of approximately equal sizes. For each of genes, the statistical significance (P-value) of association between expression
values and tumor classes is determined. Genes frequently selected at the lowest P-value levels are the primary candidates for biomarkers. (C) Testing
classification accuracy of molecular signatures. For each set of candidate signatures (built for 2, 3, 4,. . . genes) an original set of expression profiles is
separated by random into training and test classes of approximately equal sizes. Based on a particular combination of tumors of classes 0 and 1, the
molecular signature is computed for training set. Then, the tumors of the test set are classified into two classes based on the optimal separation threshold
derived from the training set.
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deleted or if it was affected by a functional mutation; EGFR
was considered as a driver gene if it was amplified or af-
fected by a functional mutation. Tumors with nominated
driver alterations in key genes of a given pathway formed
the class of activated tumors with respect to that pathway
(class 1), while tumors with no alterations in genes of a given
pathway formed the class of non-activated tumors (class 0)
with respect to the pathway.

Given an original set of expression data separated into
two classes, 0 and 1, tumors were divided by random into
two sets of approximately equal sizes, a training set and a
testing set (Figure 1B). Then, for each gene a statistical sig-
nificance (P-value) of association between expression values
and tumor classes was determined. Genes were then clas-
sified into one of several different bins based on P-value
thresholds (P = 10-14, 10-13,. . . ,10-3). By repeating this pro-
cedure multiple times, potential biomarkers were ranked by
both significance and occurrence. Multiple tests based on
randomly choosing half of the original dataset were run to
reduce the effect of outliers and unevenness in the distri-
butions. Selected candidate genes were also filtered by pair-
wise correlation thresholds (r = 0.5, 0.6,. . . , 0.999) to en-
sure at least part of the variance component for each gene
contributed independently. Genes frequently selected at the
lowest P-value thresholds were the primary candidates for
biomarkers.

Finally, we assessed the classification accuracy of the se-
lected biomarkers (Figure 1C). For each random splitting
of the dataset into training and test sets, signature weights
(Equation 2) were computed for 2, 3, 4,. . . combinations of
candidate biomarkers sorted by occurrence at each statisti-
cal level determined by the given P-value thresholds (Figure
1B). The tumors of a training set were classified based on
the values of the resulting molecular signatures (Equation
1). The classification accuracy (38) was assessed by the area
under a receiver operating characteristic curve (AUC). To
take into account the effect of unbalanced data, we com-
puted the ‘balanced accuracy’ (BAC), which is defined in
(39) (as the arithmetic mean of sensitivity and specificity:
BAC=1/2*(Sensitivity + Specificity). The balanced accu-
racy is used to avoid inflated performance estimates on im-
balanced datasets. If the classifier performs equally well on
either class, the balanced accuracy reduces to the conven-
tional accuracy (i.e., the number of correct predictions di-
vided by the total number of predictions). If the conven-
tional accuracy is above chance only because the classifier
takes advantage of an imbalanced test set, then the bal-
anced accuracy, as appropriate, will drop to chance (39).
The threshold giving rise to the maximal value of the bal-
anced accuracy was then determined. The same signature
weights and threshold determined from the training set were
used to classify tumors in the test set. The optimal set of
genes-biomarkers was defined to maximize the value of the
average AUC over all test sets. We also computed the prob-
ability for each tumor sample falling into class 0 or 1, and
averaged the signature gene weights over all of the training
sets. For the final assessment of the classification accuracy
we took results produced for test sets with averaged signa-
ture weights.

We explored two methods for assessing statistical signif-
icance in selecting genes as candidate biomarkers: a tradi-

tional Student’s t-test applied assuming continuously dis-
tributed gene expression values (40) and the Fisher’s test
(41) applied to discrete approximations of expression values
(Supplementary Figure S1). In this approximation, all ex-
pression values that were smaller than the mean expression
were classified as downregulated and those values that were
larger than the mean value were classified as up regulated
(Supplementary Figure S1). We rationalized that the coarse
two-level discrete approximation would result in the selec-
tion of more robust biomarkers, given it imposes a strin-
gent restriction on statistical associations between gene ex-
pression values and tumor classes, reducing the detection
of associations due to outliers, errors and unevenness in
the distributions. Given the more stringent selection crite-
ria and the loss of power that comes from discretizing the
data, across all tests performed, the Fisher’s test applied to
discrete data produced significantly fewer biomarker can-
didates as compared to the Student’s t-test. Both methods
generally identified the same top candidate genes. Based on
the average prediction accuracies obtained with candidate
biomarker genes, neither of the methods was found to pro-
vide for a systematic advantage. In practice, we tested gene
sets obtained by both methods and selected those that pro-
duced the highest accuracy in multiple testing.

