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Globally, lung cancer is the most commonly diagnosed cancer and carries with it the
greatest mortality rate, with 5-year survival rates varying from 4–17% depending on stage
and geographical differences. For decades, researchers have studied disease
mechanisms, occurrence rates and disease development, however, the mechanisms
underlying disease progression are not yet fully elucidated, thus an increased
understanding of disease pathogenesis is key to developing new strategies towards
specific disease diagnoses and targeted treatments. Circular RNAs (circRNAs) are a class
of non-coding RNA widely expressed in eukaryotic cells, and participate in various
biological processes implicated in human disease. Recent studies have indicated that
circRNAs both positively and negatively regulate lung cancer cell proliferation, migration,
invasion and apoptosis. Additionally, circRNAs could be promising biomarkers and
targets for lung cancer therapies. This review systematically highlights recent advances
in circRNA regulatory roles in lung cancer, and sheds light on their use as potential
biomarkers and treatment targets for this disease.
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INTRODUCTION

Worldwide, lung cancer is the most commonly diagnosed cancer with the highest mortality (1). Every
year, approximately 1.82 million people are diagnosed, and 1.6 million die from the disease (2). The 5-
year survival rate varies from 4–17% depending on stage and geographical differences (3).
Approximately 85% of lung cancers are non-small cell lung cancers (NSCLCs), mainly including
lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) (4, 5). For decades,
researchers have studied disease mechanisms, occurrence rates and disease development, however, the
mechanisms underlying disease progression are not yet fully elucidated, thus an increased
understanding of disease pathogenesis is key to developing new strategies towards specific disease
diagnoses and targeted treatments. In recent years, increased evidence has suggested that abnormal
circular RNA (circRNA) expression is associated with several diseases, e.g., cardiovascular disease (6),
osteoarthritis (7) and different cancers, including prostate (8), glioma (9) and breast cancer (10), etc
However, the precise functions of circRNAs in lung cancer remain unclear.
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CircRNAs were first discovered in the 1970s, and are a class of
non-coding RNAs widely expressed in eukaryotic cells (11–15).
Originally, they were believed to be rare products arising from
mRNA splicing errors (15), however the first observations using
electron microscopy in 1979 suggested these RNAs existed as
circular forms (16). In the 21st century, ubiquitous circRNA
expression detection has been greatly facilitated by RNA
sequencing (RNA-seq) technologies and bioinformatics, which
have allowed researchers to investigate millions of short
sequencing reads representing all RNA isoforms. CircRNAs are
believed to be differentially expressed, and appear to play
opposing roles in lung cancer etiology. For instance,
circFGFR1 (17) is upregulated in NSCLC and promotes lung
cancer progression, while circPTK2 (18) and circNOL10 (19) are
downregulated and inhibit lung cancer development. Hence, this
review comprehensively encompasses the latest contemporary
research, and focuses on the emerging, divergent roles of
circRNAs in lung cancer. A basic overview of circRNAs, their
role in lung cancer, and the limitations of current research
are explored.
CircRNA OVERVIEW

CircRNAs are covalently-closed molecules lacking 5’ to 3’ ends,
polarity and a polyadenylated tail, with single-stranded
transcripts derived from pre-mRNA (20). These characteristics
provide them a higher tolerance to RNA exonucleases. The
molecular structure is highly stable, they are highly abundant
and incredibly diverse, they exhibit tissue specific expression
patterns, and they are known to be involved in cellular
differentiation and pluripotency (21–23). The majority of
reported circRNAs are non-coding, while some have been
reported to encode polypeptides or proteins (24). CircRNAs
are divided into four categories, based on their origin (Figure 1)
(25); 1) circRNAs derived from exons, exonic circRNAs
(ecircRNAs), 2) circular intronic RNAs (ciRNAs) derived from
introns, 3) exon-intron circRNAs (ElciRNAs) derived from a
combination of exons and introns, and 4) intergenic circRNAs
(26). Several hypotheses have been proposed for circRNA
biogenesis (27), amongst which alternative splicing, reverse
complementary intronic sequence paring, or RNA binding
protein regulation are the most accepted.

Emerging evidence has suggested that circRNAs participate in
various cellular biological processes including cell proliferation,
differentiation, metastasis, senescence, apoptosis, etc (28), and
are associated with lung cancer occurrence and development
(29). CircRNAs functions primarily through the following five
mechanisms; 1) act as competing endogenous RNA (ceRNA) or
microRNA (miRNA) molecular sponges, 2) transcriptional
regulation, 3) interacting with RNA binding proteins,
4) modulating miRNA stability and, 5) peptide translation (25,
30). Of these mechanisms, it is accepted that circRNAs act as
miRNA sponges to regulate gene expression, and similarly, may
have diagnostic or therapeutic potential for lung cancer
treatment (31).
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THE ROLE OF CircRNAs IN LUNG
CANCER

CircRNAs Regulate Lung Cancer Cell
Proliferation, Migration and Invasion
Cancer Associated Signaling Pathways
The Wnt/b-Catenin Pathway
Wnt activation has been observed in colorectal (32), breast (33)
and lung cancer (34) and contributes to tumor onset and
progression (35). CircRNAs are believed to promote or inhibit
lung cancer cell proliferation, migration and invasion by
regulating activation of the Wnt/b-catenin dependent or
canonical pathway. CircRNAs regulating this pathway are
summarized (Table 1).

CircRNAs overexpressed in lung cancer cells and tissue drive
in vitro cancer progression. For example, Liu et al. indicated that
the circ_0007142/miR-186/FOXK1 axis played an important role
in LUAD cell progression by activating the Wnt/b-catenin
signaling pathway (36). Ding et al. observed that circ_001569
promoted cell proliferation by regulating the Wnt/b-catenin
pathway in LUAD cells, whereas elevated circ_001569
expression demonstrated a poorer survival outcome (37). Li
et al. also observed that hsa_circ_000984 exerted oncogenic
functions by modulating Wnt/b-catenin pathway activation in
LUAD cells (38). In other research, circRNA FOXP1 promoted
LUAD cell proliferation by regulating the miR-185-5p/Wnt1
signaling pathway (39).

In addition, the role of several circRNAs with oncogenic
functions in lung cancer mediated by the Wnt canonical
pathway, were also demonstrated in in vivo studies. For
instance, circ-SOX4 had oncogenic roles through the miR-
1270/PLAGL2 axis, and subsequently activated the WNT
signaling pathway in LUAD cells (40). In vivo data from this
study showed that tumor volume and weight of xenograft nude
mice were smaller in the circ-SOX4 silenced LUAD cell group
when compared with the negative control (NC) group. Another
study revealed that circ-SOX4 interacted with c-MYC by
activating the Wnt/b-catenin pathway in LUAD cells, with
circ-SOX4 down-regulating suppressed lung tumor-initiating
cell proliferation, self-renewal, migration and invasion (41).
Moreover, Yao et al. observed that circ_0001946 promoted
LUAD cell growth by sponging miR-135a-5p to upregulate
sirtuin 1 (SIRT1) expression (42). Moreover, in vivo
experiments demonstrated that knockdown of circ_0001946
markedly suppressed tumor growth in nude mice. SIRT1 is a
positive regulator of the Wnt/b-catenin signaling pathway
(48, 49).

Several circRNAs have been downregulated in NSCLC, and
appear to play an opposing role in lung cancer progression via
inactivation of the Wnt canonical pathway. Itchy E3 ubiquitin
protein ligase (ITCH) is a vital negative regulator of canonical
Wnt signaling (44). Wan et al. found that circ-ITCH acted as
sponge for oncogenic miR-7 and miR-214 to enhance ITCH
expression, and thus suppressed activation of Wnt/b-catenin
signaling (43). Tian et al. observed that hsa_circ_0043256 was
upregulated in cinnamaldehyde treated NSCLC cells, and
July 2021 | Volume 11 | Article 664290
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inhibited LUAD cell proliferation and induced apoptosis
through ITCH in LUAD cell lines (44). Mechanistically,
hsa_circ_0043256 functions as an miR-1252 sponge to directly
target ITCH and inhibit Wnt/b-catenin pathway (44).
Additionally, overexpressed hsa_circ_0007059 inhibited
epithelial-to-mesenchymal transition (EMT) expression of the
EMT proteins; vimentin, twist1 and zeb1, and elevated E-
cadherin expression by suppressing miR-378 (45). Western
blot assays revealed that overexpressed hsa_circ_0007059
inhibited Wnt3a, b-catenin and p-ERK1/2 expression in LUAD
cell lines. Xu et al. observed that circ-IGF1R overexpression
Frontiers in Oncology | www.frontiersin.org 3
inhibited LUAD migration and invasion via the miR-1270/
VANGL2 axis (46). VANGL2 is a Wnt signaling pathway
related gene, and circ-IGF1R overexpression downregulated
the Wnt pathway associated proteins, b‐catenin1 and vimentin
(46). Yao et al. indicated that circ_0006427 overexpression
effectively suppressed LUAD cell proliferation, migration and
invasion (47) by inactivating the Wnt/b-catenin signaling
pathway via miR-6783-3p sponging and DKK1 upregulation.

