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ABSTRACT: Accurate drug−target binding affinity (DTA) prediction is crucial in drug discovery. Recently, deep learning methods
for DTA prediction have made significant progress. However, there are still two challenges: (1) recent models always ignore the
correlations in drug and target data in the drug/target representation process and (2) the interaction learning of drug−target pairs
always is by simple concatenation, which is insufficient to explore their fusion. To overcome these challenges, we propose an end-to-
end sequence-based model called BTDHDTA. In the feature extraction process, the bidirectional gated recurrent unit (GRU),
transformer encoder, and dilated convolution are employed to extract global, local, and their correlation patterns of drug and target
input. Additionally, a module combining convolutional neural networks with a Highway connection is introduced to fuse drug and
protein deep features. We evaluate the performance of BTDHDTA on three benchmark data sets (Davis, KIBA, and Metz),
demonstrating its superiority over several current state-of-the-art methods in key metrics such as Mean Squared Error (MSE),
Concordance Index (CI), and Regression toward the mean (Rm2 ). The results indicate that our method achieves a better performance
in DTA prediction. In the case study, we use the BTDHDTA model to predict the binding affinities between 3137 FDA-approved
drugs and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication-related proteins, validating the model’s
effectiveness in practical scenarios.

1. INTRODUCTION
Predicting drug−target binding affinity (DTA) is essential in
determining the strength of interactions between drugs and
target proteins, playing a crucial role in the drug discovery
process.1−3 However, measuring DTA on a large scale purely
through biological experiments is impractical. The sheer
number of drug-like compounds and potential protein targets
is overwhelming, and the experimental process is often time-
consuming and labor-intensive.4−6 Consequently, the use of
computational methods to predict DTA scores has become
necessary.
Early computational models for predicting DTA primarily

utilized machine learning methods. Two notable examples are
the KronRLS method,7 based on Kronecker regularized least-
squares, and SimBoost,8 a supervised machine learning
approach. While traditional machine learning methods can
accurately predict DTA, they involve complex and time-
consuming feature engineering, often requiring manual data

processing and annotation, followed by extracting valuable
features.9 Moreover, the performance of these models tends to
degrade as the data set size increases. Consequently, traditional
machine learning methods have significant limitations in the
field of DTA prediction.
In recent years, with the rise of deep learning and the

dramatic increase in computational power, deep learning-based
models have achieved great success in solving various problems
in bioinformatics applications,10,11 especially in drug discovery.
Compared with traditional machine learning algorithms, deep
learning offers notable advantages in handling complex
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nonlinear relationships and high-throughput data. Nowadays,
deep learning is widely used in the field of DTA prediction,
with constructed prediction methods demonstrating excellent
performance. We broadly classify DTA prediction methods
into two categories based on the representation of input data:
sequence-based methods and graph-based methods.
Sequence-based methods mainly represent drugs and

proteins as one-dimensional sequences. Typically, drugs are
represented by the Simplified Molecular Input Line Entry
System (SMILES), and proteins are represented by FASTA
sequences. DeepDTA12 employs numerical encoding to embed
drug SMILES representations and protein sequences and then
inputs them into a module consisting of a three-layer
convolutional neural network (CNN) to learn the relationships
of representation. AttentionDTA13 builds on DeepDTA by
improving two attention mechanisms to create a new attention
method, which uses attention weights as the strength of drug−
target interactions to predict DTA scores accordingly. In
addition to these methods that directly perform feature
learning on raw drug and protein sequences, other approaches
enhance prediction accuracy by incorporating additional
information or using specific algorithms to preprocess input
sequences. For example, Öztürk et al.14 designed a new CNN
module based on DeepDTA, capable of extracting features
from four types of data, including drug SMILES sequences and
protein sequences, thereby improving predictive ability by
increasing data volume and network complexity. The
MGMSAN model15 employs the BPE segmentation algorithm
to create a vocabulary of high-frequency byte pairs in drug and
protein sequences, efficiently learning important feature
information from sequences. Kalemati et al.16 designed a
unified metric method called BiComp, which enhances protein
sequence information with complementary features to improve
DTA prediction quality. Although the aforementioned
sequence-based methods demonstrate good performance in
predicting DTA, they still have limitations in feature extraction.
On one hand, increasing auxiliary information not only
enriches the representation of drugs and proteins but also
increases the complexity of training models and may introduce
redundancy. On the other hand, using segmentation or metric
algorithms to preprocess input data can cause models to focus
on specific parts, leading to partial information loss.
In contrast to sequence-based methods, graph-based

methods focus more on the structural information on drugs
and targets. GraphDTA17 transforms sequence information
into graph structures based on various atomic features in drug
sequences, utilizing four variants of Graph Neural Networks to
learn drug graph representations. DGraphDTA18 enhances
prediction performance by constructing molecular graphs for
drugs and building graph representations for proteins. To
improve the quality of graph structure representation,
TDGraphDTA19 introduces a diffusion mechanism. Before
the drug molecular graph is inserted into the graph
convolution, the diffusion mechanism optimizes the graph
structure representation, enabling the model to extract more
meaningful and interconnected features. Graph-based methods
can directly capture interactions and spatial relationships
between associated elements in molecular and protein
structures without considering complex relationships among
other elements. However, constructing graph structures often
requires extensive preprocessing, such as using external toolkits
and methods to convert sequence representations into graph
representations. Due to the complexity of graph structures and

the lack of spatial locality, graph-based methods often require
deep aggregation layers to capture information-rich local and
global features, which increases computational complexity and
costs.
Despite the popularity of graph-based methods in DTA

prediction, research on sequence-based DTA prediction
methods remains highly valuable, particularly for readily
accessible raw sequence data. Given the issues identified with
the aforementioned methods, our goal is to design efficient and
accurate prediction methods that effectively handle the
sequence information.
Moreover, existing methods for integrating drug and protein