A machine learning algorithm for constructing classification
signature of gene expression

The molecular signature method is based on a theoretical
physical model (42–44) developed to reduce energy errors in
the calculation of native folds in protein chains. According
to the theory, the energy gap between the native (minimal
energy) fold and the average energy of competing folds mea-
sured in units of the standard deviation of energies (Z-score)
can be dramatically increased (by absolute value) by aver-
aging energies of natural homologs of a protein chain (42–
44). The increase in the normalized energy gap (Z-score) is a
consequence of the linear dependence of energy differences
among a number of homologs and the square root depen-
dence of the standard deviation of energies across a number
of homologs. Those homologs, which energies are the least
correlated across all competing folds, yield the largest con-
tributions of the increase in the Z-score. The theory leads
to an analytical method involving computation weights of
individual homologs in the total energy function that opti-
mizes the normalized energy gap.

In our application, the individual candidate biomark-
ers, which have the potential to discriminate between two
classes, play the role of the protein homologs. The gene ex-
pression levels of the candidate biomarkers correspond to
the energy levels of the homologs. By defining a signature
function as the average of the expression levels of candi-
date biomarkers using the analytically determined optimal
weights, the gap (Z-score) between the given data classes
can be increased, which in turn results in an improvement
in class recognition.

Thus, following this general approach (42–44), we intro-
duce the signature function Vs computed for a tumor profile
s:

Vs =
∑

m
Am Ems, (1)
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where Ems is the expression of biomarker m in tumor s, and
Am is a weight for biomarker m, where, as shown in (43),
these weights are computed as:

Am ∼ D−1
m

∑
k

[Cmk]−1 Zk, (2)

with

Cmk = 1
S

∑
s (Ems − 〈Em〉)(Eks − 〈Ek〉)

Dm Dk
(3)

representing the pairwise correlation between biomarkers
m and k; [Cmk]−1 an element of the inverse matrix; 〈E〉m and
Dm the average expression and standard deviation, respec-
tively, of the expression for candidate biomarker m; S the
total number of tumors in a data set. In Equation 2 we also
use z-scores, Zk, defined as Zk = 〈Ek〉1−〈Ek〉2

Dk
, where 〈Ek〉1 and

〈Ek〉2 are the average expression levels for biomarker k com-
puted for data classes 1 (non-altered pathways) and 2 (al-
tered pathways), respectively.

According to the theory (43), the optimal z-score, ZM,
for the signature Vs composed of M biomarker genes,

gets the absolute value of ZM =
√∑

m

∑
k Zm[Cmk]−1 Zk,

(m, k = 1, 2 . . . M). When gene expressions are indepen-
dent, [Cmk]−1 = δmk and ZM = √∑

m Z2
m =

√
〈Z2〉√M,

where
√

〈Z2〉 = √∑
m Z2

m/M is a root mean square of z-
scores (δmk = 1, i f m = k; δmk = 0, i f m �= k).

Thus, two-class separation can be significantly improved
by using the weighted sum of non-correlated gene expres-
sion traits. In practice, to determine an optimal list of
biomarkers, we need to take into account the significance
of the expression differences of the biomarker between the
classes, the frequency with which the biomarker is found to
discriminate between the classes across all subsets consid-
ered, and the pairwise correlations among the biomarkers.

Formally, two parts of the above approach are indepen-
dent. The molecular signature algorithm can be used with
any given set of genes, gene-based tumor profiling data and
tumor classes, while genes biomarkers obtained by execu-
tion of the protocol of the ‘statistical framework’ can be
used with different classification algorithms (as was done
in multiple method testing presented in Table 2). However,
both computational protocols utilize two common ideas: (i)
multiple random data sampling and (ii) ranking biomarkers
and classification signatures by averaging results of multiple
tests.