Based on these in vitro and in vivo studies, the Wnt pathway
appears to be an important signaling pathway for circRNAs in
regulating lung cancer progression, thus further exploration as a
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FIGURE 1 | Biogenesis, categories and functions of circRNAs. (A). reverse complementary intronic sequence paring; (B) RNA binding protein regulation;
(C) alternative splicing; (D). ecircRNAs; (E) ciRNAs; (F) ElciRNAs; (G) intergenic circRNAs; (H). act as ceRNA or miRNA molecular sponges; (I) interacting with RNA
binding proteins; (J) peptide translation; (K) transcriptional regulation; (L) modulating miRNA stability.
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clinical therapy target is warranted. While these mechanisms are
primarily via the canonical Wnt pathway, circRNA effects
towards non-canonical pathways (Wnt/Ca2+ pathway and
planar cell polarity pathway) are rarely studied, therefore these
pathways could potentially open up new exploratory avenues for
lung cancer research.

The Mitogen-Activated Protein Kinase (MAPK) Signaling
Pathway
MAPK cascades are key signaling pathways which regulate a
variety of cellular processes (e.g. proliferation, differentiation and
apoptosis) (50, 51), and include four signaling families: the MAPK/
extracellular signal-regulated kinase (ERK) family or the classical
pathway, Big MAP kinase-1 (BMK-1), c-Jun N-terminal kinase
(JNK) and p38 signaling families (52). Several circRNAs are
upregulated in lung cancer and participate in tumorigenesis via
MAPK signaling pathways. Chen et al. observed that
hsa_circ_0007580 sponged miR-545-3p and subsequently
inhibited protein kinase Ca (PKCA) to promote NSCLC cell
proliferation and invasion by activating p38/MAPK signaling
(53) . In a xenograft tumor model , downregulated
hsa_circ_0007580 inhibited NSCLC tumorigenesis by inactivating
p38/MAPK signaling. Moreover, circ_0074027 exerted oncogenic
properties in NSCLC cells via sponging miR‐185‐3p to upregulate
bromodomain‐containing protein 4 (BRD4) andMAPK‐activating
death domain containing protein (MADD) expression levels (54).
Zhang et al. found that hsa_circRNA_101237 promoted MAPK1
expression via miRNA-490-3p sponging, thereby affecting NSCLC
proliferation, migration and invasion, via its role as an important
onco-circRNA (55).

Interestingly, Wang et al. found that circ-ZKSCAN1
(hsa_circ_0001727) acted as a sponge for carcinogenic miR-
330-5p to increase the expression of family with sequence
similarity 83(FAM83)-member A, inhibit the MAPK signal
transduction pathway, and promote NSCLC progress (56).
Frontiers in Oncology | www.frontiersin.org 4
Overexpression of circZKSCAN1 significantly decreased JNK,
p38 and ERK expression in NSCLC cells (56). Accordingly, these
studies suggested that circRNAs promoted lung cancer
progression by activating MAPK signaling, except for circ-
ZKSCAN1, which exerted its oncogenic role by inhibiting
MAPK signal transduction.

The Nuclear Factor-kB (NF-kB) Signaling Pathway
Early studies revealed that the NF- kB signaling pathway played
important roles in cancer proliferation and apoptosis (57–59).
Evidence showed that circRNAs appeared to interact with
the NF- kB signaling pathway during lung cancer progression.
Liu et al. observed that circ_cMras, alpha-beta hydrolase
domain 5 (ABHD5) and adipose triglyceride lipase
(ATGL) were downregulated in LUAD tissue and cells (60).
Furthermore, the upregulation of circ_cMras inhibited LUAD
cell proliferation, migration and invasion, and inhibited in vivo
tumor growth via the ABHD5/ATGL axis, which targeted the
NF-kB signaling pathway.

Proteins Related to DNA Repair and RNA Splicing or
Translation
High Mobility Group (HMG) Proteins
The HMG of proteins, i.e., HMGA, HMGB and HMGN are non-
histone nuclear proteins, which modulate DNA repair efficiency
in all the major cellular pathways, i.e., nucleotide excision, base
excision, double-stand break and mismatch repair (61), but also
participate in cancer onset and progression (62–64). Studies have
indicated that circRNAs upregulated in NSCLC promote lung
cancer progression by positively influencing HMGA2 and
HMGB3 expression. For example, Xu et al. identified that
aspartate beta-hydroxylase (ASPH) RNA (circASPH/
hsa_circ_0084606) was regulated by HMGA2 overexpression,
by screening 6576 circRNAs using RNA-seq analysis (65).
CircASPH promoted tumor growth in LUAD cells by sponging
TABLE 1 | The circRNAs regulate lung cancer proliferation, migration and invasion via Wnt/b-catenin pathway.

NO. Year circRNA Level miRNA Target Gene Key Points of Investigation Ref

1 2020 circ_0007142 up miR-186 FOXK1 Promote LC progression by activating Wnt/b-catenin pathway via miR-186/
FOXK1 axis

(36)

2 2018 circ_001569 up – – Promote LC progression by activating Wnt/b-catenin pathway (37)
3 2019 hsa_circ_000984 up – – Promote LC progression by activating Wnt/b-catenin pathway (38)
4 2020 circRNA FOXP1 up miR-185-5p Wnt1 Promote LC progression by activating Wnt1 signaling via sponging miR-185-

5p
(39)

5 2020 circ-SOX4 up miR-1270 PLAGL2 Promote LC progression by activating Wnt/b-catenin pathway via miR-1270/
PLAGL2 axis

(40)

2020 – c-MYC Promote LC progression by activating Wnt/b-catenin pathway (41)
6 2019 circ_0001946 up miR-135a-5p SIRT1 Promote LC progression by activating Wnt/b-catenin pathway via miR-135a-

5p/SIRT1 axis
(42)

7 2016 circ-ITCH down miR-7/miR-214 ITCH Inhibit LC progression by inactivating Wnt/b-catenin pathway via miR-7 and
miR-214/ITCH axis

(43)

8 2017 hsa_circ_0043256 – miR-1252 ITCH Inhibit LC progression by inactivating Wnt/b-catenin pathway via miR-1252/
ITCH axis

(44)

9 2019 hsa_circ_0007059 down miR-378 – Inhibit LC progression by inactivating Wnt/b-catenin and ERK1/2 pathway (45)
10 2020 circ-IGF1R down miR-1270 VANGL2 Inhibit LC progression by inactivating Wnt/b-catenin pathway via miR-1270/

VANGL2
(46)

11 2019 circ_0006427 down miR-6783-3p DKK1 Inhibit LC progression by inactivating Wnt/b-catenin pathway via miR-6783-
3p/DKK1 axis

(47)
July 2021 | Volume 11 | Article 664
LC, lung cancer; SIRT1, sirtuin 1; ITCH, Itchy E3 ubiquitin protein ligase.
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miR-370 and abrogating miR-370-mediated inhibition of
HMGA2 (65). Li et al. also demonstrated that another
circRNA, circ_100565 promoted proliferation, migration and
invasion of NSCLC by upregulating HMGA2 via miR-506-3p
sponging (66). Moreover, circEPSTI1 aggravated in vitro NSCLC
progression by elevating HMGB3 expression via miR-145
sponging (67). Similarly, circEPSTI1 silencing restrained
NSCLC tumor growth in vivo (67). Zhou et al. found that
circRNA_102179 facilitated NSCLC proliferation, migration
and invasion via the miR-330-5p/HMGB3 axis (68).

The Trinucleotide Repeat Containing 6 (TNRC6 or
GW182) Family of Proteins
This family of proteins are core components of RNA interference
(RNAi) molecules, and consist of three paralogs, i.e., TNRC6A,
TNRC6B and TNRC6C (69). Argonaute and TNRC6 proteins,
which form the RNA-induced silencing complex, mediate the
fine-tuning of gene expression and are involved in several key
biological processes (70), thereby greatly influencing disease
development, especially cancer (71). The circRNAs, circABCC4
and circ0006916, were shown to interact with TNRC6 to
positively and negatively regulate lung cancer progression,
respectively. CircABCC4 was upregulated in LUAD and
promoted cell proliferation, migration and invasion via miR-
3186-3p sponging to upregulate TNRC6B (72). However,
Circ0006910 was downregulated in lung cancer cells and
tissue, and acted as a tumor suppressor in NSCLC via miR-
522-3p sponging, and inhibiting pleckstrin homology domain
and leucine rich repeat protein phosphatase 1 (PHLPP1) activity,
thus inhibiting cell proliferation (73). Similarly, TNRC6A may
also promote circ0006916 expression (73).

The MYC Family
The MYC oncogene family is dysregulated in > 50% of cancers,
and is frequently associated with poor prognosis and unfavorable
patient survival rates (74). The MYC oncogene encodes the
transcription factor, MYC, which triggers selective gene
expression amplification to promote cancer cell growth and
proliferation (75). Two circRNAs were upregulated in lung
cancer tissues and cell lines, with oncogenic roles that
positively regulated MYC expression. Hsa_circRNA_103809
promoted lung cancer cell proliferation and invasion by
promoting ZNF121 expression via miR-4302 sponging, and
thus elevated ZNF121 expression levels, subsequently
increasing MYC levels in lung cancer (76). Additionally, Zhang
et al. indicated that circRNA_010763 promoted NSCLC
proliferation, migration and invasion by sponging miR-715 to
modulate its inhibitory effects on oncogenic c-MYC (77).

