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Abstract: Bi6Fe1.9Co0.1Ti3O18 (BFCTO)/NaGdF4:Yb3+, Er3+ (NGF) nanohybrids were successively
synthesized by the hydrothermal process followed by anassembly method, and BFCTO-1.0/NGF
nanosheets, BFCTO-1.5/NGF nanoplates and BFCTO-2.0/NGF truncated tetragonal bipyramids were
obtained when 1.0, 1.5 and 2.0 M NaOH were adopted, respectively. Under the irradiation of 980 nm
light, all the BFCTO samples exhibited no activity in degrading Rhodamine B (RhB). In contrast, with
the loading of NGF upconversion nanoparticles, all the BFCTO/NGF samples exhibited extended
near-infrared photoactivity, with BFCTO-1.5/NGF showing the best photocatalytic activity, which
could be attributed to the effect of {001} and {117} crystal facets with the optimal ratio. In addition, the
ferromagnetic properties of the BFCTO/NGF samples indicated their potential as novel, recyclable
and efficient near-infrared (NIR) light-driven photocatalysts.
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1. Introduction

Environmental contamination, especially water and air pollution, has become a serious problem,
and thus has attracted great attention all over the world. Photocatalysisis known as an effective
and promising technology in solving this problem [1–7]. In addition, photocatalytic materials have
been widely used in membrane technology [8] and 2D materials [9,10]. Layered bismuth-based
materials, namely BiFeO3 [11], BiVO4 [12], Bi2WO6 [13], Bi2MoO6 [14] and BiOX (X = I, Br, Cl) [15],
have harvested special interest due to their unique electronic structure and decent photocatalytic
properties. In particular, the orderly layered structure—composed of (Bi2O2)2+ fluorite-structure layers
and perovskite-like or interleaved halide ions—is prone to form an internal electric field, which could
efficiently separate the electron-hole pairs and result in enhanced photocatalytic activity [16,17].

Recently, layered bismuth-based Bi4Bin−3Fen−3−xCoxTi3O3n+3 (BFCTO) Aurivillius compounds,
which are formed by perovskite-type (Bin−1Fen−3−xCoxTi3O3n+1)2− blocks sandwiched between
fluorite-type (Bi2O2)2+ slabs, where n is the number of perovskite units per half-cell [18–21], proved
to be apotential single-phase multiferroic material with ferroelectricity and ferromagnetism [22].
Moreover, the internal electric field and ferromagnetism could enable the photocatalysts recyclable in
viscous solution, which is important but extremely difficult due to their size and high viscosity [23].
In 2008, nanostructured Bi5FeTi3O15 was first realized, and showed excellent visible light-driven
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photocatalytic activity compared to bulk-Bi5FeTi3O15 and the widely-used photocatalyst TiO2 [24].
In 2014, Mandal et al. [25] successfully synthesized La3+ doped Bi5Ti3FeO15 (n = 4) via the solid-state
reaction, and found that such layered oxides exhibited efficient photocatalysis for Rhodamine B
(RhB) degradation under sunlight irradiation. In a previous study, the authors [26] optimized the
photocatalysis in ferromagnetic Bi6Fe1.9Co0.1Ti3O18 (n = 5) nanocrystals by morphology control, and
found that the synergistic effect of {001} and {117} facets in the separation of electrons and holes, and the
oxidation/reduction reaction, efficiently inhibited the recombination of the charge carrier. Furthermore,
we found the appropriate area ratio between the {001} facets and the {117} facets was shown to be
beneficial to photocatalysis efficiency. Recently, we also obtained visible light-responsive Bi7Fe3Ti3O21

nanoshelf photocatalysts [27]. However, BFCTO photocatalysts are still limited to ultraviolet (UV)
and/or visible (Vis) light, while near-infrared (NIR) light driven BFCTO-based catalysts have never
been reported, despite NIR light making up about 47% of the solar spectrum. Therefore, the extended
utilization of sunlight from Vis to NIR light is an attractive issue for developing photocatalysts. On the
other hand, upconversion materials could convert low-energy NIR light into high-energy UV or
Vis light through a nonlinear optical process [28–33]. Furthermore, compared with conventional
fluorescent materials, such as organic dyes and quantum dots, upconversion nanoparticles have the
following advantages: (i) High photostability and chemical stability; (ii) low toxicity to the human
body; (iii) good biocompatibility by surface modification and functionalization; and (iv) good optical
transparency over a wide wavelength range and low phonon energy [34–37]. Therein, coupling
upconversion nanoparticles with photocatalysts is considered to bea very promising method to extend
NIR photoactivity [38].