features usually use simple concatenation and attention-based
interaction fusion to form the final representations.20 For
instance, DeepDTA12 concatenates locally extracted features
from two CNN blocks of drugs and proteins as the final
representation for decoding. MRBDTA21 integrates features
twice to obtain the final decoded representation: first by
concatenating and fusing extracted features within each
modality, and second by concatenating and fusing features
across both modalities. While concatenation methods are
straightforward, they often overlook the complex interaction
relationships between drugs and proteins. DeepCDA22

employs a bilateral attention mechanism to generate a binding
graph by merging drug and protein features, calculating the
interaction strength between drug segments and protein
segments. FusionDTA23 inputs the concatenated overall
features of drugs and proteins into a multihead linear attention
layer to obtain aggregated features based on attention scores.
AttentionMGT-DTA24 uses a joint attention mechanism to
interact cross-modal information between drugs and proteins,
predicting affinity based on the interaction matrix. The
interaction fusion method of MT-DTA25 is more complex, as
it captures the aggregated features of drug and protein
molecules through two cascading attention mechanisms and
then applies self-attention to these aggregated features to
obtain the final fused representation. GPCNDTA26 incorpo-
rates intramolecular and intermolecular cross-attention mod-
ules to interactively fuse different modal information from
drugs and proteins. The intramolecular cross-attention is used
to integrate different modal information related to the same
biomolecule, and the intermolecular cross-attention facilitates
the interaction of information between different biomolecules.
Fusion methods based on attention mechanisms effectively
capture interactions between drugs and proteins by computing
attention weights, which roughly determine binding sites based
on their magnitude. However, this computational approach
often faces challenges with high-throughput data due to its
complexity, and attention mechanisms can be susceptible to
sample noise.
Based on our observation, there are two issues in deep

models for DTA prediction: (1) Many models lack the ability
to effectively combine long-range information and local
features from drug and protein sequences, neglecting the
importance of multiple features, and (2) oversimplified
interaction learning methods are unable to deeply explore
the complex interactions between drugs and targets.
To overcome the above challenges, we propose an end-to-

end model named BTDHDTA for predicting DTA scores,
focusing on drug and protein sequence information. Our
model takes drug SMILES sequences and protein FASTA
sequences as inputs. First, bidirectional gated recurrent units
(GRUs) are employed to capture contextual relationships of
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input sequences to compensate for the shortcomings of token
embedding and position embedding. Second, a Trans block
and a Dilated-CNN block are parallelly integrated to extract
features of the inputs. Inspired by the MRBDTA method,21 the
Trans block is used to extract global features from the entire
sequence representation through improving the encoder of the
transformer. The Dilated-CNN block consists of three dilated
convolutions with different dilation factors and is used to
capture local information at the binding sites between the drug
and the target. Next, we construct a fusion module based on
the Highway network to explore the interactions between
drugs and proteins. The gating mechanism in the Highway
network is utilized to integrate local and global features from
both drugs and protein. For the transformed information
determined by the gating mechanism, a convolutional neural
network is used to perform nonlinear transformation and
transmit the captured interaction information. Finally, the
fused features are fed into fully connected neural networks
(FNNs) for predicting binding affinity scores of drug−target
pairs.
In the experiments, we evaluate our proposed model on

three public data sets�Davis, KIBA, and Metz�and compare
the model with recent sequence-based methods for DTA
prediction. Our BTDHDTA model outperforms these models
across all key prediction metrics. Moreover, to further validate

the effectiveness of our model, we apply the model to severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
replication-related proteins, list the FDA-approved drugs with
high binding affinity scores predicted by our model, and find
antiviral drugs with therapeutic potential by ranking.
The main contributions of this work are as follows:
• A Bidirectional GRU (BiGRU) is built to model
temporal relationships of drug/protein input sequences,
incorporating dynamic temporal information into the
static embedding information.

• A multiscaled feature extraction module with a Trans
block and a Dilated-CNN block is proposed, which can
extract global features and multiscale local features from
drugs/proteins.

• A fusion module with Highway connections and CNN is
proposed to integrate multigranularity drug and protein
features and capture their interactions.

2. METHODS
As shown in Figure 1, we propose a novel deep learning model
named BTDHDTA for predicting DTA scores. The
BTDHDTA method consists of four parts: data processing,
feature extraction, the fusion module, and the prediction
module. Specifically, we employ BiGRU to capture the

Figure 1. Schematic diagram of the BTDHDTA model proposed in this study. (a) Overall architecture of BTDHDTA. The BTDHDTA model
consists of three main parts: data processing, feature extraction, and feature fusion. (b) Implementation steps for data processing and feature
extraction. In the data processing stage, drug SMILES sequences and protein sequences are embedded and encoded and then passed through
BiGRU to capture the temporal relationships within the sequences. In the feature extraction stage, both drug and protein sequences are passed
through two blocks to extract information. The Dilated-CNN block is used to extract local information at the binding sites between drugs and
proteins, while the Trans block extracts global features of the entire sequence. Here, the structures of the internal components of the two blocks are
displayed. (c) Implementations of the feature fusion module and the affinity prediction module. The feature fusion module combines CNN and
Highway connection to fuse drug and protein features and learn the interactions between them. The module utilizes the gating mechanism in
Highway to integrate local and global features in drugs and proteins, with the CNN capturing interaction information. The prediction module
consists of two feed-forward layers and one linear layer, used to decode the fused features and predict the binding scores. Here, “T” denotes the
transformation gate, and “N” is set to 1.
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contextual relationships of input sequences to make the
sequences more informative after encoding drugs and proteins
with token embedding and position embedding. Then, the
processed sequences are separately fed into the Trans block
and the Dilated-CNN block to extract global and local features.
The extracted global and local features of drugs and proteins
are then input into the fusion module, which combines CNN
with a Highway connection, for fusion and interaction. Finally,
through the prediction module, the fused representations of
drugs and proteins are decoded to predict DTA scores.
2.1. Data Processing. 2.1.1. Input Embedding. Our

model takes the SMILES sequences of drugs, composed of
characters representing atoms and structural indicators, and
the FASTA sequences of proteins, composed of different
amino acids, as input. In our study, the mathematical
expression for drug D is defined as follows