The Forkhead Box Protein M1 (FOXM1)
FOXM1 is a critical proliferation-associated transcription factor
widely expressed during the cell cycle (78). In most cancers,
including lung cancer, FOXM1 is oncogenic in nature thanks to
its repeated upregulation, thereby generating a poor prognosis
for patients (79, 80). Data from two studies showed that
circRNAs upregulated in lung cancer tissue and cells,
promoted lung cancer progression by regulating FOXM1 via
Frontiers in Oncology | www.frontiersin.org 5
miRNA sponging. Cheng et al. suggested that elevated circTP63
promoted LUSC cell proliferation both in vivo and in vitro,
however, the ectopic expression of circTP63 exerted no
significant effects on LUSC migration and invasion (81).
Mechanistically, circTP63 overexpression promoted cell
progression from the G1/S to the G2/M phase, suggesting
increased cell cycle progression via sponging miR-873-3p to
upregulate FOXM1. This subsequently regulated expression of
the cell cycle related proteins, CENPA, histone H3 variant and
CENPB heterochromatin (81). Additionally, Lu et al. observed
that circHIPK3 overexpression promoted both cell proliferation
and invasion in vitro, and tumorigenesis and metastasis in vivo,
by sponging miR-149 and subsequently upregulating FOXM1
expression (82).

Moreover, a circRNA derived from FOXM1was closely
associated with NSCLC progression. Yu et al. indicated that
has_circ_0025039 was derived from exons 4 and 5 of FOXM1,
labeling it circFOXM1 (83). This circRNA was upregulated in
NSCLC tissue, potentially predicting an unfavorable overall
survival (OS) for NSCLC patients (83). These findings
suggested that circFOXM1 may have an oncogenic role in
NSCLC progression by influencing the expression of cell cycle-
related genes viamiR-614 sponging, and FAM83D upregulation.
Overall, these studies indicated that circRNAs promoting
FOXM1 expression or derived from FOXM1 itself, could
promote lung cancer progression, suggesting FOXM1 may
function as a new molecular target for lung cancer treatment.

Cancer Associated Biological Processes
The EMT Process
EMT is a biological process where non-motile epithelial cell
changes occur in a mesenchymal phenotype, but with invasive
capacities (84). This phenomenon has been well documented in
multiple biological processes, including embryogenesis, fibrosis,
tumor progression and metastasis (84, 85). The EMT process
plays a key role in the migration and invasion of malignant
tumors, including NSCLC (86). Several circRNAs are
upregulated in NSCLC, with oncogenic roles to positively
regulate in vitro EMT processes. For instance, circ-LDLRAD3
promoted proliferation and EMT in NSCLC cells by
downregulating miR-137, and subsequently upregulating
glutamine transporter solute carrier family A1 member 5
(SLC1A5) (87). Notably, SLC1A5 was identified as
participating in NSCLC progression and regulation, and
similarly, its inactivation inhibited NSCLC cell viability (88).
The circ_0012673 also facilitated LUAD proliferation and
invasion (89). Loss-of-function studies indicated that
circ_0012673 knockdown restricted proliferation, motility and
EMT, but induced apoptosis by targeting miR-320a, and
subsequently upregulating LIM domain kinase 1 in LUAD cell
lines (89). Li et al. also noted that hsa_circ_0079530 upregulation
promoted NSCLC cell migration and invasion by regulating
EMT processes (90). Liu et al. found that hsa_circ_0023404
affected the expression of EMT related proteins, by regulating the
miR-217/zinc finger E-box-binding homeobox 1 (ZEB1) axis,
and contributing to in vitro NSCLC cell growth (91).
July 2021 | Volume 11 | Article 664290
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Moreover, several in vivo and in vitro studies have also indicated
that circRNAs facilitate lung cancer progression by promoting
EMT processes. Qu et al. observed that hsa_circ_0020123
enhanced proliferation, migration and invasion, while inhibiting
in vitro NSCLC apoptosis, by suppressing miR-144 and
upregulating ZEB1 and EZH2, respectively (92). Further studies
also indicated that hsa_circ_ 0020123 knockdown inhibited
NSCLC growth and metastasis both in vitro and in vivo (92). In
their study, Chi et al. suggested that circPIP5K1A (Circ_0014130)
potentially functioned as an miR-600 sponge to facilitate NSCLC
proliferation and metastasis, by promoting hypoxia-inducible
factor (HIF)-1a and reversing the inhibitory effects of miR-600
on EMT-related proteins (93). Furthermore, in vivo studies further
illustrated that circPIP5K1A silencing suppressed tumor growth
and pulmonary metastasis (93). Wang et al. found that circP4HB
enhanced EMT processes in NSCLC via miR-133a-5p
sequestration, leading to the in vitro upregulation of vimentin,
and facilitating in vivo xenograft metastasis (94). Additionally,
hsa_circ_0007534 positively regulated cell migration and invasion
by affecting EMT in NSCLC cells, and promoting tumor growth in
nude mice (95), however the underlying hsa_circ_0007534
mechanisms have yet to be elucidated.

However, several circRNAs are downregulated in NSCLC,
and inhibit disease progression both in vitro and in vivo by
negatively regulating EMT processes. Wang et al. found that
hsa_circ_00008305 (circPTK2) acted as a sponge for miR-429/
miR-200b-3p, and was positively correlated with transcriptional
intermediary factor 1-g (TIF1-g) expression in human NSCLC
tissue (18). CircPTK2 overexpression augmented TIF1-g
expression, and inhibited TGF-b-induced EMT and NSCLC
cell invasion. In vivo studies showed that circPTK2
overexpression suppressed NSCLC cell metastasis (18).
CircPTPRA also suppressed EMT processes in NSCLC cell
lines and reduced in vivo metastasis in the murine xenograft
model, by sequestering miR-96-5p and upregulating Ras
association domain-containing protein 8 (RASSF8) (96).
These findings have provided new EMT-mediated insights into
the role of circRNAs in lung cancer.

Glycolysis
Glycolysis is the predominant energy producing pathway for
cancer cells under both aerobic and hypoxic conditions, and is a
biochemical fingerprint representing one of the “hallmarks of
cancer” (97). The abnormal expression of circRNAs in lung
cancer appears to influence glycolytic mechanisms (Figure 2).
Several circRNAs upregulated in NSCLC could positively
regulate glycolysis to promote disease progression. For
instance, Guo et al. observed that circMAGI3 functioned as a
sponge for miR-515-5p to promote its target gene, hepatoma-
derived growth factor (HDGF) expression, thereby accelerating
glycolytic mechanisms in NSCLC (98). Hong et al. found that
circSLC25A16 accelerated glycolysis and promoted NSCLC
proliferation by interacting with miR-488-3p and enhancing
HIF-1a expression, which transcriptionally activated lactate
dehydrogenase A (LDHA) (99). A study by Wu et al. indicated
that circ-ACACA promoted in vitro NSCLC proliferation,
Frontiers in Oncology | www.frontiersin.org 6
migration and glycolysis by negatively regulating miR-1183 to
activate the phosphoinositide 3-kinase/protein kinase B(PI3K/
PKB) pathway (100). Huang et al. observed that circ_0000735
overexpression enhanced NSCLC proliferation, migration,
invasion, and glycolysis by targeting the miR-940/bone
morphogenetic protein binding endothelial cell precursor-
derived regulator (BMPER, a secreted glycoprotein) axis (101).
Ding et al. reported that circ-MEMO1 elevated expression in
NSCLC patients was associated with a poor prognosis (102).
Elevated circ-MEMO1 levels accelerated cell proliferation, cell
cycle progression and aerobic glycolysis, and inhibited NSCLC
apoptosis via the miR-101-3p/KRAS axis (102). Equally, the
circRNA knockdown or silencing of these aforementioned
molecules also suppressed tumor growth effects in in vivo
xenograft assays.

Moreover, circRNA-ENO1 promoted glycolysis so as to
promote LUAD proliferation, migration and EMT processes
via the miR-22-3p/enolase 1 (ENO1) axis (103). Additionally,
also circ-ENO1 promoted tumor growth and metastasis in vivo.
Xiong et al. observed that circMYLK overexpression was closely
associated with a poor prognosis in NSCLC patients (104). At the
molecular level, circMYLK promoted glycolysis and NSCLC
proliferation by sponging miR-195-5p, and up-regulating the
expression of glucose transporter member 3 (GLUT3) (104).

However, distinct to the functionalities of these aforementioned
circRNAs, Zhang et al. observed that circCRIM1 and BTG anti-
proliferation factor 2 (BTG2) were downregulated, and miR-125b-
5p upregulated in LUAD tissue and cells (105). CircCRIM1
upregulation inhibited in vitro LUAD cell migration, invasion,
EMT processes and glycolysis by sponging miR-125b-5p to
promote BTG2 expression, and negatively affect in vitro tumor
growth (105). These studies demonstrated that circRNAs regulated
glucose metabolism during lung cancer, and are potential
therapeutic targets for the disease.

Other Mechanisms
In addition to the circRNA mechanisms summarized above,
circRNAsmay also function via other distinctmechanisms (Table 2).

Several circRNAs are upregulated in NSCLC, and exert
oncogenic roles during lung cancer (108–152). For instance,
the phosphatidylinositol 3-kinase-regulated protein kinase, Akt,
plays an important role in cancer initiation and progression
(164). Mammalian cells express three Akt isoforms (Akt1–3),
which are encoded by three distinct genes (164). Yao et al.
reported that circGFRA1 acted as an miR-188-3p sponge, to
regulate NSCLC proliferation via the PI3K/Akt signaling
pathway (106). Moreover, matrix metalloproteinases (MMPs)
play vital roles in many biological processes (165). In particular,
MMP-2 andMMP-9 are both implicated in NSCLC invasion and
tumor metastasis (166). A recent study indicated that circ-
CAMK2A (hsa_circ_0128332) up-regulated the expression
levels of fibronectin 1 by sponging miR-615-5p, thereby
increasing MMP-2 and MMP-9 expression levels to promote
LUAD metastasis (107).