RESULTS

Identification of DNA-based biomarkers for use in training
pathway classifiers

Here we used the original genomic data produced by The
Cancer Genomic Atlas (TCGA) project as well as the clas-
sifications of seven major cancer driver pathways presented
in marker publications from the TCGA research network
(7,8,10): (i) RTK/RAS/MEK, (ii) cell cycle, (iii) PI3K, (iv)
DNA repair, (v) WNT, (vi) NOTCH and (vii) the TGFB
pathways (Table 1). Based on genomic alterations (muta-
tions and gene copy number variations) in key genes of each
of the major cancer pathways, TCGA tumors of one can-
cer type were divided into two classes: tumors with likely

Table 1. Genes of major cancer pathways used in the study

activating alterations in a given cancer pathway and tu-
mors with no alterations in genes known or predicted to
be a member of this pathway. The pathway genes identi-
fied for this study are given in Table 1. We note that one
activating (or inactivating) alteration (e.g. predicted func-
tional mutation (37), homozygous deletion or amplifica-
tion) was taken as sufficient evidence for pathway activa-
tion. Given the tumor-specific driver pathways determined
in this way, we annotated the transcriptional profiles avail-
able from TCGA for these tumors with respect to these
pathways. In this way, the task of determining which of the
cancer pathways is activated in a given tumor is reduced to
a classification task: given the transcriptional profile of a
given tumor along with the transcriptional profiles of two
sets of tumors in which the pathways are known to be ac-
tivated and not activated, determine the class to which the
given tumor is most similar.

RNAseq signatures for predicting key transcription-based
driver alterations in breast cancer

The algorithm used to identify candidate biomarkers is
depicted in Figure 1. In the first (‘discovery’) phase of
our computational protocol we identified candidate RNA-
based biomarkers by optimizing the area under the receiver-
operating-characteristic curve (AUC (38)) for two-class
separation between tumors with altered and non-altered
key driver pathways identified in the TCGA data (Figure
1A). For candidate biomarkers identified at each of the
significance thresholds considered, we further filtered the
biomarkers based on pairwise correlation thresholds to en-
sure each gene selected provided some degree of indepen-
dent information. The selected genes were then ranked by
occurrence across the 1024 tests carried out (Figure 1B;
Methods). In the second (‘classifier construction’) phase of
our computational protocol, for each set of ranked genes,
from a minimum of 2 to a maximum of 35 genes (when
available), we generated 4096 random samples, splitting the
dataset for each sample into training and test sets, con-
structed the classifier using the candidate biomarkers iden-
tified in phase 1 on the training set, and then assessed the
accuracy of the classifier on the test set (Figure 1C). In the
training component of these runs all gene combinations of
2, 3, . . . , on up to 35 genes that satisfied the imposed filters,
were allowed to compete for inclusion in the classifier, and
then in the testing component for each run only the best
fitting set of ranked genes were used.
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For the seven classifiers corresponding to the seven indi-
cated pathways in breast cancer, the average AUCs ranged
from 0.72 for the PI3K signaling pathway to 0.86 for the
WNT and NOTCH pathways. The full results are provided
in Table 2, but a representative example of the predictions is
given for the cell-cycle pathway in Figure 2. As the number
of genes incorporated into a classifier increases, the predic-
tion accuracy steadily increases in the training sets (Figure
2A). However, in the test sets the maximum of the AUC
is observed for four genes, demonstrating the necessity of
the training/testing protocol to protect against overfitting.
The biomarker genes, their ‘signature weights’ (averaged
over 4096 tests) and brief UniProt (45) annotations are pro-
vided in Figure 2B for the top-performing classifier. These
biomarker genes were selected at a P-value threshold of 10-6

using the Fisher’s Exact test with appropriately discretized
expression levels. The weighted sum of the RPKM gene ex-
pression values for the identified biomarkers results in a sig-
nature that can predict cell cycle activation status in breast
cancer with an overall equally weighted accuracy of ∼77%
(Figure 2C and D). From the TCGA data, we determined
that two of the four biomarker genes, CTTN and NCAPD2,
are statistically significantly amplified in breast and ovar-
ian cancers, and that a third biomarker gene, ORAOV1, is
significantly amplified in head and neck (HNSC) cancers.
It should be noted that for ∼25% of the high-scoring tu-
mors the false-positive rate is less than 5% (Figure 2C). In-
terestingly, the majority of tumors are classified in one of
two pathway activation classes with probabilities that are
close to either 0 or 1. There is a sharp transition between
predicted classes, when a value of the signature function
crosses the value of the equally weighted accuracy thresh-
old (Figure 2D). However, the cumulative percentages of
tumors that have (or do not have) driver alterations in cell
cycle pathway are rather smooth (Figure 2D).