=D d d d d d, , ..., , ..., ,i s i
d

1 2 d (1)

where di represents the ith SMILES character. Nd denotes the
set containing 62 SMILES characters. The length sd of the
SMILES sequence varies depending on the specific drug
molecule. To ensure consistent input sizes, we define a
hyperparameter l to limit the maximum length of the drug
input. Inspired by transformers, we first perform token
embedding for all characters in drug D. The token embedding
ED ∈ Rl×e has a trainable weight Wt

D ∈ Rv×e, where v is the size
of the SMILES character set and e is the embedding size of
SMILES characters. To represent the relative or absolute
positional relationships of each character in drug D, we apply
position embedding. The position embedding PED ∈ Rl×d has a
trainable weight Wp

D ∈ Rl×e. Finally, we set the position
embedding size equal to the token embedding size (d = e) and
add them together to obtain the output XD of drug D

= + ×X E PE X,D D D D l e (2)

Similarly, the expression for protein P is defined as follows

= { }P p p p p p, , ..., , ...,i fp i
p

1 2 (3)

where pi represents the ith amino acid. Np denotes the set of 25
common amino acids. The length fp of the protein sequence is
determined by the number of amino acids that it contains. We
also define a hyperparameter z as the fixed length of the
protein input. XP represents the output of protein P after token
embedding and position embedding processing, defined as
follows

= + ×X E PE X,P P P P z u (4)

where u(u = e) is the embedding size of amino acids. EP
represents the token embedding output of protein P, and PEP
represents the position embedding output.

2.1.2. Bidirectional Gated Recurrent Unit. The GRU
demonstrates dynamic temporal behavior of internal network
states, effectively capturing temporal information in sequence
data, making it highly suitable for handling text sequence data.
The built-in gating mechanism of the GRU network can solve
the problem of long-range dependencies in long sequences.
Although we initially add token embedding and position
embedding to the sequence data, these simple embedding
methods do not provide rich feature information; they merely
provide static information on the sequence. To overcome this
limitation, we construct a BiGRU to capture the contextual
relationships of the embedded data. These contextual relation-

ships can be fully utilized by subsequent modules, enabling the
model to extract key information for prediction.
We set up two layers of BiGRU, where each layer consists of

two independent GRUs: one processing the forward sequence
and the other processing the backward sequence. Finally, these
two sequences are concatenated to obtain output data that
capture both short- and long-range dependencies. The specific
steps are as follows.
We consider the embedded drug sequence XD and protein

sequence XP as a time series. The drug sequence can be
represented as XtD = {x1, x2, ..., xl}, where t = 1, 2, ..., l. GRU
controls the flow of information through reset and update
gates. Supposing the input at time step t is xt and the hidden
state at the previous time step t − 1 is ht−1, the formulas for the
update gate zt and the reset gate rt are computed as follows

l
mooo
n
ooo

= +

= +

z W x U h

r W x U h

( )

( )

t z t z t

t r t r t

1

1 (5)

where W and U are learnable weight matrices determining the
influence of input xt on outputs zt and rt. The function σ(·)
denotes the sigmoid activation function, thus constraining the
values of zt and rt within the range 0 to 1. Once zt and rt are
obtained, the candidate state ht′ and the hidden state ht at time
step t are computed as follows

l
mooo
n
ooo

= + ·

= +

h W x r U h

h z h z h

tanh( ( ))

(1 )

t x t t r t

t t t t t

1

1 (6)

where Wx is a learnable weight matrix, rt controls the
proportion of information from the previous state ht−1 to the
candidate state ht′, tan(·) denotes the tanh activation function,
and ⊙ represents element-wise multiplication. Similar to rt, zt
controls the proportion of information from the previous state
ht−1 and the candidate state ht′ to update the current hidden
state ht.
Due to BiGRU consisting of two GRUs in opposite

directions, at each time step, the output is jointly determined
by these two unidirectional GRUs. We express formulas 5 and
6 using the function GRU(xt,ht−1). Therefore, the BiGRU
computation formula can be expressed as

’ ÷÷÷÷÷÷÷
=h x h x hGRU( , ) GRU( , )t t t t t1 1 (7)

The notation ∥ denotes concatenation, where the left
GRU(·) represents the forward hidden state and the right one
represents the backward hidden state. ht is the final output at
time step t.
2.2. Feature Extraction. 2.2.1. Dilated-CNN Block. CNN

is good at recognizing patterns through a weight-sharing
strategy. By increasing the number of layers, CNN filters can
capture more abstract features. However, CNNs are typically
constrained by fixed-size convolutional kernels, which limits
the scope of feature extraction. In contrast, the dilated
convolution can expand the receptive field by setting different
dilation rates while keeping the number of parameters and the
size of the output feature map unchanged. This expanded
receptive field allows for capturing multiscale features over a
larger range of information.
We have developed a Dilated-CNN block that consists of

three stacked 1D dilated convolutional layers for local feature
extraction. ReLU activation functions are applied to each
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dilated convolutional layer. The specific computation formulas
are as follows

= { · }
=

· +X W XConV( ) ReLUl i k
m

M

m
l

i k,
0

1
( )

step l
(8)

where l is the current layer number, k is the dilation factor, M
is the length of the filter, andWm denotes the mth weight in the
kernel.
In dilated convolution, the dilation factor k means that each

unit in the kernel corresponds to input regions spaced apart by
k units both vertically and horizontally. The receptive field
varies with the value of k. For our model, we set three different
values for k to control the feature extraction range for each
convolutional layer. Since the number of relevant atoms near
drug−protein binding sites and amino acid residues is generally
limited, most around 3−5 drug atoms and 8−12 protein amino
acid residues, we set the dilation factors for the three dilated
convolutional layers to 1, 2, and 4, respectively. After passing
through these three layers of dilated convolution, we apply
normalization and drop-out to the output. Finally, residual
connections are applied across the entire Dilated-CNN block.