In contrast, some circRNAs are downregulated in NSCLC
and have roles as cancer suppressors (154–163). For example,
July 2021 | Volume 11 | Article 664290
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Chen et al. observed that hsa_circ_100395 overexpression
dramatically inhibited in vitro NSCLC cell proliferation,
arrested cell-cycle progression and reduced cell migration and
invasion (153). Data from a flow cytometry (FACS) study
indicated that hsa_circ_100395 overexpression increased cells
arrested in G0/G1 phase, with fewer cells in S and G2/M
phase (153). Mechanistically, hsa_circ_100395 promoted
expression of transcription factor 21, also known as a
suppressor, by sponging miR-1228 in lung cancer (153). These
data exemplified the multi-mechanistic roles of circRNAs in lung
cancer progression.

CircRNAs Regulate Lung Cancer Cell
Death
Signal Transducer and Activator of Transcription
(STAT) Proteins
These proteins are cytoplasmic transcription factors implicated
in many cellular biological processes (167). Numerous
studies have reported that STAT overexpression enhances
carcinogenesis and affects prognosis in cancer patients (168),
including NSCLC (169, 170). Chen et al. investigated circHIPK3
mechanisms in regulating lung cancer cell death (171). Their
data indicated that autophagy was induced upon loss of
circHIPK3, via the miR124-3p-STAT3-PRKAA/AMPKa axis in
Frontiers in Oncology | www.frontiersin.org 7
STK11 mutant lung cancer cell lines (171). At the molecular
level, circHIPK3 negatively regulated miR124-3p expression and
subsequently upregulated STAT3 expression (171). Further
research has indicated that STAT3 silencing and inhibition
induced autophagy via the PRKAA/AMPKa pathway in STK11
mutant cells. A recent study provided evidence that silencing
circHIPK3 induced lung cancer cell death and apoptosis, by
sponging miR-124 and regulating miR-124 targets, including
SphK1, STAT3 and CDK4 proteins (172). Additionally, Wang
et al. showed that STAT3 activated circCCDC66 transcription,
and thereby promoted circCCDC66 expression in NSCLC cells,
and similarly circCCDC66 inhibited cell apoptosis via the
miR-33a-5p/KPNA4 axis in these cells (173). These studies
highlighted the key mechanistic interactions between circRNAs
and STAT3 in regulating lung cancer death.

B-Cell Lymphoma 2 (Bcl-2) and/or Bcl-2-Associated
X (Bax)
Bcl-2 and related cytoplasmic proteins are key regulators of
apoptosis, including apoptosis inhibitory mechanisms (174).
Bcl-2 functions as an oncogene not only by blocking apoptosis,
but also by blocking autophagy (175). Bax is a proapoptotic
protein which is an essential component of the intrinsic
apoptosis signaling pathway, thereby promoting apoptosis (176).
FIGURE 2 | The abnormal expression of circRNAs in lung cancer influencing glycolytic mechanisms.
July 2021 | Volume 11 | Article 664290
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TABLE 2 | The circRNAs regulate lung cancer proliferation, migration and invasion via other mechanisms.

NO. Year circRNA Level miRNA Target Gene Key Points of Investigation Ref

1 2020 circGFRA1 up miR-188-3p – Promote LC progression by activating PI3K/AKT signaling pathway
via sponging miR-188-3p

(106)

2 2019 circ-CAMK2A
(hsa_circ_0128332)

up miR-615-5p fibronectin 1 Promote LC progression by increasing MMP2 and MMP9 expression
via miR-615-5p/fibronectin 1 axis

(107)

3 2018 circMAN2B2 up miR-1275 FOXK1 Promote LC progression via miR-1275/ FOXK1 axis (108)
4 2020 circHIPK3 up miR-107 BDNF Promote LC progression via miR-107/ BDNF axis (109)
5 2019 circFOXM1 up miR-1304-5p PPDPF and

MACC1
Promote LC progression via miR-1304-5p/PPDPF/MACC1 axis (110)

6 2020 circ_0000376 up miR-1182 NOVA2 Promote LC progression via miR-1182/NOVA2 axis (111)
7 2019 circ_0000735 up miR-1179/-1182 – Promote LC progression via sponging miR-1179/-1182 (112)
8 2019 circ_0043278 up miR-520f ROCK1,CDKN1B,

and AKT3
Promote LC progression via sponging to increase ROCK1, CDKN1B,
and AKT3 expression

(113)

9 2018 circFGFR3 up miR-22-3p Gal-1 Promote LC progression by activating AKT and ERK1/2 signaling
pathways via smiR-22-3p/Gal-1 axis

(114)

10 2017 hsa_circ_0000064 up – – Promote LC progression by increasing casepase-3,-9,Bax,MMP-2
and MMP-9 expression

(115)

11 2020 circ_0020123 up miR-590-5p THBS2 Promote LC progression via miR-590-5p /THBS2 axis (116)
12 2019 circARHGAP10 up miR-150-5p GLUT-1 Promote LC progression via miR-150-5p/GLUT-1 axis (117)
13 2020 circ-ABCB10

(circRNA‐0008717)
up – KISS1 Promote LC progression by suppressing KISS1 (118)

2018 miR‐1252 FOXR2 Promote LC progression via miR‐1252/ FOXR2 axis (119)
2020 miR-584-5p E2F5 Promote LC progression via miR-584-5p/E2F5 axis (120)
2020 miR-217 – Promote LC progression via sponging miR-217 (121)

14 2019 circ_0003645 up miR1179 TMEM14A Promote LC progression via sponging miR-1179/ TMEM14A axis (122)
15 2018 circ_0016760 up miR1287 GAGE1 Promote LC progression via miR1287/GAGE1 axis (123)
16 2019 circ_0026134 up miR-1256/-1287 TCTN1 and

GAGE1
Promote LC progression via miR-1256 and -1287 / TCTN1 and
GAGE1 axis

(124)

17 2019 circ-CMPK1
(hsa_circ_0012384)

up miR-302e cyclin D1 Promote LC progression via miR-302e/ cyclin D1 axis (125)

18 2019 circZFR up miR-101-3p CUL4B Promote LC progression via miR-101-3p /CUL4B axis (126)
19 2018 hsa_circ_0012673 up miR-22 ErbB3 Promote LC progression via miR-22/ErbB3 (127)
20 2019 circ-RAD23B up miR-593-3p/-653-5p CCND2 and TIAM1 Promote LC progression via miR-593-3p/CCND2 and miR-653-5p/

TIAM1 axis
(128)

21 2020 circTIMELESS
(hsa_circ_0000408)

up miR‐136‐5p ROCK1 Promote LC progression via miR‐136‐5p/ ROCK1 axis (129)

22 2020 has_circ_ 0000326 up miR-338-3p RAB14 Promote LC progression via miR-338-3p/RAB14 axis (130)
23 2020 hsa_circ_0087862 up miR-1253 RAB3D Promote LC progression via miR-1253/RAB3D axis (131)
24 2018 circ-BANP up miR-503 LARP1 Promote LC progression via miR-503/LARP1 (132)
25 2020 circ_0016760 up miR-577 ZBTB7A Promote LC progression via miR-577/ZBTB7A axis (133)
26 2020 circ-ZNF609 up miR-1224-3p EVT1 Promote LC progression via miR-1224-3p/ETV1 axis (134)
27 2020 circ_POLA2 up miR-326 GNB1 Promote LC progression via miR-326/ GNB1 axis (135)
28 2018 hsa_circ_0003998 up miR-326 Notch1 Promote LC progression via miR-326/Notch1 axis (136)
29 2020 circMET up miR-145-5p CXCL3 Promote LC progression via miR-145-5p/CXCL3 (137)
30 2020 circBIRC6 up miR-145 FSCN1 and S6K1 Promote LC progression via miR-145/ FSCN1 and S6K1 axis (138)
31 2020 circRNA_103993 up miR-1271 ERG Promote LC progression via miR-1271/ERG axis (139)
32 2020 hsa_circ_0001588 up miR-524-3p NACC1 Promote LC progression via miR-524-3p /NACC1 (140)
33 2020 circDLGAP4 up miR-143 CDK1 Promote LC progression via miR-143/ CDK1 axis (141)
34 2020 circRNA_001010 up miR-5112 CDK4 Promote LC progression via miR-5112/CDK4 axis (142)
35 2018 circPRKCI up miR-545/-589 E2F7 Promote LC progression via miR-545 and -589/E2F7 axis (143)
36 2018 F-circEA-2a – – – Promote LC progression (144)
37 2019 F-circSR (1and 2) – miR-150-5p/-194-

3p/-515-5p
– Promote LC progression (145)

38 2019 circATXN7 up – – Promote LC progression (146)
39 2018 circFADS2

(hsa_circRNA_100833)
up miR-498 – Promote LC progression via sponging miR-498 (147)