Predicting key transcription-based driver alterations in colon
and ovarian cancer

Transcription-based classifiers were constructed for the
seven pathways indicated in Table 1 in colon and ovarian
cancer using the same procedure described above for breast
cancer. The average AUCs ranged from 0.73 for the RTK
pathway to 0.85 in the TGFB pathway in ovarian cancer,
and from 0.83 in the Cell Cycle to 0.89 in the PI3K and
WNT signaling pathways for colon cancer. The full results
are summarized in Table 2 and Supplementary Table S4.

The ROC curves and individual tumor probabilities for
representative examples in colon and ovarian cancer are
provided in Figure 3 for the NOTCH (Figure 3A and B) and
RTK (Figure 3C and D) pathways. The driver alterations
in the NOTCH and RTK pathways can be correctly pre-
dicted for ∼50% of the high-scoring tumors with an accu-
racy of ∼90%. Similar to the individual probabilities of cell
cycle activation in breast cancer (Figure 2D), the majority
of ovarian and colon cancer tumors are classified (correctly
or incorrectly) into one of two pathway activation classes
with probabilities close to 0 or 1. The transition between
predicted classes is again sharp, with the probability of class
prediction depending non-linearly on deviation from the
point of equally balanced accuracies (Figure 3B and D),

while the cumulative distributions are smooth. Based on the
value computed from these signature functions, one can as-
sess both the probability of pathway activation and the cor-
responding error.

Characterizing the prediction tests for breast, ovarian and
colon cancers

We transformed the RNA RPKM count data in two ways to
assess the sensitivities of the classifiers based on the process-
ing of the input data: (i) mean-centered and variance scaled
z-score (40), and (ii) discrete approximations of expression
values. The significance of the predictions was evaluated
using the Fisher’s Exact test (41). We found that both ap-
proaches gave rise to essentially equivalent results. For con-
trol and comparison, we applied ten other popular machine
learning methods (27–36) using the same biomarkers and
the same 2-fold validation protocol repeated 4096 times; the
computations were performed with WEKA software (46).
The results of the comparisons are reported in Table 2 and
a Supplementary Table S4. In all tests conducted, the molec-
ular signature method outperformed all other classification
methods tested.

We further studied the class predictions by averaging the
signature functions, as opposed to considering individual
signature values. Because the gene expression levels, once
computed, are fixed, averaging the signature functions is
equivalent to averaging the signature gene weights. In test-
ing the prediction accuracies with averaged signatures, it is
critical that tumor expression profiles used for testing not
have been used to compute the signature weights (training).
This condition was easily satisfied in the general setting of
our computational tests given the training sets were used to
estimate the weights (Figure 1); that is, we simply summed
and averaged the signature functions computed for a given
tumor sample in all testing sets and used these averaged
signatures for the class predictions. The accuracy charac-
teristics produced with the averaged signatures were always
higher than the average accuracy characteristics produced
for individual signatures (Table 2).

Biomarker genes are associated with cancer-related processes

Because the expression levels of biomarker genes are asso-
ciated with the activation of specific cancer pathways, we
explored whether any of the biomarker genes were directly
involved in carcinogenesis. To identify biomarker genes of
interest, we rank ordered genes according to their (i) repre-
sentation on the list of cancer pathway genes (Table 1), (ii)
interaction with cancer pathway genes (47,48), (iii) exhibit-
ing signs of positive selection in cancer ((49), Supplement
S2, Supplementary Tables S1, S2), (iv) known role in can-
cer (50) and (v) functional annotations from UniProt (45)
and NCBI (51). All of these data as well as the signature
weights and gene expression fold changes are presented in
Supplementary Table S1.