2.2.2. Trans Block. The transformer model has been widely
used to process sequence data and is good at capturing global
information in sequences. Building on the work of Zhang et
al.,21 we introduce the encoder of the transformer as the
foundational component of the Trans block, called Trans.
Adding a linear layer at the beginning of a Trans constitutes a
Linear-Trans. The Trans block consists mainly of one Linear-
Trans and two parallel Trans, with residual connections
between the Linear-Trans and the Trans. The detailed
implementation steps of the Trans block are as follows.
For the basic component, Trans, it includes a multihead

attention layer and a position-wise feed-forward layer,
connected by a residual connection (Add operation) and a
layer normalization (Norm operation). The multihead
attention layer is the core of Trans and consists of h(h = 4)
parallel scaled dot-product attention layers. Scaled dot product
attention is a type of generalized attention that uses queries
(Q), keys (K), and values (V). It maps a query and a set of key-
value pairs to an output. Specifically, the e-dimensional input of
Trans, F ∈ Rn×e, is set as the Q, K, and V for the scaled dot-
product attention layer. Then, linear transformations are
applied to Q, K, and V, respectively, to obtain h different
sets of Qi, Ki, and Vi(i = 1, 2, 3, 4) as shown below

l

m
ooooooo

n
ooooooo

= ·

= ·

= ·

Q Q W

K K W

V V W

i i
Q

i i
K

i i
V

(9)

where ×Q Ri
n dk, ×K Ri

n dk, and ×V Ri
n dv. n is the

maximum length l(or z) of drug XD (or protein XP). The
output of each scaled dot-product attention layer, denoted as
headi, is calculated as follows

i
k
jjjjjj

y
{
zzzzzz=Q K V

QK
d

VAttention ( , , ) Softmax
T

k (10)

Here, during the computation of the attention matrix, we did
not apply a mask operation, as the prior data processing has

already assigned contextual relevance to each element in the
sequence, making them all meaningful.
Finally, the outputs of h scaled dot-product attention layers

are concatenated and passed through a linear layer to generate
the output MH of the multihead attention layer

= WMH Concat(head , ..., head , ..., head )i h
O

1 (11)

where ×W RO hd ek is the weight matrix for the linear layer.
The output of the multihead attention layer is fed into the

position-wise feed-forward layer for a series of nonlinear
transformations, after applying a residual connection and a
normalization. The feed-forward layer is made up of two linear
layers with a ReLU activation function in between. The main
difference between Linear-Trans and Trans is that Linear-
Trans inputs the linearly transformed XP or XD into the
residual connection after the multihead attention layer, rather
than directly inputting XP or XD. Since capturing global
features from long sequences may not extract all the
information when processed from a single perspective, we
employ parallel Trans structures; we adopt a parallel Trans
structure. The parallel Trans can process the same inputs from
multiple perspectives independently to ensure the full
extraction of global features. Moreover, the features captured
by each Trans can complement each other, improving the
robustness of the model.
At the end of the entire feature extraction module, we

concatenated the global features extracted from the Trans
block with the local features extracted from the Dilated-CNN
block to form the final output. The output for the protein is HP

∈ Rz×2e, and the output for the drug is HD ∈ Rl×2e.
2.3. Feature Fusion Module. After the internal features of

the protein and the drug are extracted, the next step is to
capture the relational information between them. Most existing
end-to-end models simply concatenate the drug and protein
features and then apply a multilayer perceptron to learn their
relationships. However, this fusion approach does not
effectively construct the interactions between the protein and
the drug, often neglecting their actual interactions.27,28 As a
result, it fails to capture the associated features effectively,
which can limit the predictive capability of the model.
To better capture the interactions between proteins and

drugs, we designed a feature fusion module based on the
Highway network. The Highway network architecture uses
gating mechanisms to regulate the flow of information,
enabling smooth information passage through deep networks
and mitigating the vanishing gradient problem.29 Additionally,
it efficiently integrates information on varying granularities.30

After the feature extraction phase, we performed average
pooling on the drug output HD and the protein output HP.
Then, these pooled results are concatenated to form the input
X ∈ R4e for the feature fusion module. Considering that the
input matrix X combines both global and local features of the
drug and protein sequences, there may be some redundancy.
We utilize the carry gate (C) and transform gate (T) within the
Highway network. These gates help in managing and adjusting
the flow of information, thereby integrating global and local
information while minimizing redundancy. Furthermore, we
introduce a one-dimensional convolution operation into the
Highway network to capture interaction relationships while
applying nonlinear transformations to the input matrix X. The
kernel size is set to 3. The detailed computation process is
shown below
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l
mooo
n
ooo

= · + ·

= +

y H X W T X W X C X W

T X W W X b

(Conv( ), ) ( , ) ( , )

( , ) ( )

H T C

T T T (12)

Here, · denotes element-wise multiplication, W represents the
learnable weight parameters, and H(·) is a nonlinear activation
function, which is ReLU in this work. Conv(·) is a 1D
convolution function. T(·) is the transform gate in the
Highway network, while σ denotes the Sigmoid function.
The carry gate, C(·), is defined as 1 − T(·) for the sake of
simplicity. We employ a residual connection to add the input X
to output y of the improved Highway network, obtaining the
final output.
2.4. Prediction Module. The primary function of the

interaction module is to predict the binding affinity score for a
drug−target pair, based on the deeply integrated representa-
tions of the drug and protein. The interaction module
comprises two feed-forward layers and a final linear layer.
Each feed-forward layer is composed of a linear layer, followed
by normalization, dropout, and a ReLU activation function.
These layers are used to decode the interaction information R
obtained from the feature fusion module. The final linear layer
generated the predicted binding affinity score

* = ·y W RFFN( , 2)L (13)

where WL represents the weight parameters in the linear layer,
and y* denotes the predicted binding affinity score of the
drug−target pair.