40 2018 hsa_circ_0007385 up miR-181 – Promote LC progression via sponging miR-181 (148)
41 2020 circ_0014130 up miR-142-5p IGF-1 Promote LC progression via miR-142-5p/ IGF-1 axis (149)
42 2020 circ_0000284 up miR-377-3p PD-L1 Promote LC progression via miR-377-3p/PD-L1 axis (150)
43 2019 hsa_circ_0000211 up miR-622 HIF1-a Promote LC progression via miR-622/ HIF1-a axis (151)
44 2020 circRNA CDR1as up miR-219a-5p SOX5 Promote LC progression via miR-219a-5p/SOX5 axis (152)
45 2018 hsa_circ_100395 down miR-1228 TCF21 Inhibit LC progression via miR-1228/TCF21 axis (153)
46 2019 circCRIM1 down miR‐93/‐182 LIFR Inhibit LC progression via miR‐93 and miR‐182/LIFR axis (154)
47 2018 circ_0001649 down miR-331-3p/-338-5p – Inhibit LC progression via sponging miR-331-3p/-338-5p (155)
48 2020 circ_0072309 down miR-580-3p – Inhibit LC progression via sponging miR-580-3p (156)

(Continued)
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Several studies have indicated that some circRNAs upregulated
in lung cancer inhibit cell death, and promote disease
progression via upregulating Bcl-2 and/or downregulating
Bax expression. For instance, Wang et al. reported that circ
VANGL1 overexpression behaved as an oncogene by sponging
miR-195, and subsequently activating Bcl-2 to inhibit in vitro
NSCLC apoptosis (177). Western blot data confirmed that
circVANGL1 knockdown increased expression of proapoptotic
Bax, while it decreased the expression of antiapoptotic Bcl-2
in LUAD cells (177). Hsa_circ_0109320 inhibited apoptosis
in NSCLC by sponging miR-595 to upregulate E2F
transcription factor 7 expression, and subsequently up
regulating Bcl-2, downregulating Bax and cleaving caspase 3
in vitro (178).

Furthermore, several researches also identified the effects of
circRNAs on tumorigenesis in in vivo studies. For example, Geng
et al. observed that hsa_circ_0014130 had oncogenic roles in
NSCLC, and functioned as a ceRNA of miR-136-5p, to activate
Bcl-2 which inhibited NSCLC apoptosis (179). Qin et al. showed
that circPVT1 promoted NSCLC progression by regulating the
miR-497/Bcl-2 axis, and inhibiting apoptosis (180). Chen et al.
found that circPUM1 was significantly upregulated in both
LUAD cell lines and tissue, whereas circPUM1 silencing
impaired LUAD proliferation, migration and invasion abilities,
and increased apoptosis (181). Mechanistically, circPUM1 could
sponge miR-326 to promote expression of its downstream
proteins, Bcl-2 and cyclin D1 (181). Furthermore, these studies
also indicated that knockdown or silencing hsa_circ_0014130,
circPVT1 and circPUM1 inhibited in vivo lung cancer
tumorigenesis in subcutaneous xenograft mouse models
(179–181).

In contrast, circNOL10 was downregulated in lung cancer,
and inhibited lung cancer development both in vivo and in vitro
by promoting apoptosis (19). At the molecular level, circNOL10
promoted expression of the transcription factor sex comb on
midleg-like 1 (SCML1) by inhibiting transcription factor
ubiquitination, and thereby affecting humanin polypeptide
family regulation by SCML1. Ultimately, circNOL10 promoted
lung cancer cell apoptosis by increasing Bax and caspase-9
expression, and in comparison, decreasing Bcl-2 expression
(19). These data indicated that circRNAs regulated lung cancer
Frontiers in Oncology | www.frontiersin.org 9
apoptosis via members of the Bcl-2 family, which may be
exploited as potential therapeutic targets.

The Caspase Family
Caspases are a family of endoproteases, broadly classified by their
roles in apoptosis (caspase-3, -6, -7, -8, and -9 in mammals) and
inflammation (caspase-1, -4, -5, -12 in humans, and caspase-1,
-11, and -12 in mice) (182). Caspase dysregulation underlies
several human diseases, including cancer and inflammatory
disorders (182). CircRNAs upregulated in lung cancer have
played oncogenic roles by regulating caspases expression to
inhibit apoptosis. For instance, circRNA ecto-5’-nucleotidase
(circNT5E) silencing induced in vitro cell apoptosis by
increasing the activity of caspase-3 and the cleavages of poly
(ADP-ribose) polymerase, via miR-134 sponging (183).
Moreover, circRNA 100146 functioned as an oncogene in
NSCLC cells by interacting with the splicing factor SF3 family
(SF3B3, SF3B2 and SF3A1), and binding miR-361-3p and miR-
615-5p to regulate multiple downstream mRNAs (i.e., NFAT5,
COL1A1, TRAF3 and MEF2C) (184). In further xenograft nude
mouse model studies, surgically removed tumors were analyzed
and revealed decreased PCNA and p53 levels, and increased
caspase-9 and E-cadherin levels in the circRNA 100146 silenced
group (184). Yang et al. observed that circRNA TUBA1C
accelerated NSCLC progression by sponging miR-143-3p
(185). By conducting in vivo nude mice studies, these authors
also observed that circTUBA1C silencing increased the protein
expression of cleaved caspase-3 and Bax (185). These findings
indicated that circRNAs are implicated in regulating
caspase expression.

CircRNAs as Potential Biomarkers for
Lung Cancer
A biomarker is defined as “a characteristic that is objectively
measured and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacologic responses to a
therapeutic intervention” (186). Traditional clinical blood
biomarkers of lung cancer include; neuron-specific enolase (NSE),
progastrin-releasing peptide (pro-GRP), carcinoembryonic antigen
(CEA), CYFRA 21-1, cancer antigen 15 (CA125) and squamous cell
carcinoma antigen (SCC). These biomarkers facilitate differential
TABLE 2 | Continued

NO. Year circRNA Level miRNA Target Gene Key Points of Investigation Ref

49 2018 hsa_circ_0046264 down hsa-miR-1245 BRCA2 Inhibit LC progression via has_miR_1245/BRCA2 axis (157)
50 2020 circ-LARP4 down – SMAD7 Inhibit LC progression via upregulating SMAD7 (158)
51 2020 miR-21-5p Inhibit LC progression via sponging miR-21-5p (159)
52 2020 hsa_circ_11780 down miR-544a FBXW7 Inhibit LC progression via miR-544a/ FBXW7 axis (160)
53 2020 circ_EPB41L2 down miR-211-5p CDH4 Inhibit LC progression via miR-211-5p/ CDH4 axis (161)
54 2019 Circ-MTO1

(hsa_circ_0007874)
down miR-17 QKI-5 Inhibit LC progression by inactivating of Notch signaling pathway via

miR-17/QKI-5 axis
(162)

55 2020 circ-SLC7A6 down miR-21 – Inhibit LC progression via sponging miR-21 (163)
July 2021 | Volume 11 | Article 66
BDNF, brain-derived neurotrophic factor; PPDPF, pancreatic progenitor cell differentiation and proliferation factor; MACC1, metastasis-associated in colon cancer 1; Gal-1, galectin-1;
THBS2, Thrombospondin 2; GLUT-1, glucose transporter-1; KISS1, kisspeptin-1; FOXR2, Forkhead box 2; TMEM14A, transmembrane protein 14A; GAGE1, G antigen 1; TCTN1,
Tectonic1; CUL4B, cullin 4B; ErbB3, erb-b2 receptor tyrosine kinase 3; ROCK1, coiled‐coil containing protein kinase 1; ZBTB7A, Zinc finger and BTB domain containing 7A; GNB1,
G protein subunit beta 1; NACC1, nucleus accumbens-associated protein 1; CDK1, cyclin-dependent kinase 1; BRCA2, breast-cancer susceptibility gene 2; FBXW7, F-Box and WD
repeat domain containing 7; CDH4, Cadherin-4; IGF-1, insulin-like growth factor -1; TCF21, transcription factor 21.
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diagnoses, and determine prognostic and monitoring responses to
systemic lung cancer therapies. However, these biomarkers still lack
comprehensive sensitivity and/or specificity for early diagnoses.
Study data from Tarro et al. demonstrated that for early stage I
disease detection, NSCLC patients showed a sensitivity of 33.3% for
CA19-9, 11.1% for CYFRA 21-1 and CA125, and 0% for CEA;
whereas the specificity for all biomarkers was 100% (187).
Additionally, Li et al. observed that serum tumor marker sensitivity
was 28.46% for CEA, 19.51% for CA 125, 3.25% for NSE, 50.41% for
CYFRA 21‐1, 26.02% for SCC and 11.38% for pro‐GRP in lung
cancer patients (188).

Therefore in the future, more biomarkers which influence
clinical decision-making and improve patient care are required.
High numbers of circRNAs have exhibited aberrant expression
in human peripheral blood and tissue from lung cancer patients,
Frontiers in Oncology | www.frontiersin.org 10
which are easy to detect. Several studies have demonstrated
differential expression patterns of circRNAs under different
pathological conditions, thereby indicating the non-invasive
biomarker potential of circRNAs in lung cancer (189, 190).
These potential circRNA biomarkers are shown (Table 3).

Diagnostic circRNAs Biomarkers in Lung Cancer
Several circRNAs of potential diagnostic value have been
detected in human plasma, and could be exploited as highly
sensitive and specific non-invasive biomarkers for NSCLC. Zhu
et al. reported that hsa_circ_0013958 was upregulated in all
LUAD tissue, cells and even plasma (190). Additionally, these
hsa_circ_0013958 levels were closely related to lymphatic
metastasis. The area under the receiver operating characteristic
(ROC) cure was 0.815, and sensitivity and specificity for
TABLE 3 | circRNAs as potential biomarker for diagnosis and prognosis in lung cancer.

