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Abstract

Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine
which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second
transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4
prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had
reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14
residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore
permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We
identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three
substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also
reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each
enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of
P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors.
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Introduction

P2X7 is a receptor in the family of ATP-sensitive ionotropic

purinergic P2X receptors, which consist of seven subtypes (P2X1-

7). P2X receptors are typically homotrimeric, with each monomer

containing two membrane spanning domains, an extracellular

domain, and intracellular amino- and carboxy-termini [1]. P2X7

is expressed in many cell types, including cells from the

hematopoietic lineages (erythrocytes, lymphocytes, neutrophils,

eosinophils, mast cells, monocytes and macrophages), central and

spinal cord neurons, brain glial cells (microglia, astrocytes and

muller cells), bone cells (osteoblasts, osteoclasts and osteocytes),

and epithelial and endothelial cells [2,3,4,5,6,7,8,9,10,11,12].

Expression of P2X7 has also been demonstrated in the enteric

nervous system of the small intestine, kidney and urinary tract,

uterus, and liver [13,14,15]. Activation of P2X7 mediates a

number of physiological and pathological events including pore

formation, phosphatidylserine exposure, membrane blebbing,

phospholipase D and A2 activation, metalloproteinase activation,

transmembrane protein shedding, pro-inflammatory cytokine

maturation, caspase activation, apoptosis induction, pathogen

killing, free radical production, cell cycle regulation, and T cell

maturation [16,17,18,19,20,21]. P2X7 is distinct from other P2X

receptor subtypes in that P2X7 contains an extended 240 amino-

acid C-terminal tail. The C-terminus is involved in mediating most

downstream effects of P2X7, including pore-formation and signal

transduction. For example, three loss of function single nucleotide

polymorphisms (SNPs), T357S, E496A and I568N, and one gain

of function SNP Q460R in human P2X7 are located in the C-

terminus [22,23,24,25]. These loss-of-function SNPs lead to

reduced P2X7 pore formation and impaired ATP-induced

mycobacterial killing by macrophages [23,26,27,28]. Thus, the

carboxyl terminal tail is thought to be responsible for the ability of

P2X7 to form pores in the membrane following prolonged agonist

stimulation [29].

Pore formation is one of the best studied characteristics of

P2X7. Following brief activation by agonist, P2X7 forms a

channel with strong selectivity for the divalent cations Ca2+ and

Ba2+ over monovalent cations [30]. Continued stimulation by

agonist results in the formation of a non-selective pore, which

allows permeation of inorganic and organic cationic molecules up

to 900 Da, such as N-methyl-D-glucamine, the monovalent cation

ethidium bromide (Etd; cation mass 314Da), divalent cation

propidium iodide (PI; cation mass 415 Da), and the divalent cation

YoPro1 (cation mass 376 Da) [1,31]. Due to this permeability,

P2X receptor pore formation has been studied using these DNA-

specific, cell impermeant fluorescent dyes [1,29,32,33,34,35].

Although the divalent 279 Da cation DAPI is often used both in

fixed and live cell staining because it is readily permeable to the

small membrane pores induced by fixation [36], it has yet to be

utilized to examine this larger P2X receptor non-selective pore.

This pore formation is a trigger for inflammatory processes such as

ATP-induced NLRP3 inflammasome activation and subsequent

IL-1b cleavage and release by immune cells [37,38]. It has been

suggested that pore formation is not a unique feature of P2X7, but

can also occur in cells expressing P2X2 and P2X4 [39,40]. The
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pore itself could potentially be formed by an interacting protein,

pannexin-1 [41,42]. Since P2X7 is an ion channel, it is also

possible that pore formation is an intrinsic property of P2X

receptors, potentially involving conformational changes and/or

recruitment of additional P2X subunits that result in dilation of the

ion channel and corresponding increase in permeability

[33,43,44]. Regardless of whether P2X7 itself forms the pore, it

is clear that purinergic receptor activation is necessary for the

initiation of the process. What structural determinants confer the

ability of P2X7 to induce pore formation is unknown.