We found that among the 385 biomarker genes consid-
ered, 35 are known cancer genes and 6 are genes within the
pathway being classified (e.g. ERBB2, PTEN, CDKN2A),
with one of these genes a known cancer marker (ORAV01).
About 20% of the 385 biomarker genes (74) interact with the
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Figure 2. (A) Determining the optimal set of expression-based biomarkers. The classification accuracy is assessed by the area under a receiver operating
characteristic curve (AUC). The optimal set of biomarkers is defined as the set maximizing the average AUC computed for classification of the test sets.
The maximum average AUC value was observed for four genes. (B) Characteristics of the top biomarker genes. The obtained optimal biomarkers are either
directly annotated as related to cancer or interact with key genes of cell cycle pathway. (C) The receiver operating characteristic (ROC) curves built from
the classification of tumors in the training and test sets using the four biomarkers with the signature weights averaged over 4096 randomized tests. (D)
Classifications of individual tumors: the test set derived probability that a tumor with (or without) driver alterations in the cell cycle pathway falls into the
correct class are shown by red (blue) dots (each dot represents a tumor). The solid lines represent the cumulative percentage of tumors that have (red) or
do not have (blue) driver alterations in the cell cycle pathway. The intersection of the solid lines defines the point where percentages of false positives in
both classes are equal that correspond to equally weighted accuracy of ∼77%.

pathway genes, suggesting a likely role in cancer. We also as-
sessed a percentage of known cancer genes (50) and genes
that exhibit signs of positive selection among biomarker
genes. To this end, we used the Fisher’s Exact test to de-
termine genes enriched with genomic alterations: predicted
functional mutations (37) and truncating mutations, and
also DNA amplifications or homozygous deletions (Sup-
plementary Table S3 and Supplement S2.) We took into ac-
count only those genes where enrichments of genomic al-
terations were observed in at least two of eleven considered
TCGA cancers. Out of the 6678 genes that are either known
as cancer genes (50) or exhibit signs of positive selection,
167 fall in the set of 385 biomarker genes we identified,
a ∼1.3-fold enrichment over what would be expected by

chance (P = 6.9·10-5; Supplementary Tables S1 and S2). The
similar analysis conducted on 291 ‘high confidence’ driver
genes reported in TCGA pan-cancer study (49) resulted in
15 common genes that would be expected by chance with
(P = 10-3).

We carried out gene set enrichment analysis using the En-
richr tool (52) and found that biomarker genes were sig-
nificantly over represented among hub nodes in protein–
protein interaction networks. Out of the 26 hub nodes in
our set of biomarker genes, the overwhelming majority
were well known in cancer, such as YWHAB, MAPK14,
ESR1, EGFR and MDM2 (see Supplementary Table S3
for the full list). The biomarker genes were also enriched
in the molecular function categories ‘regulators of protein
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Table 2. The averaged values of the AUC obtained in RNAseq based prediction of driver alterations in cancer pathwaysa

serine/threonine kinase activity’ and ‘receptor protein ty-
rosine kinase activity’ (Supplementary Table S3). We found
significant enrichments of the biomarker genes as well in
signature gene sets from functional genomics datasets in
the Gene Expression Omnibus (GEO) repository (53,54).
Of particular note were 271 drug perturbation signatures
that were enriched for the cancer biomarker genes (Supple-
mentary Table S3).

We note that only eight genes (ABAT, ATP11B, FBXO2,
FXR1, POFUT1, PPP1R3D, SERINC2, ZNF415) were se-
lected twice as biomarkers for multiple cancer pathways.

Class recognition tests on randomly generated data

We also compared accuracies of recognition of nominated
cancer pathways with recognition accuracies obtained on
randomly generated datasets. Toward this end, the original
data were split randomly into two classes to represent (by
size) the largest activated pathway. The tests were performed

ten times for each cancer type. The results of these tests are
reported in Supplementary Table S5. The average AUC val-
ues obtained in 4096 test on randomized data were equal to
0.71, and the average number of genes used in the classifi-
cation signatures was ∼11.6. The corresponding values ob-
tained in recognition of the cancer pathway were 0.84 and
20.3, respectively (Supplementary Table S5). Thus, based
on the obtained results, we can conclude that separation
of tumors based on activation of cancer pathways is tran-
scriptionally more distinct, compared to randomly gener-
ated separations.

We found it biologically reasonable that a number of
genes associated with the separation of tumors based on
genomic markers of pathway activation is larger than the
number of genes identified from the random separations.
A larger set of genes-biomarkers improves the accuracy of
class recognition between biologically distinct tumors. This
result supports our hypothesis that ‘activating genomic al-
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Figure 3. Predictions of driver alterations in the NOTCH pathway of ovarian cancer (A and B) and RTK pathway of colon cancer (C and D). The ROC
curves (A and C) were computed for two-class separation for both the training (blue) and test (red) sets; the biomarker weights were averaged over 4096
randomized tests, where one half of tumor samples was used as a training set and another half as tumors was used as test set. The test set derived probabilities
of classifications of individual tumors (dots) and the cumulative percentages of tumors (solid lines) are computed for tumors with (red) and without (blue)
driver alterations for ovarian (panel B) and colon (panel D) cancers. The intersection of solid lines (panels B and D) defines a point of equally weighted
accuracy: 75% for the NOTCH pathway in ovarian cancer and 82% for the RTK pathway in colon cancer.

terations in major cancer driver pathways are distinctively
displayed at the transcriptional level’.