NO. Year circRNA Level LC patients/healthy controls AUC Sensitivity (%) Specificity (%) Sample Ref

circRNAs as potential diagnostic biomarkers in lung cancer
1 2017 hsa_circ_0013958 up 49/49 0.815 75.5 79.6 tissues (190)

30/30 0.794 plasma
2 2019 hsa_circ_0005962 up 153/54 0.73 71.9 72.22 plasma (189)
3 hsa_circ_0086414 0.78 77.12 67.67
4 2020 circ-MEMO1 up 30/25 0.76 56.67 96 plasma (102)
5 2020 circSATB2 up 59/59 0.66 (non-metastatic) – – plasma (191)

0.797(metastatic)
6 2018 circFARSA up 55/55 0.71 – – plasma (192)
7 2018 hsa_circ_0102533 up 41/26 0.774 (stage I-II) – – plasma (193)

0.728 (stage III-IV)
8 2020 hsa_circ_0014235 up 30/30 0.8254 – – plasma (194)
9 hsa_circ_0025580 0.80032 – –

10 2020 circRNA-002178 up 120/30 0.9956 – – plasma (195)
11 2019 circRNA100146 up 40/40 0.643 72.5 57.5 tissue (184)
12 2018 circRNA-FOXO3 down 45/45 0.782 80 73.3 tissue (196)
13 2020 circ-MTHFD2 up 100/100 0.701 90 71 tissue (197)
14 2020 circ-ACACA up 60/60 0.7822 – – tissue (100)
15 2018 hsa_circ_ 0000729 up 34/34 0.815 – – tissue (198)

miR-375 down 0.772 – –

16 2018 hsa_circ_0014130 up 46/46 0.878 87 84.8 tissue (199)
17 2019 hsa_circ_0001073 down 10/10 0.919(LUAD) – – tissue (200)
18 hsa_circ_0001495 up 0.965(LUSC) – –

19 hsa_circ_0077837 down 0.921 – –

20 circPVT1
(hsa_circ_0001821)

up 0.863 – –

21 2020 hsa_circRNA_012515 up 83/83 0.89 – – tissue (201)
22 2018 circRNA_102231 up 57/57 0.897 81.2 88.7 tissue (202)
23 2020 hsa_circ_0007385 up 210/81 0.922 – – tissue (148)
circRNAs as potential prognostic biomarkers in lung cancer

Independent poor prognostic factor
24 2019 circ‐TSPAN4

(has_circ_0020732)
up 78/78 0.912(metastatic/

nonmetastatic)
0.907(prognostic)

Not sure tissue (203)

25 2020 circHIPK3 up 76/27 – Yes tissue (171)
26 2018 circRNA CDR1as up 60/20 – Yes tissue (204)
27 2019 circ-PRMT5 up 90/90 – Yes tissue (205)
28 2018 ciRS-7 up 132/132 – Yes tissue (206)
29 2018 circ_0067934 up 159/159 – Yes tissue (207)

2018 79/79 tissue (208)
30 2019 circ_0020123 up 55/55 – Yes tissue (209)
33 2018 hsa_circ_0033155 down 40/40 – Not sure tissue (210)
34 2017 circRNA_100876 up 101/101 – Not sure tissue (211)
Ju
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diagnosis were 75.5% and 79.6%, respectively. In addition,
plasma hsa_circ_0013958 levels distinguished LUAD cases
from healthy controls, with an area under the cure (AUC) of
0.794 (190). These observations indicated that hsa_circ_0013958
could be exploited as a non-invasive biomarker, with high
sensitivity and specificity for screening high-risk individuals
and early-stage LUAD patients (190). After comparing 153
primary LUAD and 54 normal plasma samples, Liu et al.
observed that has_circ_0005962 was upregulated in LUAD,
whereas has_circ_0086414 was downregulated (189). The AUC
for hsa_circ_0005962 was 0.73, and the optimal cut-off value was
1.21, with a sensitivity of 71.90% and specificity of 72.22%. For
hsa_circ_0086414, the AUC was 0.78 and the cut-off value was
0.39, with a sensitivity and specificity of 77.12% and 66.67%,
respectively. Additionally, plasma hsa_circ_0005962 showed
differential expression patterns in LUAD patients before and
after surgical resection, indicating expression may be closely
related to patient tumor burden (189). Another study indicated
that exosomal circ-MEMO1 levels were higher in NSCLC patient
serum, when compared with healthy controls. The AUC was
approximately 0.76, with a diagnostic sensitivity and specificity
of 56.67% and 96%, respectively (102). Zhang et al. found that
circSATB2 was implicated in NSCLC progression by positively
regulating fascin homolog 1, actin-bundling protein 1 (FSCN1)
expression viamiR-326 (191). The AUC of exosomal circSATB2
was 0.660 in serum from lung cancer patients, and 0.797 in
serum from metastatic lung cancer patients. These observations
indicated that exosomal circSATB2 had the potential to provide
blood detection indices for the diagnosis of lung and lung cancer
metastasis, with high sensitivity and specificity (191).
CircFARSA was upregulated in NSCLC patient plasma, and
had an AUC diagnostic value of 0.71 (192). Hsa_circ_0102533
served as a blood-based biomarker for stage I-II cancer detection
in NSCLC patients (AUC = 0.774), and stage III-IV detection in
NSCLC patients (AUC = 0.728) (193). Another study revealed
diagnostic indices for hsa_circ_0014235 (AUC = 0.8254) and
hsa_circ_0025580 (AUC = 0.80032) in LUSC plasma samples,
suggesting high diagnostic values for LUSC (194). Wang et al.
compared serum samples from 30 healthy controls and 120
LUAD patients without treatment, and observed that circRNA-
002178 was upregulated, with an AUC of 0.9956 (195).

In addition, circRNA expression indices, with potential
diagnostic value, have been detected in cancer tissue only, but not
plasma. Chen et al. demonstrated that the AUC for circRNA100146
was 0.643 in NSCLC tissue, and the sensitivity and specificity were
72.5% and 57.5%, respectively (184). Zhang et al. observed that the
AUC for circRNA-FOXO3 was 0.782, and sensitivity and specificity
indices were 80.0% and 73.3%, respectively (196). Geng et al. also
reported that the AUC of circ-MTHFD2 was 0.701, with a cut-off
value of 3.534, and 90% sensitivity and 71% specificity (197). The
diagnostic accuracy of circ-ACACA was assessed using ROC curve
analysis, and showed that the AUC was 0.7822 (100). Li et al.
observed that hsa_circ_ 0000729 was upregulated in LUAD tissue
and sponged miR‐375, both of which had significant diagnostic
accuracy, with AUC values of 0.815 and 0.772, respectively (198).
Hsa_circ_0014130 exhibited significant overexpression in NSCLC
tissue, with an AUC of 0.878 and an optimal cutoff value 0.573, with
Frontiers in Oncology | www.frontiersin.org 11
sensitivity and specificity indices measured at 87.0% and 84.8%,
respectively (199).Wang et al. in an RNA-Seq analysis observed that
four circRNAs from 17,952 circRNAs, had diagnostic values for
NSCLC (200). Specifically, the AUC for hsa_circ_0001073 was
0.919 in LUAD tissue, and 0.965 for hsa_circ_0001495 in LUSC
tissue, indicating both molecules could serve as effective diagnostic
biomarkers for LUAD and LUSC prediction, respectively. For the
other circRNAs, the AUC for hsa_circ_0077837 was 0.921, and for
hsa_circ_0001821 (circPVT1), 0.863. However, these circRNAs
were unable to distinguish LUAD and LUSC subtypes (200).

Furthermore, several circRNAs have exhibited high
diagnostic accuracy, while the aberrant expression of these
circRNAs has been closely associated with cancer prognoses.
Fu et al. observed that hsa_circRNA_012515 exhibited a high
diagnostic accuracy for NSCLC, with an AUC of 0.89 (201).
Kaplan-Meier (K-M) survival analyses also indicated that OS and
disease free survival (DFS) indices were considerably shortened
in patients expressing high levels of hsa_circRNA_012515, when
compared to those patients with low expression (201). Zong et al.
indicated that circRNA_102231 expression was significantly
upregulated in LUAC tissue, and was associated with advanced
TNM stage, lymph node metastasis and poor OS in lung cancer
patients, with an AUC of 0.897 (202). CircRNA_102231 also
exhibited a good sensitivity of 81.2%, and specificity of 88.7%.
Hsa_circ_0007385 was upregulated in NSCLC tissue with an
AUC of 0.922; multivariate regression analyses indicated that the
high expression of this circRNA independently predicted a worse
OS status (148). These studies showed that some circRNAs may
be considered good (non-invasive) biomarkers for lung cancer
diagnostics, and some are useful as prognostic biomarkers.