In this article, we synthesized firstly Bi6Fe1.9Co0.1Ti3O18 (BFCTO)/NaGdF4:Yb3+, Er3+ (NGF)
nanohybrids by the hydrothermal process, followed by an assembly method, where the morphology
and size of the BFCTO component was controlled by adjusting NaOH concentration. The structures,
morphologies, upconversion emission, UV-Vis-NIR diffuse reflectance spectra and magnetic properties
of the samples were characterized, and the photocatalytic activities were also evaluated by the
degradation of RhB solution under the irradiation of light of wavelength 980 nm. The loading
of the NGF upconversion nanoparticles extended the near-infrared photoactivity of all the BFCTO
samples. BFCTO-1.5/NGF exhibited the best photocatalytic activity, and thus the corresponding
mechanism was investigated in detail.

2. Experimental Section

2.1. Materials

All chemicals were purchased from Sinopharm Chemical Reagent Co., Ltd., (Shanghai, China),
without further purification. The details are as follows: Ti(OC4H9)4 (≥99.7%), Bi(NO3)3·5H2O
(≥99%), Fe(NO3)3·9H2O (≥98.5%), Co(NO3)3·6H2O (≥98.5%), HNO3 (65.0~68.0%), NaOH (≥96.0%),
Gd(NO3)3·6H2O (99.99%), Yb(NO3)3·6H2O (99.99%), Er(NO3)3·5H2O (99.99%), ethanol (99.7%),
cis-oleic acid, NH4F (≥96.0%), HCl (36.0~38.0%), PVP (Polyvinylpyrrolidone, K-30).

2.2. Synthesis of BFCTONanoparticles with Various Morphologies

The BFCTO nanoparticles were synthesized by the hydrothermal method according to our
previous report [23], and the corresponding morphologies were controlled by adjusting NaOH
concentrations. Here, BFCTO-1.0, BFCTO-1.5 and BFCTO-2.0 represent BFCTO samples obtained with
1.0 M, 1.5 M and 2.0 M NaOH, respectively.

2.3. Preparation of PVP-Capped BFCTO Nanoparticles

The as-prepared BFCTO nanoparticles were added into the PVP solution (1.0 g PVP dissolved
in 100 mL deionized water), and stirred for 12 h at room temperature. The obtained samples were



Nanomaterials 2018, 8, 534 3 of 12

isolated by centrifugation, washed several times with deionized water, and finally dried at 80 ◦C under
vacuum for 12 h.

2.4. Synthesis of Oleic-Capped and Free NGF Nanoparticles

The oleic-capped NGF nanoparticles were synthesized using the solvothermal method. Firstly,
10 mL oleic acid and 3 mL NaOH solution (5 M) were successively added into 10 mL ethanol. After
stirring for 10 min, 3.12 mL Gd(NO3)3, 0.80 mL Yb(NO3)3, 0.08 mL Er(NO3)3 and 2 mL NH4F (2 M)
were added. Then the solution was transferred into a 50-mL Teflon-lined stainless-steel autoclave.
Theautoclave was sealed and heated at 200 ◦C for 3 h and then cooled to room temperature. The
obtained nanoparticles were collected by centrifugation, and then washed with water and ethanol
for several cycles. Then the as-prepared oleic acid-capped NGF nanoparticles were dispersed in
HCl solution (0.1 M) and ultrasonicated for 15 min to remove the ligands from the surface of the
nanoparticles. The obtained NGF samples were collected via centrifugation and further purified by
ethanol and deionized water for several rounds, and finally re-dispersed in deionized water.