3. RESULTS AND DISCUSSION
In this section, we experiment with our proposed model,
BTDHDTA, on three public data sets�Davis, KIBA, and
Metz. We use Concordance Index (CI), Rm2 , Pearson, and
Spearman metrics to assess the performance of our model in
comparison to baseline models. In DTA prediction, CI and Rm2
are the most commonly used and primary evaluation metrics,
while Pearson and Spearman correlation coefficients are used
to assess the correlation between the predicted values and the
actual values.
3.1. Benchmark Data Set. We test and evaluate our

model on three publicly available benchmark data sets: the
Davis kinase data set,31 the KIBA data set,32 and the Metz data
set.33 These data sets are widely used in prior studies for DTA
prediction.

3.1.1. Davis Data Set. The Davis data set includes 30,056
interactions among 442 proteins and 68 drugs, with binding
affinities represented by dissociation constant (Kd) values. To
manage numerical stability and ensure appropriate scaling, we
transformed the Kd values into the logarithmic domain to
obtain pKd values.8,12 This transformation is done by
computing the negative logarithm of the Kd values, as shown
in the following equation

i
k
jjj y

{
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K
e

log
1 9d

d
10 (14)

3.1.2. KIBA Data Set. The KIBA data set is derived using the
KIBA method, which combines various inhibitor metrics, such
as Ki, Kd, and IC50, to compute KIBA scores. These scores
quantify the biological activity of kinase inhibitors and are used
as measures of the binding affinity. The KIBA data set
encompasses 118,254 interactions involving 229 proteins and
2111 drugs.

3.1.3. Metz Data Set. The Metz data set is a public resource
comparable in size to the Davis data set. It is widely used in the
fields of deep learning and drug discovery. The Metz data set
contains 1423 drugs, 170 proteins, and 35,259 interactions.
Detailed information about the Davis, KIBA, and Metz data
sets is summarized in Table 1.

3.2. Evaluation Metrics. Since our task is a regression
task, we use Mean Squared Error (MSE) as the loss function to
optimize the weights of the BTDHDTA model, aiming to
minimize the discrepancy between the predicted values Pi and
the true values Yi. The MSE is calculated as follows
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(15)

We also use the Root Mean Square Error (RMSE) to
measure the prediction error of the model. Combining MSE
and RMSE offers a more comprehensive and clearer error
analysis.
The CI34 is used as an evaluation metric for model

performance. The CI measures the probability of consistency
between the true values and predicted values. It is defined as
follows

=
>Z

h b bCI
1

( )i j
i j (16)

where bi is the predicted value for affinity δi, bj is the predicted
value for affinity δj, Z is the normalization constant, and h(x)
denotes the step function5
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To evaluate the external predictive performance of the
model, we also use Regression toward the mean (Rm2 ) index.
This metric is commonly employed in regression-based QSAR
models to evaluate how well the model predicts new, unseen
data35

=r r r r(1 )m
2 2 2

0
2

(18)

where r is the squared correlation coefficient with intercept,
and r0 is the squared correlation coefficient without intercept.
A model is deemed acceptable if its Rm2 value on the test set
exceeds 0.5.
There are two metrics that measure the correlation between

the true values and the predicted values, namely, the Pearson’s
correlation coefficient (Pearson) and the Spearman’s rank
correlation (Spearman). Pearson quantifies the linear correla-
tion between two continuous variables, while Spearman
measures the nonlinear correlation between two ranked
variables (nonparametric).
3.3. Experimental Setup. We validated the performance

of our model on the benchmark data sets Davis, KIBA, and

Table 1. Summary of the Three Datasets

data set drugs proteins interactions train set test set

Davis 68 442 30,056 25,046 5010
KIBA 2111 229 118,254 98,545 19,709
Metz 170 1423 35,259 28,207 7052
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Metz. Using the same data splitting approach as GraphDTA,17

we partitioned the entire sample space into training and test
sets with a 5:1 ratio. To prevent the model from stagnating, we
employed a dynamically adjusted learning rate based on the
loss values during training. Based on the parameter ranges
reported in the literature,21,22,29,40 the suitable values for
parameters such as convolution kernel size, the number of
convolution kernels, and the number of heads in multihead
attention were determined through parameter selection
experiments. The Davis data set was trained on a single
NVIDIA 3090 GPU, while the KIBA data set and the Metz
data set were trained on a single NVIDIA 4090 GPU. Table 2
summarizes the optimal parameter settings used for model
training.

3.4. Experiment 1: BiGRU for Input Data Processing.
To address the problem that token embedding and position
embedding cannot provide contextual relationships for the
original input sequences, we use BiGRU after the two
embedding methods. BiGRU can capture rich contextual
information on input sequences instead of just static
information. This enables the model to learn complex
sequence features.
To assess the impact of data processing using BiGRU on

model prediction performance, we conducted a controlled
experiment. The MRBDTA model served as the baseline for
the proposed BTDHDTA method. By incorporation of BiGRU
into the baseline, an experimental model was created. Table 3
displays the performance metrics of both baseline and the
experimental model on the Davis and KIBA data sets. The
results indicate that adding BiGRU improved the CI metric by
0.004 on the Davis data set and by 0.007 on the KIBA data set;

the Rm2 metric increased by 0.01 on the Davis data set and by
0.007 on the KIBA data set. The Pearson and Spearman
metrics both improved on the two data sets, with increases of
0.008 and 0.005 on the Davis data set and 0.011 on the KIBA
data set. Additionally, the MSE metric decreased by 0.01 on
the Davis data set and by 0.013 on the KIBA data set. The
results show that using BiGRU to capture contextual
information on the input data improves the performance of
subsequent feature extraction, with a slightly better effect
observed on the KIBA data set compared to the Davis data set.
3.5. Experiment 2: Effects of Dilated-CNN in the