Prognostic circRNA Biomarkers in Lung Cancer
CircRNAs exhibited different expression patterns and levels in
lung cancer tissue. These expression levels are closely related to
the stage and prognosis of disease, potentially making them new
prognostic biomarkers in clinical settings. For instance,
Ying et al. observed that circ‐TSPAN4 (has_circ_0020732)
expression levels were increased in LUAD tissue and cell lines,
suggesting it as a promising prognostic biomarker for LUAD
patients (203). The AUC for circ‐TSPAN4 expression levels for
metastatic versus non-metastatic LUAD patients was 0.912.
More importantly, the OS status for patients with high circ‐
TSPAN4 expression levels was significantly shorter than patients
with low levels, and the prognostic utility of circ‐TSPAN4 for
LUAD patients was high, with an AUC of 0.907 (203). Moreover,
Chen et al. observed that circHIPK3 was upregulated in NSCLC,
while its linear counterpart, linear HIPK3 (linHIPK3) was
significantly downregulated in diseased tissue, when compared
to adjacent normal tissue (171). The expression ratio between
circHIPK3 and linHIPK3 was significantly higher in tumors
when compared to normal tissue, and indicated poor survival,
especially for advanced-stage NSCLC patients.

In addition, several circRNAs showed higher expression in
NSCLC samples than the normal counterparts that was highly
associated with TNM stage and lymph node metastasis, but not
associated with other factors such as, gender, age, smoking,
histology, etc, which could function as an independent poor
July 2021 | Volume 11 | Article 664290
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prognostic factor. For example, Zhang et al. showed that
circRNA CDR1as was upregulated in NSCLC tissue (204).
Further data indicated that patient’s expressing high circRNA
CDR1as levels had shorter OS than those with low levels. Similar
results were also generated for circRNA PRMT5 (circ-PRMT5);
high expression levels indicated lung cancer patients were more
likely to develop poor progression-free survival (PFS) and OS
(205). In their investigation, Yan et al. indicated that high ciRS-7
expression was correlated with shorter DFS and OS status, and
multivariate Cox’s proportional hazard regression analyses
showed this high expression was an independent factor for
predicting a poor prognosis (206). Both Wang et al. and Zou
et al. reported that circ_0067934 expression was significantly
increased in NSCLC tissue and cell lines (207, 208). K-M curves
showed that high expression of this circRNA was an independent
risk factor for OS status in patients with NSCLC in both studies.
The K-M analyses byWan et al. indicated that high circ_0020123
expression levels were associated with decreased OS in NSCLC
patients (209).

Furthermore, several studies have demonstrated the
biomarker potential of other circRNAs, however their role as
independent prognostic factors requires further study. For
instance, Gu et al. observed that the aberrant expression of
hsa_circ_0033155 in NSCLC tissue was correlated with
lymphatic metastasis, however no other significant indices
were associated with other clinicopathological characteristics
(210). Yao et al. proposed a close correlation between
circRNA_100876 upregulated expression and lymph node
metastasis and tumor staging (211). Moreover, K-M survival
analyses demonstrated that the OS for NSCLC patients with high
circRNA_100876 expression levels was significantly shorter for
patients with low levels (211). Thus, these findings suggested that
circRNAs could serve as prognostic markers for lung cancer,
however they require further investigation to prove their utility
as independent prognostic factors.

The Therapeutic Potential of circRNAs in
Lung Cancer
The Role of circRNAs in Lung Cancer Drug
Resistance
The greatest hurdle to targeted cancer therapy is the inevitable
emergence of drug resistance (212); tumors can develop this
resistance during the early or late phase of drug treatment.
Resistance is typically classified into two therapeutic categories:
(1) intrinsic or primary resistance and, (2) acquired or secondary
resistance (212). In recent years, an increased volume of studies
have focused on mechanisms of drug resistance in lung cancer
(213, 214). Such mechanisms include; the Thr790Met mutation
in the epidermal growth factor receptor (EGFR) which induces
resistance to tyrosine kinase inhibitors (TKIs) (215), and tumor-
reprogramming of the lung microenvironment which induces
resistance to angiogenesis and immune checkpoint molecular
target therapies in lung cancer (216).

However, in recent years, the role of circRNAs in drug
resistance has gained considerable traction with different
research groups. Here, we summarize the current data
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exemplifying the role of circRNAs in therapeutic resistance
and related mechanisms of disease.

Platinum Cytotoxic Drugs: Cisplatin (CDDP)
Cisplatin mainly exerts its cytotoxic effects in tumor cells via the
generation of DNA-platinum adducts, and subsequent DNA
damage responses (212). Despite major clinical successes over
recent decades, cisplatin-mediated drug resistance in tumor cells
has hindered the clinical utility of this drug (217).
Notwithstanding this, a number of mechanisms have emerged
contributing to resistance onset. For instance, STAT3 may be
attributable to CDDP resistance, and its inhibitors could reverse
CDDP-resistance (218). Recently, circRNAs upregulated in
NSCLC were found to promote CDDP resistance by activating
STAT3 expression; Dong et al.reported that circ_0076305
positively regulated CDDP resistance by upregulating STAT3
by targeting miR-296-5p (219). Moreover, Xu et al. found that
circAKT3 inhibited glycolysis and CDDP sensitivity in lung
cancer cells by regulating the miR-516b-5p/STAT3 axis (220).

In addition, several other circRNAs were overexpressed in
NSCLC, and positively regulated CDDP resistance via other
mechanisms. Hong et al. observed that circ-CPA4 promoted
cell invasion and EMT processes in NSCLC via the let-7 miRNA/
PD-1 axis (221). In addition, NSCLC cell derived PD-L1
exosomes self-regulated cell stemness to increase NSCLC
res is tance to CDDP, blockading PD-L1 sens i t ized
chemoresistant NSCLC cells to CDDP (221). CircRNACDR1as
promoted LUSC metastasis by sponging miR-671-5p and
regulating Golgi trafficking (222), thus, participating in CDDP-
resistance in NSCLC. Moreover, Zhao et al. indicated that
circRNACDR1as regulated stemness properties mediated by
CDDP resistance in NSCLC cells by targeting the miR−641/
HOXA9 axis (223). Huang et al. screened 31 × eukaryotic
initiation factor 3 (EIF3)-derived circRNAs, and correlated two
circEIF3 molecules (hsa_circ_0004350 and hsa_circ_0092857)
with CDDP drug sensitivity in lung cancer (224); downregulation
of these molecules reversed CDDP resistance in lung cancer cells.
Pang et al. observed that levels of circ‐PRMT5 and EV3‐like
DNA‐directed polymerase z catalytic subunit (REV3L) were
markedly increased, while miR‐4458 was downregulated in
CDDP-resistant NSCLC tissue and cells (225). Circ‐PRMT5
absence contributed to CDDP sensitivity via the miR‐4458/
REV3L axis. Importantly, circ‐PRMT5 silencing affected CDDP
treatment to expedite an in vivo decrease in tumor growth (225).
Li et al. observed that circ_0072083 depletion contributed to
CDDP-triggered inhibition of NSCLC tumors via the miR-545-
3p/CBLL1 axis (226). Lu et al. proposed that hsa_circ_0096157
expression contributed to CDDP resistance in NSCLC cells by
regulating the cell cycle signaling pathway, EMT processes and
the expression of apoptosis associated proteins (227).
Hsa_circ_0085131 enhanced CDDP-resistance in NSCLC cells
by sponging miR-654-5p to upregulate ATG7, leading to cell
autophagy (228). Circ_0000376 functioned with oncogenic roles
in NSCLC, and enhanced in vitro NSCLC CDDP-resistance by
repressing miR-384 (229). Xiao et al. reported that
circRNA_103762 expression was upregulated in CDDP-
resistant NSCLC cells, and enhanced multidrug resistance by
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inhibiting CHOP (DNA damage inducible transcript 3)
expression in NSCLC cells (230).

However, several circRNAs downregulated in lung cancer
have different roles in CDDP-resistance in lung cancer, distinct
to the aforementioned circRNAs. Huang et al. indicated that
hsa_circ_0001946 exhibited tumor suppressive roles in lung
cancer cells, and affected NSCLC cell sensitivity to CDDP via
modulation of the Nucleotide excision repair signaling pathway
(231). Additionally, a recent study showed that circRNA
epithelial splicing regulatory protein-1 (ESRP1) was
significantly downregulated in chemoresistant lung cancer cells
(232). CircRNA cESRP1 was sensitized to small cell lung cancer
(SCLC) cells upon chemotherapy (i.e., doxorubicin, CDDP and
etoposide) by sponging miR-93-5p, and upregulating expression
of the miR-93-5p downstream target, Smad7/p21(CDKN1A).
This formed a negative feedback loop that regulated
transforming growth factor-b (TGF-b) mediated EMT
processes (232). These studies highlighted the crucial role of
circRNAs in CDDP resistance, in both NSCLC and SCLC, and as
such may be considered potential novel therapeutic targets for
drug resistance in lung cancer.

Antimetabolite Drugs: Pemetrexed and Gemcitabine
Pemetrexed is a novel multitargeted antifolate that inhibits ≥ three
enzymes involved in folate metabolism and purine and pyrimidine
synthesis (233). Pemetrexed and CDDP combination
chemotherapies are widely used to treat NSCLC (234). Mao et
al. observed that circRNA CDR1-as was highly expressed in
pemetrexed and CDDP resistant LUAD tissues and cell lines
(235). CircRNA CDR1-as promoted pemetrexed and CDDP
chemoresistance via the EGFR/PI3K signaling pathway in LUAD
(235). Zheng et al. reported that circPVT1 overexpression was
positively related to chemotherapy insensitivity in LUAD patients
(236). Mechanistically, circPVT1 was shown to contribute to
pemetrexed and CDDP chemotherapy resistance via the miR-
145-5p/ABCC1 axis (236).