2.5. Synthesis of BFCTO/NGF Samples

The as-prepared 0.3 g PVP-capped BFCTO nanoparticles were dissolved in 100 mL H2O, and
10 mL NGF solution (0.01 g mL−1) was added. Then, the solution was stirred for 12 h. The obtained
nanoparticles were collected by centrifugation and washed several times with deionized water, and
dried at 80 ◦C under vacuum for 12 h.

2.6. Photocatalytic Activities

Photocatalytic activities of the as-prepared BFCTO/NGF samples were evaluated by the
photodecomposition of RhB under the NIR irradiation of 980 nm (power = 1.0 A). Firstly, 50 mg
of BFCTO/NGF and the BFCTO sampleswere dispersed uniformly into a 50-mL RhB solution
(5 mg L−1). Then, the suspension was stirred for 30 min in the dark to ensure the establishment
of an adsorption/desorption equilibrium. During the NIR irradiation, 3 mL reaction solution was
taken and centrifuged every half an hour, and the filtrate was measured on a UV-Visible spectrometer
at a maximum absorption wavelength of 554 nm to determine the concentration of RhB.

2.7. Characterizations

The sizes and morphologies of all samples were observed by scanning electron microscopy (SEM,
JSM-6700F, JEOL, Tokyo, Japan) and transmission electron microscopy (TEM, JEM-2011, JEOL, Tokyo,
Japan). High resolution electron microscopy (JEM-2011, JEOL, Tokyo, Japan), scanning transmission
electron microscopy-high-angle annular dark field images (STEM-HAADF, JEM-2011, JEOL, Tokyo,
Japan) and electron dispersive spectroscopy (EDS) mapping were conducted using the TEM (JEM-2011,
JEOL, Tokyo, Japan). The crystallinity and phase structure of the samples were characterized by X-ray
diffraction (XRD) with the Cu-kα (λ = 1.5406 Å) radiation (Rigaku, Japan). Fourier transform infrared
(FTIR) absorption spectrawere obtainedusing a Nicolet 8700 system (Thermo Scientific, Waltham, MA,
USA). The X-ray photoelectron spectroscopy (XPS) measurements were carried out on an ESCALAB
250 system with a monochromatic Al Kα X-ray source (Thermo-VG Scientific, West Sussex, UK).
Ultraviolet-visible-near-infrared (UV-Vis-NIR) diffuse reflectance spectra were recorded by a Shimadzu
SolidSpec-3700 system (Tokyo, Japan) equipped with an integrating sphere, and BaSO4 was used as the
reference. The upconversion emission spectra excited at 980 nm were measured on a JY Fluorolog-3-Tou
luminescence spectrometer. Magnetic properties of the samples were characterized using a physical
property measurement system (PPMS DynaCool, Quantum Design, San Diego, CA, USA).
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3. Results and Discussion

The detailed procedures of the BFCTO/NGF nanocomposites are outlined in Figure 1 and the
Experimental Section. Figure 2 displays the XRD patterns of the NGF, BFCTO and BFCTO/NGF
samples. Strong and sharp diffraction peaks were observed in all the samples, suggesting that the
compounds are well-crystallized. The XRD pattern recorded in red suggests the formation of BFCTO
pure phase, while all the XRD patterns indicated the characteristic BFCTO peaks with an orthorhombic
structure (with a space group of A21am, PDF 38-1257) [39]. The pattern recorded in pink reveals that
the NGF hexagonal phase is obtained according to PDF 27-0699. The XRD pattern in blue displays
both the characteristic peaks of the BFCTO and NGF phases, which suggests that NGF may be loaded
onto BFCTO successfully.
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Figure 2. The X-ray diffraction (XRD) patterns of the NGF, BFCTO and BFCTO/NGF samples.