Feature Extraction Module. Although the Trans block,
comprising Linear-Trans encoders and two Trans encoders,
effectively captures global features from drug and protein
inputs, it may not be as effective at extracting local features,
such as binding sites, as convolutional methods. Therefore, we
incorporated a Dilated-CNN module into our model.
In this subsection, we evaluated whether the Dilated-CNN

module, based on three layers of dilated convolution, could
provide local feature information to complement the
deficiencies of the Trans block in this regard. The comparison
model for this subsection is the experimental model from
Experiment 1, with the addition of Dilated-CNN to create the
experimental model. Performance comparisons between these
two models on the Davis and KIBA data sets are shown in
Table 4. The experimental model outperforms the comparison
model on both data sets. On the KIBA data set, despite no
noticeable change in MSE, the RMSE still decreased by 0.001,
the Rm2 metric improved, and the model predicted more
accurately in the sample space. This suggests that the Dilated-
CNN module effectively captures local feature information
from the spatial binding sites of drug−target pairs, enhancing
overall feature extraction.
Furthermore, this effect becomes more pronounced with

increasing data volume.
3.6. Experiment 3: Effects of Feature Fusion. To

validate the effects of the proposed drug−target fusion module,
we conducted ablation experiments on the Davis and KIBA
data sets and compared them with several popular fusion
methods on both data sets. The results are shown in Table 5.
First, we conducted ablation experiments to evaluate the

effects of our fusion module. The results show that models
incorporating our fusion module outperformed those using
simple concatenation methods across all metrics. This indicates
that our fusion module is more adept at capturing the intricate
interactions between the drug and protein features. Further-
more, we replaced our fusion module with alternative
attention-based fusion methods, including Cross Atten-
tion,36,37 Mutual Attention,38 and the fusion module from ref
28, and then compared their performance. Our fusion method
outperforms these alternatives across all metrics. In fact, the
performance of these attention-based fusion methods is
inferior to that of simple concatenation, suggesting that more

Table 2. Summary of the Parameters for Davis, KIBA, and
Metz Data Sets

parameter Davis/KIBA/Metz

max length of drug 85/100/100
max length of protein 1200/1000/1200
embedding size 128
layers of BiGRU 2
heads in multihead attention 4
number of filters in Dilated-CNN 32 64 128
filter size of drug 4
filter size of protein 12
dilation rates of Dilated-CNN 1 2 4
layers of CNN or Linear in fusion module 2
layers of fusion module (N) 1
batch size 64
epoch 400/800/500
optimizer Adam
learning rate 0.0001
activation function ReLU

Table 3. Performance of BiGRU on the Davis and KIBA Data Setsa

data set method CI Rm
2 Pearson Spearman RMSE MSE

Davis baseline 0.898 0.714 0.853 0.712 0.467 0.218
+BiGRU 0.902 0.724 0.861 0.717 0.456 0.208

KIBA baseline 0.887 0.773 0.887 0.879 0.380 0.145
+BiGRU 0.894 0.780 0.898 0.890 0.363 0.132

aThe baseline is the MRBDTA model, and the experimental model is +BiGRU.
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complex fusion approaches may not be suitable for handling
intricate and highly complementary feature representations.
Since the feature vectors obtained after feature extraction
contain both global and local features of two types, which are
highly complementary, attention-based fusion methods might
inadvertently learn unnecessary relationships during modality
interaction. This further validates the superiority of our fusion
module in effectively managing drug−protein interactions and
handling complex feature representations.

3.7. Experiment 4: Comparison to Other Advanced
Methods. For the Davis and KIBA data sets, we compared our
model with ten methods (DeepDTA,12 DeepCDA,22

MATT_DTI,39 DeepFusionDTA,40 ELECTRA-DTA,41 Bi-
Comp-DTA,16 SSM-DTA,42 MFR-DTA,43 ImageDTA,44 and
TC-DTA49). Tables 6 and 7, respectively, list the results of
these models in predicting binding affinities on the Davis and
KIBA data sets. For the Metz data set, we compared our model
with three methods (DeepDTA,12 MRBDTA,21 and Modality-

Table 4. Performance of the Three-Layer Dilated Convolution Module (Dilated-CNN) on the Davis and KIBA Data Setsa

data set method CI Rm
2 Pearson Spearman RMSE MSE

Davis baseline + BiGRU 0.902 0.724 0.861 0.717 0.456 0.208
+Dilated-CNN 0.905 0.728 0.866 0.720 0.448 0.200

KIBA baseline + BiGRU 0.894 0.780 0.898 0.890 0.364 0.132
+Dilated-CNN 0.897 0.794 0.898 0.893 0.363 0.132

aThe comparison model is the baseline + BiGRU, and the experimental model is the +Dilated-CNN.

Table 5. Performance of the Fusion Module on the Davis and KIBA Data Setsa

data set method interaction CI Rm
2 Pearson Spearman RMSE MSE

Davis baseline + BiGRU + Dilated-CNN concatenation 0.905 0.728 0.866 0.720 0.448 0.200
cross attention 0.889 0.642 0.841 0.697 0.490 0.240
mutual attention 0.891 0.693 0.855 0.698 0.467 0.218
fusion in ref 28 0.894 0.690 0.851 0.703 0.472 0.223

BTDHDTA fusion module 0.907 0.733 0.865 0.725 0.449 0.201
KIBA baseline + BiGRU + Dilated-CNN concatenation 0.897 0.794 0.898 0.893 0.363 0.132

cross attention 0.881 0.696 0.881 0.870 0.396 0.157
mutual attention 0.892 0.770 0.891 0.884 0.375 0.141
fusion in ref 28 0.893 0.767 0.893 0.885 0.372 0.139

BTDHDTA fusion module 0.898 0.805 0.901 0.893 0.357 0.127
aThe comparison model is the baseline + BiGRU + Dilated-CNN, and BTDHDTA is our complete model, which adds the Fusion module to the
comparison model.