In this study, we tested the hypothesis that the C-terminal and

TM2 domains of P2X7 confer dye permeability. We used the

small cationic dye DAPI combined with the larger cationic dyes

Etd, YoPro1 and PI to characterize the structural determinants of

P2X7 pore formation. To address the role of P2X7 independently

of pannexin-1, we transfected P2X7 wild type or mutant

constructs into pannexin deficient NRK and C6 cells, as well as

HEK293 cells. We found that exchanging either the P2X7 C-

terminal domain or the second transmembrane domain (TM2)

from P2X1 or P2X4 compromised surface expression and pore

formation. Changing single amino acids to those present in P2X4

or P2X1 decreased dye uptake and membrane blebbing. Mutation

of the predicted pore-lining residue S342 to that of P2X1 or P2X4

conferred sensitivity to pore formation, membrane blebbing and

cell death. Taken all together, these data indicate the importance

of TM2 for P2X7-mediated pore formation.

Materials and Methods

Cloning of cDNA and creation of mouse P2X receptor
constructs

Total RNA was extracted and purified from mouse spleen cells

(from C57BL/6 mice, provided by Lisa Borghesi, for P2X1 and

P2X4 cloning) or FSDC cells [45] (provided by Paola Ricciardi

Castagnoli, for P2X7 cloning) using RNeasy Mini Kit and RNase-

Free DNase Set, as recommended by the manufacturer (Qiagen,

Valencia, CA). MuLV Reverse Transcriptase (Life Technologies,

Carlsbad, CA) was used to synthesize first strand cDNA from 1 mg

of the purified total RNA at 42uC for 60 min using an oligo-dT16–

18 primer (Life Technologies). A pair of sequence specific primers

with the appropriate restriction enzymes sites were designed to

amplify the entire coding sequence of the corresponding target

cDNA genes by PCR, using AmpliTaqH DNA polymerase as

described by the manufacturer (Life Technologies). PCR products

were separated on a 1% agarose gel containing 1 mg/ml ethidium

bromide (Sigma, Saint Louis, MO), purified with WizardH SV Gel

and PCR Clean-Up System (Promega, Madison, WI) and cloned

into the pFB-Neo Retroviral vectors (Stratagene, La Jolla, CA),

using the appropriate restriction enzymes and the Rapid DNA

ligation Kit (Roche Applied Science, Indianapolis, IN, USA). pFB-

Neo has neomycin-resistant sequences in which the multiple

cloning sites were modified. Since FSDC are of C57BL/6 origin, a

strain with low P2X7 function, we introduced a substitution in our

P2X7 construct by Quikchange mutagenesis (Agilent Technolo-

gies, Santa Clara, CA) corresponding to the Balb/C allele, which

has normal function. The translated amino acid sequences of the

P2X1, P2X4, and P2X7 constructs we used for transfection and

mutagenesis are presented in Figure S1. Detailed plasmid maps

and sequences of primers are available upon request. All of the

vectors and mutants were verified by DNA sequencing.

An overlapping PCR strategy and/or fragment swapping with

appropriate restriction enzymes was used for mutagenesis of the

P2X7 constructs. Amplicons containing the mutations were

subcloned into the corresponding regions of the P2X7 constructs

using the appropriate restriction enzymes and Rapid DNA ligation

Kit. The expand high fidelity PCR system (Roche Applied

Science, Indianapolis, IN) was used for all the overlapping PCR

reactions. Detailed plasmid maps and sequences of primers are

available upon request. All of the vectors and mutants were

verified by DNA sequencing.

Cell culture
Human embryonic kidney (HEK) 293 cells (ATCC, Manassas,

VA catalog number CRL-1573), normal rat kidney (NRK) cells

(ATCC, CRL-6509), and C6 glioma cells (ATCC, CCL-107) were

grown at 37uC, 5% CO2 in D10 (Dulbecco’s modified Eagle

medium (DMEM) supplemented with 10% fetal bovine serum

(FBS), 100 units/ml penicillin and 100 mg/ml streptomycin).

Retroviral packaging gp293 cells (Clontech, Palo Alto, CA)

expressing gag/pol proteins were also cultured in D10.