The representative SEM images of the BFCTO-1.5 and BFCTO-1.5/NGF samples are shown in
Figure 3a–c. BFCTO-1.5 nanoparticles are monodisperse and exhibit a nanoplate morphology, with
a thickness and edge length of ~100 nm and ~1 µm, respectively (Figure 3a). There are two key
factors for enhancing the catalytic activity of BFCTO by upconversion nanoparticles: (i) PVP surfactant
could coordinate lanthanide ions through pyrrolidone groups on the surface of the NGF nanoparticles,
which ensures the successful coating of NGF on the surface of BFCTO [40]; and (ii) the oleate ligand
capped on the NGF nanoparticles is protonated by hydrochloric acid, thereby releasing oleic acid (OA)
from the surface. This release of OA may increase the water solubility and reduce the fluorescence
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quenching of the NGF upconversion nanoparticles [41,42], which is beneficial for enhancing the
NIR-responsive photocatalysis of BFCTO by upconversion nanoparticles. Figure 3b–d validates the
successful loading of the NGF nanoparticles onto the BFCTO-1.5 nanoplates due to the modification of
the PVP surfactant, with the size of the NGF nanoparticlesbeing ~30 nm (Figure 3e). Furthermore, the
characteristic peaks of the oleate ligand disappear in the FTIR spectrum of the NGF nanoparticles, as
shown Figure S1, suggesting that the NGF nanoparticles are oleic-free. HRTEM was also adopted to
characterize the microstructures of the NGF nanoparticles, as shown in the insert of Figure 3d, and
it indicated that the spacing between two adjacent lattice planes was 0.30 nm, fitting well with the
(110) plane of the hexagonal phase of NGF (PDF 27-0699). To further verify the successful synthesis
of the BFCTO-1.5/NGF nanocomposites, HADDF-STEM imaging and the EDS elemental mapping
were conducted, as shown in Figure 3f,g. The HADDF-STEM image shows a sharp contrast between
the NGF and BFCTO-1.50 nanoparticles, consistent with the TEM images in Figure 3b,c. The EDS
elemental mapping in Figure 3g indicated that Na, Gd and F elements were distributed in the shell,
while Bi, Fe, Co, Ti and O existed in the core, which further demonstrated the successful synthesis of
BFCTO-1.50/NGF nanohybrids.
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Figure 3. SEM images of (a) BFCTO-1.5 and (b,c) BFCTO-1.5/NGF nanoparticles; (d) TEM image
of BFCTO-1.5/NGF nanoparticles (insert: the HRTEM image of NGF nanoparticle in magenta
frame); (e) TEM image of NGF nanoparticles; (f) HADDF-STEM image of BFCTO-1.5/NGF; (g) the
corresponding EDS elemental mapping of Bi, Fe, Co, Ti, O, Na, Gd and F elements.

Additionally, XPS spectra were also conducted to determine the valence states of metal elements
in the BFCTO/NGF nanohybrids (Figure 4). The bindingenergies obtained from the XPS analyses
were corrected for specimen charging by referencing the C 1s line to 284.5 eV. The full survey spectrum
revealed that the BFCTO-1.5/NGF nanohybrid was composed of Bi, Fe, Co, Ti, O, Na, Gd and
F elements (Figure 4a). Figure 4b illustrates the core-level spectrum of Bi 4f in the nanohybrid,
and the peaks located at 158.7 eV (Bi 4f7/2) and 164.0 eV (Bi 4f5/2) are referenced by Bi2O3 [43].
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Figure 4c shows the Fe 2p core-level spectrum of the BFCTO-1.5/NGF nanohybrid, and the two
peaks of Fe 2p at 723.81 and 710.2 eV—which match well with the spin-orbit split of Fe 2p1/2 and
Fe 2p3/2, respectively [39]—are near to those in Fe2O3, suggesting that the Fe ions in the BFCTO/NGF
nanocomposite have +3 valence states. The binding energies at 465.15 and 457.26 eV correspond
to the binding energy of Ti 2p1/2 and Ti 2p3/2 (Figure 4d), implying that the doped Ti ions in the
BFCTO/NGF nanohybrid have +4 valence states [44]. Additionally, Figure 4e shows the Gd 4d3/2 peak
at 149.7 eV and the Gd 4d5/2 peak at 143.9 eV [45], and the Gd 3d5/2 peak at 1188.5 eV and Gd 3d7/2
peak at 1220.9 eV are also observed (Figure 4e) [46], which are characteristic of Gd3+ ions. Therefore,
the XPS results indicate that the metal elements exist in the form of Bi3+, Fe3+, Ti4+ and Gd3+.
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The SEM images of BFCTO-1.0, BFCTO-1.0/NGF, BFCTO-2.0 and BFCTO-2.0/NGF samples are
shown in Figure 5. The BFCTO-1.0 sample displays a nanosheet-like morphology, with a thickness
and edge length of ~40 nm and ~1 µm, respectively (Figure 5a). The BFCTO-2.0 sample exhibits a
well-defined shape of a truncated tetragonal bipyramid, the thickness and edge length of which ranges
from 100 nm to 1 µm and 1 to 2 µm, respectively (Figure 5c) [26]. Evidently, the coating of NGF did
not change the size and morphology of BFCTO because the NGF nanoparticles were just absorbed
onto the BFCTO nanoparticles’ surfaces through the amide bond in PVP.