Gemcitabine (2’,2’-difluoro 2’-deoxycytidine, dFdC) is the
most important cytidine analogue developed since cytosine
arabinoside (Ara-C) (237). The cytotoxic activity of gemcitabine
may result from several actions against DNA synthesis (237). The
combination of gemcitabine and CDDP chemotherapy may be a
viable treatment for advanced NSCLC (238). Lu et al. observed
that circPVT1 expression was decreased after gemcitabine and
CDDP combination treatment; circPVT1 expression in
chemotherapy-resistant patients was higher than chemotherapy-
sensitive patients (239). Thus, it may be feasible to determine
therapy effects post-chemotherapy by detecting circPTV1
expression in patient serum. However, Tong et al. observed that
circ-SMARCA5 overexpression enhanced chemosensitivity to
gemcitabine and CDDP in treated cells, when compared to
overexpression control cells (240). These findings indicated that
circRNAs may facilitate rescue for pemetrexed/gemcitabine and
CDDP combined chemotherapy resistance in patients.

Plant Derived Chemotherapy Drugs: Paclitaxel (taxol)
Paclitaxel (taxol) was the first member of the taxane family used
for cancer chemotherapy; taxanes exert their cytotoxic effects by
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arresting mitosis via microtubule stabilization, resulting in
cellular apoptosis (241). Paclitaxel use has become a broadly
accepted option for the treatment of patients with NSCLC (241).
A recent study observed that circ_0011292 facilitated
tumorigenesis and paclitaxel resistance in NSCLC by regulating
the miR-379-5p/TRIM65 axis, suggesting circ_0011292 was a
promising therapeutic target for NSCLC chemotherapy (242).
Circ_0011292 silencing also reduced paclitaxel resistance in vivo
(242). However, Li et al. indicated that circ_0002483
overexpression significantly inhibited NSCLC cell proliferation
and invasion in vitro and in vivo, and enhanced NSCLC
sensitivity to taxol by sponging miR-182-5p to release the
inhibition on GRB2, FOXO1 and FOXO3 mRNAs (243). These
studies demonstrated the different roles circRNA exert towards
paclitaxel resistance in lung cancer, suggesting their potential as
therapeutic strategies in the future.

Targeted Drugs: Epidermal Growth Factor Receptor
Tyrosine Kinase Inhibitors (EGFR-TKIs)
These molecules, which include gefitinib, erlotinib and osimertinib
(AZD9291), have become important treatment options for
NSCLC patients with EGFR sensitive mutations (244). The
acquired resistance mechanisms are currently unclear, except for
the Thr790Met mutation (215). Recent studies have indicated that
circRNAs may play important roles in EGFR-TKI resistance. For
instance, Zhou et al. reported that hsa_circ_0004015 contributed
to disease progression and gefitinib resistance in NSCLC patients;
mechanistically, circ_0004015 sponged miR-1183 and
subsequently targeted 3-phosphoinositide dependent protein
kinase 1 (PDPK1) (245). PDPK1 is a classic effector of the EGF
signaling pathway, which prevents apoptosis and mediates drug
resistance in pancreatic cancer (246). Wen et al. found that
hsa_circ_0000567 was upregulated and hsa_circ_0006867
downregulated in gefitinib-resistant NSCLC cell lines, when
compared to sensitive cells, indicating these circRNAs may be
implicated in acquired gefitinib resistance via a circRNA-miRNA-
mRNA interactive network (247). Moreover, by analyzing 52
NSCLC patients treated with gefitinib, Liu et al. reported that
elevated hsa_circ_0109320, identified from 1,377 circRNAs, was
associated with longer PFS in gefitinib-treated NSCLC patients
(248). Thus, this circRNAmay be a potential biomarker for EGFR-
TKI efficacy in these patients.

In addition, Joseph et al. observed that hepatocyte growth
factor/c-Met regulated expression of the SUMO-activating
enzyme subunit 2(SAE2) and circRNA CCDC66 to increase
gefitinib and erlotinib resistance in LUAD cells (249).
Mechanistically, SAE2 maintained protein stability, including
AAA domain-containing 3A and the EMT markers, vimentin
and paxillin, which were crucial for metastatic potential and drug
resistance. Critically, these bio-parameters correlated with
prognoses in LUAD patients (249).

Furthermore, Ma et al. observed that hsa_circRNA_0002130
was highly expressed in osimertinib-resistant NSCLC cells, and
in serum exosomes derived from osimertinib-resistant NSCLC
patients (250). Mechanistically, this circRNA facilitated
osimertinib-resistance in NSCLC patients by sponging miR-
498 to upregulate the GLUT1, hexokinase 2 and LDHA (250).
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Chen et al. identified 15,504 circRNAs that were differentially
expressed in AZD9291-resistant NSCLC cell lines versus control
cell lines, and revealed that circRNAs may have roles in NSCLC-
AZD9291 resistance. These authors also suggested these
circRNAs may be promising molecular candidates for gene
therapy (251). These findings demonstrated the importance of
circRNAs in TKI-resistance, and their potential as biomarkers
for TKI treatment efficacy. However, further studies are required
to explore circRNA molecular mechanisms so that target gene
therapy studies may proceed to clinical trials.

Immunotherapeutic Drugs: Programmed Cell Death 1/
Programmed Cell Death-Ligand 1 (PD-1/PDL-1)
Immune checkpoint inhibitors (ICIs) have dramatically changed the
landscape of NSCLC treatment. The PD-1/PDL-1 inhibitors now
forms part of first-line NSCLC mono-therapy treatments, or
combined with chemotherapy or chemoradiotherapy in patients
with stage III unresectable NSCLC (252). Anti-PD-1/PDL-1 ICIs
have indicated promising efficacies (~30% response rates), and
improved survival of patients with metastatic NSCLC (253). The
mechanism of drug resistance during immunotherapy remains
unclear, however circRNAs have been shown to exert important
functions in NSCLC immunotherapy resistance. CircRNA
fibroblast growth factor receptor 1 (circFGFR1/hsa_circ_0084003)
promoted NSCLC progression and resistance to anti-PD-1-based
therapy (17). CircFGFR1 directly interacted with miR-381-3p, then
upregulated the expression of its target gene, C-X-C motif
chemokine receptor 4 (CXCR4). Additionally, Luo et al. observed
that lung cancer patients with positive PDL-1 expression (≥ 1%)
expressed higher level of hsa_circ_0000190 (254). Moreover, long-
term follow-up of immunotherapy treated cases indicated that
upregulated plasma hsa_circ_0000190 levels correlated with poor
responses to systemic therapy and immunotherapy (254). These
findings demonstrated that circRNAs played key roles in
ICI-resistance, providing potential therapeutic targets for these
mechanisms. Similarly, these data also indicated that circRNAs
are potential biomarkers for ICI treatment efficacy.

The Role of circRNAs in Radiotherapy Resistance of
Lung Cancer
Radiotherapy can be applied in local and regional advanced
NSCLC with no surgical chance, as neoadjuvant in the group that
has the potential to have surgery and can be applied as adjuvant
considering some risk factors after surgery (255). Similarly,
radioresistance mechanisms in NSCLC are currently unclear.
One potential radioresistance mechanism involves the
generation of exosomes. Exosomes are 40–150 nm vesicles
released by cancer cells and contain pathogenic components,
such as proteins, mRNAs, DNA fragments, non-coding RNAs
and lipids. It has been proposed that radiation-derived exosomes
may promote radioresistance (256). For instance, Fan et al.
observed that both intracellular and extracellular miR-1246
levels were upregulated after irradiation in a time-dependent
pattern, resulting in increased NSCLC radioresistance via
mTOR-inhibited autophagy activation (257). Moreover,
circRNA CDR1as sequestered miR-1246 and antagonized its
effects towards radioresistance mechanisms in NSCLC cell lines
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(257). Accordingly, it suggested that circRNAs could play vital
roles in radioresistance mechanisms in lung cancer, however
more studies are required to explore such mechanisms initiated
by circRNAs in radioresistance.
CONCLUSION AND PERSPECTIVES

RNA-seq technologies have provided unprecedented insights into
the human genome; the clinical value of circRNAs has been
unraveled for various diseases, including lung cancer. As outlined
here, circRNAs participate in lung cancer proliferation, migration,
invasion and apoptosis, and have the extraordinary potential to be
recognized as biomarkers for molecular therapeutics. As good
biomarkers, circRNAs have stable molecular structure and are
more abundant than liner RNAs. However, research in this area is
far from complete, therefore we propose three critical research
areas which will define the success of these molecules as
biomarkers; (1) The role of circRNAs in other lung cancer
pathological processes is little known, therefore more studies
are required to investigate tumor microenvironments, molecular
heterogeneity and inflammation, etc. (2) More circRNA
biomarker research must be conducted to distinguish different
pathological types of lung cancer. (3) More comprehensive and
in-depth clinical trials must be conducted to verify these
biomarkers as potential therapeutics for lung cancer. (4) In-
depth studies on cells, animals and population cohorts are
needed to further explore the value of circRNAs in evaluating
the prognosis of lung cancer.

By implementing these three key strategies, we will gain a
better understanding of the regulatory roles of circRNAs in lung
cancer, as they will provide new molecular insights into circRNA
mechanisms behind the disease. Thus, this review has
systematically and comprehensively highlighted the recent
advances in circRNAs in lung cancer etiology, and has
exemplified the diagnostic and therapeutic potential of
circRNAs in this disease.
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