Table 6. Our Model’s Test Results on the Davis Data Set Compared to Other Advanced Methods

method CI Rm2 MSE RMSE Pearson Spearman

DeepDTA 0.878 0.630 0.261 0.511 0.846 0.690
DeepCDA 0.891 0.649 0.248 0.498 0.857 0.716
MATT_DTI 0.891 0.683 0.227 0.526
DeepFusionDTA 0.887 0.253 0.503
ELECTRA-DTA 0.897 0.671 0.238 0.488 0.844
BiComp-DTA 0.904 0.696 0.237 0.487
SSM-DTA 0.890 0.219 0.468
MFR-DTA 0.905 0.705 0.221 0.470
ImageDTA 0.901 0.215 0.464
TC-DTA 0.886 0.670 0.231 0.481
ours 0.907 0.733 0.201 0.449 0.865 0.725

Table 7. Our Model’s Test Results on the KIBA Data Set Compared to Other Advanced Methods

method CI Rm2 MSE RMSE Pearson Spearman

DeepDTA 0.863 0.673 0.194 0.440 0.848 0.828
DeepCDA 0.889 0.682 0.176 0.420 0.855 0.836
MATT_DTI 0.889 0.756 0.150 0.387
DeepFusionDTA 0.876 0.176 0.420
ELECTRA-DTA 0.889 0.727 0.162 0.402 0.879
BiComp-DTA 0.891 0.757 0.167 0.409
SSM-DTA 0.895 0.154 0.392
MFR-DTA 0.898 0.789 0.136 0.369
ImageDTA 0.886 0.147 0.383
TC-DTA 0.877 0.734 0.177 0.421
ours 0.898 0.805 0.127 0.357 0.901 0.893

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c08048
ACS Omega 2025, 10, 2020−2032

2027

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c08048?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


DTA5). The comparison results are listed in Table 8. These
selected methods are all sequence-based methods, do not
involve structural information, and are all representative
methods in the field of DTA prediction.
As shown in the tables, our model outperforms most

sequence-based methods. Specifically, on all data sets, our
model outperforms the other comparison models in most
metrics. The CI metric improved to 0.907 and 0.898,
respectively, reaching the best on the Davis data set and
equaled to the MFR-DTA model on the KIBA data set. The Rm2
metric improved to 0.733 and 0.805, respectively, higher than
the other models. And the Pearson metric reached above 0.9
on the KIBA data set. On the Metz data set, our model also
outperforms other advanced methods across all metrics.
To statistically evaluate the significant improvement of our

method, the paired t-test was utilized at a significant level of
0.05. On all data sets and metrics, the P-values of our model
and the compared methods are all below 0.01, lower than the
significance level of 0.05. This test indicates that our method
outperforms other advanced methods. In particular, compared
to the baseline method MRBDTA, the P-values are below 0.01
on the Davis data set and below 0.001 on the KIBA and Metz

data sets, further demonstrating the significance of the
performance improvement.
We also designed a visualization experiment to analyze the

distribution between the predicted affinity values and ground
truths of our model and compared it with the baseline
MRBDTA. First, a scatter plot and a frequency histogram are
used to illustrate the deviation between predicted and true
values. Generally, the more points concentrated on the red
dashed line y = x mean the more accurate the model’s
predictions and the better performance of the method. Figure
2 shows the scatter plots and frequency histograms of true and
predicted values for our model and the baseline MRBDTA on
three data sets. The points predicted by the BTDHDTA
method are more concentrated around the regression line than
those of the MRBDTA method, with fewer outliers. This
indicates that the BTDHDTA model has excellent predictive
capability and robustness. Figure 3 shows the kernel density
estimate plots of the affinity between true and predicted values.
In the kernel density plots, the more the two color graphics
coincide, the closer the data distribution between predicted
and true values. We calculated the area of overlap for the two
models, with BTDHDTA achieving overlap areas of 0.9099,

Table 8. Our Model’s Test Results on the Metz Data Set Compared to Other Advanced Methods

method CI Rm2 MSE RMSE Pearson Spearman

DeepDTA 0.815 0.678 0.286 0.535 0.835 0.792
MRBDTA 0.812 0.687 0.281 0.530 0.834 0.786
modality-DTA 0.794 0.281 0.530
ours 0.826 0.724 0.253 0.503 0.854 0.813

Figure 2. Visualization of the scatter plots and frequency histograms of the predicted affinity values and ground truths for (a) MRBDTA and (b)
BTDHDTA methods on the Davis, KIBA, and Metz data sets. The red dashed line represents the regression line.
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0.9528, and 0.8920 on the Davis, KIBA, and Metz data sets,
respectively, while MRBDTA achieved overlap areas of 0.9005,
0.9412, and 0.8816. This demonstrates that the values
predicted by the BTDHDTA model better reflect the true
DTA.

4. CASE STUDY
To demonstrate the effectiveness of the BTDHDTA model in
realistic scenarios, we employed drug repurposing, a novel
strategy for drug discovery. Due to the global spread of the
new coronavirus (SARS-CoV-2) in recent years, finding
effective treatments has become an urgent task. Drug
repurposing, which involves using computational methods to
apply FDA-approved drugs or compounds that have passed
clinical trials to new diseases or indications, is considered a
potential approach for discovering treatments for the new
coronavirus.45,46 In this case study, our trained model was used
to predict the binding affinity scores between 3137 FDA-
approved drugs and six SARS-CoV-2 replication-related
proteins.
According to previous studies,47,48 we extracted the FASTA

sequences of six SARS-CoV-2 replication-related proteins from
the National Center for Biotechnology Information (NCBI)
database. These proteins contain 3C-like proteinase, RNA-
dependent RNA polymerase, helicase, 3′−5′ exonuclease,
endoRNase, and 2′-O-ribose methyltransferase. Based on the
literature,39 we obtained the SMILES sequences for 3137
FDA-approved drugs, including 58 antiviral drugs. We then
input these SMILES and protein sequences into the

BTDHDTA model, trained on the KIBA data set, to predict
the KIBA scores as binding affinities. The 3137 drugs were
ranked based on their predicted binding affinities. To evaluate
our model, we compared the ranking predictions to those from
the MRBDTA model, ensuring that the hyperparameters and
some internal settings of the MRBDTA model were consistent
with ours. Our observations show that BTDHDTA can predict
more antiviral drugs and rank them higher (see Table 9).
Specifically, when using the KIBA scores as the binding affinity,
BTDHDTA identified 22 antiviral drugs among the top 200,
compared to 18 predicted by MRBDTA. For SARS-CoV-2
replication-related proteins, except for the 3C-like proteinase,
BTDHDTA predicted as many or more antiviral drugs than
MRBDTA and ranked them higher. Overall, these results
indicate that our BTDHDTA model performs better than that
of MRBDTA in drug repurposing.
Our predicted results are theoretical outcomes for the drug

repurposing task and require validation through specific
biological experiments. Notably, among the binding affinity
predictions for all six SARS-CoV-2-related proteins, Saquinavir
and Indinavir were both predicted as high-affinity drugs,
ranking very high. This suggests that these two drugs could
potentially be effective treatments against the new coronavirus.
Furthermore, Remdesivir, which was predicted by BTDHDTA,
has already been approved by the FDA and is the first drug
authorized for treating the new coronavirus. Therefore, we
hope that our work can provide some insights for new drug
discovery and assist in the treatment of patients infected with
the new coronavirus.