DISCUSSION

We tested the hypothesis that driver genomic alterations in
cancer pathways can be distinctively recognized in the func-
tional molecular networks of the tumor. To recognize al-
tered cancer pathways in tumors at the transcriptional level,
we proposed a new machine learning algorithm for identify-
ing candidate biomarkers and constructing classifiers based
on multivariate data. Our algorithm determines biomarker
genes and constructs transcription-based signature func-
tions that are specific to pathways in a given cancer type.
The signature functions are fit using training datasets com-
prised of transcriptional profiles of tumors with respect to
nominated driver pathways. Based on the value of the sig-
nature function, tumors with driver alterations in a given
pathway can be separated from tumors that have no alter-
ations in that pathway. To reduce the inevitable over fit-
ting that is well-known to occur with machine learning al-
gorithms applied to high-dimensional datasets, we imple-
mented a robust 2-fold validation process in which all sta-
tistical associations were derived using half of the available
dataset (considered as the training dataset) and tested the
accuracy of the resulting classifier on the remaining half of
the dataset (considered as the testing dataset). We tested our

approach on seven major cancer pathways in breast, ovar-
ian and colon cancers. Overall, the transcriptional signature
functions make it possible to predict genomic driver alter-
ations with an average AUC of ∼83%.

The approach we developed is easily implemented in
practice given it uses a weighted sum of gene expression
levels and a straightforward classification scale. The im-
portant practical feature of the approach is that the signa-
ture function values make it possible to differentiate tumors
based on a probability measure on the activation status of
a driver pathway. For example, one can select tumors with
high probability (e.g. higher than 95%) that have a given
pathway activated, and then test such predictions on tu-
mor cell lines or mouse models using pathway specific drugs.
This type of validated transcriptional signature for specific
cancer pathways can be used as a practical alternative or in
combination with DNA sequencing methods. RNA-based
methods could be especially valuable when DNA data is in-
complete or ambiguous in interpretation.

Beyond the ability to classify the activation status of key
driver pathways in cancer, there remains significant interest
in determining new genes involved in cancer driver path-
ways. While our biomarker selection procedure was geared
toward the identification of biomarkers that could opti-
mize discrimination of pathway activation status, roughly
40% (146) of all biomarker genes we identified had evidence
of involvement in cancer, supported by interactions with
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known key genes in cancer pathways, signs of positive se-
lection and differential expression. Further, the majority of
these biomarker genes were not annotated as having a well-
known role in cancer. Many of these top ranked genes that
interact with cancer pathways and that are significantly am-
plified in several cancers may be interesting to explore as
potential drug targets. For example, RP1, serine/threonine-
protein kinase 19, is a top-ranked gene for the Wnt pathway
in colon cancer. LRG1 for the PI3K signaling pathway and
CDT1 for the cell cycle pathway were top-ranked for these
respective pathways in breast cancer. The biomarker genes
that could be considered as potential cancer genes are pro-
vided in Supplementary Table S1.

The issues facing the prediction of functional genomic al-
terations based on transcriptional data are not unlike the is-
sues encountered in determining genotype based on pheno-
type (55). The success of the predictions depends on real bi-
ological associations between genomic alterations and phe-
notype as well as on the quality of the available data. In this
present study, we assumed that a single genomic alteration
in any of the genes known to comprise a given pathway of
interest could result in the ‘activation’ of the pathway. Thus,
we did not take into account the context of other genomic
alterations in the tumor, the biological differences between
alterations, the unknown genes and alterations that may
also activate pathways, and so on. Therefore, it is of particu-
lar note that in spite of these uncertainties, the proposed ap-
proach was able to predict with reasonable accuracy the spe-
cific activation states of genomic alterations from the tran-
scriptional data. These results support that the major driver
alterations in cancer genomes produce distinct molecular
phenotypes and may have diagnostic utility for better tar-
geting of cancer therapies to individual cancer cases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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