After successfully synthesizing the BFCTO/NGF nanoparticles, we were in a position to
evaluate the corresponding photocatalytic activities. To identify the dependence of morphology
on photocatalysis performance, the degradation rate of all the samples was normalized by the specific
surface area, which is 17.733, 11.731 and 11.610 m2 g−1 for BFCTO-1.0/NGF, BFCTO-1.5/NGF
and BFCTO-2.0/NGF, respectively. Figure 6a displays the irradiation time dependence of RhB
degradations in various BFCTO and BFCTO/NGF aqueous dispersions under NIR irradiation
of 980 nm, with a power of 1.0 A. Evidently, all the BFCTO samples exhibited no activity after
the adsorption/desorption equilibrium. In contrast, with the loading of NGF upconversion
nanoparticles, NIR-responsive photocatalysis activity was observed in all the BFCTO/NGF samples,
andBFCTO-1.5/NGF degrades 25% of RhB after 240 min irradiation at 980 nm, better than
theBFCTO-1.0/NGF and BFCTO-2.0/NGF samples.
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Figure 6. (a) The irradiation time dependence of Rhodamine B (RhB) degradation in various BFCTO
and BFCTO/NGF aqueous dispersions under near-infrared (NIR) irradiation of 980 nm, with a power
of 1.0 A; (b) the upconversion emission spectra of BFCTO/NGF nanoparticles excited at 980 nm; (c) the
ultraviolet-visible-near-infrared (UV-Vis-NIR) diffuse reflectance spectra of BFCTO/NGF nanoparticles
(insert: the absorption magnification of yellow dot area); (d) the relationship between (αhv)2 and (hv)
photon energy of all BFCTO/NGF nanoparticles (insert: Corresponding Eg values).

To explain the effect of NGF-loading on BFCTO nanoparticles with different morphologies, the
upconversion emission spectra of all the BFCTO/NGF samples were measured (Figure 6b). Under the
excitation of a 980 nm continuous wave diode laser, the green emission centered at 543 nm and red
emission centered at 658 nm were observed, originating from the transitions 2H11/2/4S3/2→4I15/2 and
4F9/2→4I15/2, respectively, for the Er3+ ions, indicating that the loading of NGF nanoparticles could
extend the absorption of BFCTO from Vis to NIR light. All of the BFCTO/NGF samples exhibited
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stronger red emission than green emission due to high Yb3+ doping concentration (20 at%), and stronger
absorption of BFCTO in the green band (Figure 6c). Furthermore, the intensity of the upconversion
emissions decreased in the order of IBFCTO-2.0/NGF < IBFCTO-1.5/NGF < IBFCTO-1.0/NGF (Figure 6b),
suggesting that absorption in the NIR region increases in the order of IBFCTO-2.0/NGF > IBFCTO-1.5/NGF
> IBFCTO-1.0/NGF, consistent with the results in Figure 6c. Furthermore, upconversion nanoparticles
may reduce the electrical conductivity of BFCTO photocatalysts due to NGF’s electrical insulating
properties. The UV-Vis-NIR diffuse reflectance spectra in the wavelength range of 250–1500 nm for all
the BFCTO/NGF samples, displayed in Figure 6c, are relevant to the electronic structure, and are the
key factors to determine the band gaps. According to the UV-Vis-NIR diffuse reflectance spectra in
Figure 6c, the band gap values are calculated by the following equation: αhv = A (hv − Eg)n/2, where α,
hv, A, and Eg represent the absorption coefficient, photon energy, proportionality constant and gap
band, respectively. BFCTO possesses a direct electron transition, therein n = 1. Figure 6d shows the
plot of the (αhv)2 verse Eg, from which the band gaps of the BFCTO/NGF samples were estimated by
extrapolating a straight line to the abscissa axis. The band gaps were found to be 2.48, 2.47 and 2.43 eV
for BFCTO-1.0/NGF, BFCTO-1.5/NGF and BFCTO-2.0/NGF, respectively. The intrinsic absorption
edge of BFCTO-2.0/NGF has an obvious red-shift by 10 nm to that of BFCTO-1.0/NGF.