Figure 3. Visualization of the kernel density estimate plots of the predicted affinity values and ground truths for (a) MRBDTA and (b) BTDHDTA
methods on the Davis, KIBA, and Metz data sets.
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5. CONCLUSIONS AND FUTURE WORKS
In this study, we investigate the problem of DTA prediction
based on sequence representations and propose our DTA
prediction model, BTDHDTA. Our model employs BiGRU
after token embedding and position embedding to capture
temporal relationships of the sequence representation. Based
on the transformer encoder and dilated convolution, we
construct a Trans block and a Dilated-CNN block,
respectively. These two blocks are used to obtain rich feature
representations of drugs and proteins. To effectively fuse the
drug and protein representations that contain both local and
global features, we employ a fusion module combining CNN
with the Highway connection. The fusion module can regulate
the flow of fused information and learn the relationships
between drugs and proteins.
We test our model’s performance on three public data sets

and experimentally validated the effectiveness of each module.
The results reveal the following key insights: (i) Capturing the
temporal information on drug and target sequences is
beneficial for the feature extraction module to extract key
features from the sequences. (ii) Combining global features
and multiscale local features, the model can learn more
comprehensive and rich patterns from different levels of
information. (iii) Modeling efficient feature fusion methods
can learn interactions between drugs and proteins effectively,
further improving the performance of DTA prediction. The
BTDHDTA algorithm designed in this work achieves the best
performance in most metrics and can accurately predict DTA,
contributing to the sequence-based DTA prediction. More-
over, we apply the trained model to predict the binding
affinities between six SARS-CoV-2 replication-related proteins
and 3137 FDA-approved drugs. Two highly potential antiviral

drugs are identified, providing valuable insights into the
development of treatments against the novel coronavirus.
Although our BTDHDTA model has achieved good results

in sequence-based DTA prediction, there is still much room for
improvement. First, the BTDHDTA model currently focuses
only on sequence information, and it is unclear whether it is
still valid for structural information. Second, the model has not
been applied to other prediction fields. Nowadays, studies
targeting the relationship between ncRNAs and drug targets
are getting more attention, and we hope to extend our model
to the field of small molecule-miRNA association prediction
(MMA) in future studies, a direction that has been strongly
supported by many existing works.50,51 The future direction of
DTA prediction focuses on two aspects: data imbalance issue
and model interpretability. The data imbalance issue often
leads to poor DTA prediction performance, while the “black
box” nature of deep learning makes the internal decision-
making process of the model difficult to understand, which
affects the acceptance of the results. Therefore, addressing the
issue of data imbalance and enhancing model interpretability
are also the focus of our future work.
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Table 9. For the Six SARS-CoV-2 Replication-Related Proteins, the Antiviral Drugs in Top 200 with Superior Binding Affinity
Predicted by BTDHDTA and MRBDTA Based on KIBA Scores

proteins in SARS-CoV-2 BTDHDTA MRBDTA

antiviral drug KIBA score rank of 3137 drugs antiviral drug KIBA score rank of 3137 drugs

3C-like proteinase saquinavir 13.4380 20 Oseltamivir acid 12.4670 28
indinavir 12.2620 160 Etravirine (TMC125) 12.3957 33

Nelfinavir 11.7873 132
VX-222 (VCH-222) 11.6982 190

RNA-dependent RNA polymerase saquinavir 12.9645 31 Oseltamivir acid 12.1391 134
indinavir 12.2352 104 Amprenavir (agenerase) 12.0528 198
Zanamivir 12.0702 132
Remdesivir 11.9693 177

helicase saquinavir 13.2245 7 Oseltamivir acid 12.2239 37
indinavir 12.1834 69 Etravirine (TMC125) 11.8820 118
Telaprevir (VX-950) 12.0382 94 Nelfinavir Mesylate 11.7929 162
Nevirapine 11.9108 121
MK-5172 11.7260 185

3′-to-5′ exonuclease saquinavir 13.0063 11 Etravirine (TMC125) 12.4863 63
indinavir 12.3474 38 Telaprevir (VX-950) 12.3502 99
Nevirapine 11.8380 134 Oseltamivir acid 12.2393 155

endoRNase saquinavir 12.6577 18 Oseltamivir acid 12.4711 47
indinavir 11.9128 103 Nelfinavir Mesylate 12.0187 126
Telaprevir (VX-950) 11.7849 142 Penciclovir 11.9203 177
Lopinavir 11.6969 180 Telaprevir (VX-950) 11.9165 180

2′-O-ribose methyltransferase saquinavir 12.7893 15 Etravirine (TMC125) 12.3507 54
indinavir 12.1495 53 Oseltamivir acid 12.3374 57
Nevirapine 11.8254 104
Telaprevir (VX-950) 11.6989 147
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(12) Öztürk, H.; Özgür, A.; Ozkirimli, E. Deepdta: deep drug−target
binding affinity prediction. Bioinformatics 2018, 34 (17), i821−i829.
(13) Zhao, Q.; Duan, G.; Yang, M.; Cheng, Z.; Li, Y.; Wang, J.
Attentiondta: drug−target binding affinity prediction by sequence-
based deep learning with attention mechanism. IEEE/ACM Trans.
Comput. Biol. Bioinf. 2023, 20 (2), 852−863.
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