The photodegradation mechanism of BFCTO/NGF under 980 nm irradiation is shown in Figure 7.
In the upconversion luminescent NGF nanoparticle, the excited Yb3+ ions act as sensitizers to absorb
the 980 nm photons, and then transfer this energy to Er3+ ions to emit Vis light. The emission peaks
centered at 524, 543, and 658 nm for NGF are attributed to the Er3+ transitions of 2H11/2→4I15/2,
4S3/2→4I15/2, and 4F9/2→4I15/2, respectively. Meanwhile, these emission peaks are in the Vis range,
which are fully in the BFCTO absorption range, leading to photoexcitation of the BFCTO nanoparticles
in BFCTO/NGF. Therefore, the holes (h+) on the valence band (VB) and the electrons (e−) on the
conduction band (CB) were able to be generated to decompose the RhB molecules. The oxidative
holes could react with H2O to produce hydroxyl radicals (·OH), while in the reduction reaction the
electrons reacted with O2 to form superoxide radicals (O2

−) [47]. Furthermore, in previous work, we
indicated that the BFCTO-1.50 sample showed the highest photocatalysis efficiency, which may have
been due to the nanoplates in the BFCTO-1.50 sample having the appropriate area ratio between the
{001} facets and the {117} facets. This resulted in a similar reaction ratio on these two facets, thereby
efficiently inhibiting the recombination of the charge carrier [23]. Consequently, we predicted that the
BFCTO-1.5/NGF would show the best photocatalytic activity, which could be attributed to the effect
of {001} and {117} crystal facets with the optimal ratio.
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The magnetic properties of all the BFCTO/NGF nanocomposites at room temperature were also
measured to investigate their potential as a magnetic recyclable catalyst. The magnetization hysteresis
(M-H) loops are shown in Figure 8a. It can be seen that all the samples exhibit spontaneous magnetic
moments, indicating their ferromagnetic nature. Among the three samples, BFCTO-2.0/NGF exhibited
a maximum remnant magnetism (2Mr) of ~0.32 emu/g, and the coercive field 2Hc of BFCTO-2.0/NGF
is ~1092 Oe. Due to the paramagnetic properties of the NGF nanoparticles (insert of Figure 8a), the
BFCTO/NGF samples showed unsaturated magnetization when a high magnetic field was applied.
Additionally, Figure 8b,c displays the photos of BFCTO-1.0/NGF solution without and with a nearby
magnet of 0.1 T, which indicates that the BFCTO/NGF samples have the potential as novel, recyclable
and efficient NIR light-driven photocatalysts.Nanomaterials 2018, 8, x FOR PEER REVIEW  9 of 11 
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4. Conclusions

In summary, the BFCTO/NGF nanocomposites were successfully synthesized by the
hydrothermal method followed by an assembly method, wherein the size and morphology of the
BFCTO component was well-adjusted by changing the concentration of NaOH. Under the NIR
irradiation of 980 nm by a continuous wave diode laser, all the BFCTO samples exhibited no activity.
In contrast, with the loading of the NGF upconversion nanoparticles, high photocatalytic activity was
observed in the BFCTO/NGF samples, indicating that the loading of NGF nanoparticles could extend
the absorption of BFCTO from Vis to NIRlight. Among the three samples, BFCTO-1.5/NGF displayed
the best NIR-responsive photocatalysis activity, which could be attributed to the effect of {001} and
{117} crystal facets with the optimal ratio. Furthermore, the ferromagnetic property of the BFCTO/NGF
sample indicates itspotential as anovel, recyclable and efficient NIR light-driven photocatalyst.
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