Transfection and production of VSV-pseudotyped
retroviruses

gp293 cells were plated in six-well plates one day before

transfection and co-transfected with a P2X construct and VSV-G

using Lipofectamine LTX Reagent, as recommended by the

manufacturer (Life Technologies) using the following amounts and

volumes: 4 mg of P2X construct DNA and 2 mg of VSV-G DNA,

5 ml of Plus reagent, and 10 ml of Lipofectamine LTX Reagent in

500 ml of Opti-MEM I were used per well. Two days after

transfection, the media containing the retrovirus was collected,

filtered and stored at 280uC until use.

Transduction and selection of stable expression cell lines
26104 cells/well of HEK293, NRK, or C6 cells were seeded in

12-well one day before retrovirus infection. Cells were infected

with the recombinant VSV-pseudotyped retrovirus. At 24 hours

post infection, 1 mg/ml G418 was added to the culture media.

After two weeks of selection, G418-resistant cells were expanded

and maintained in 0.5 mg/ml G418 for assays.

Flow cytometry
To monitor the surface expression of the P2X7 and mutants,

cells were stained with rat anti- mouse P2X7 monoclonal antibody

(mAb) HANO43 (ALEXIS, San Diego, CA) using standard FACS

procedures. In brief, transduced cells were harvested with Trypsin-

EDTA (Life Technologies), collected by centrifugation, washed

three times with FACS wash buffer (5% FBS and 0.5 mg/L

sodium azide in PBS), and re-suspended in PBA buffer (1% BSA

and 0.2 mg/L sodium azide in PBS) containing 0.5% normal

human serum for 10 min at 4uC. The cells were then washed one

time with PBA. The cells were re-suspended with PBA with the

anti-P2X7 mAb and incubated on ice for 40 min. Pilot

experiments were performed with titrations to determine the

amount of HANO43 required for maximal binding. The cells

were washed three times with FACS swash buffer, re-suspended in

PBA with cy5-conjugated anti-rat Ig-G antibody (Jackson Im-

munoResearch Laboratories, West Grove, PA) and incubated on

ice while protected from light for 30 min. The cells were then

washed three times with the FACS wash buffer and fixed with 2%

paraformaldehyde in PBS before analysis with BD LSRII flow

cytometer (BD Biosciences, San Jose, CA). A total of 26104 cells/

sample were acquired and analyzed by using FlowJo software

(Treestar, Ashland, OR).

P2X7 Receptor Pore Formation
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Dye uptake
Flow cytometry was used to determine the uptake of DAPI, Etd,

YoPro1 (4-[(3-methyl-2-(3H)-benzoxazolylidene) methyl]-1-[3-

(triethylammonio) propyl]diiodide), and PI in retrovirally-trans-

duced cells. Briefly, cells were dislodged using Trypsin-EDTA and

washed with D10. Some of the cells were surface stained for each

P2X7 construct. About 56105 cells in D10 with 3.6 mM DAPI,

5 mM PI, 20 mM Etd and/or 2.5 mM YoPro1 and with various

concentrations of ATP (Sigma, Saint Louis, MO) were incubated

at 37uC, 5% CO2 for 30 min. Then cells treated with ATP were

washed with cold PBS and re-suspended with PBS prior to analysis

on the LSRII. A total of 16104 cells/sample were acquired and

analyzed using FlowJo. The P2X7 inhibitors A74003 and

A438079 were from Tocris BioScience (Ellisville, MO) and were

used at concentrations of 100 mM and 10 mM respectively.

Western blotting
Cell lysates of stably transduced lines were prepared with NP-40

lysis buffer (Boston BioProducts, Worcester, MA) supplemented

with a protease inhibitor cocktail (Calbiochem, La Jolla, CA). For

each lysate, 30 mg was resolved on an 11% SDS-PAGE,

transferred to PVDF and stained with appropriate primary and

HRP-conjugated secondary antibodies. The membrane was

imaged on an Image Station 4000 MM (Kodak, Rochester, NY)

using Western Blotting Luminol Reagents (Santa Cruz Biotech-

nology, Santa Cruz, CA).

Live cell imaging
Transduced NRK cells were plated at 2.56105 cells per dish

one day prior to imaging in glass bottom dishes (Mattek

Corporation, Ashland, MA). Cells were imaged every 30 seconds

in the presence of 3.6 mM DAPI, 5 mM PI and 3 mM ATP for 45–

60 min on a Nikon A1 confocal microscope equipped with

appropriate excitation and emission filters using Elements (Nikon,

Melville, NY). Images were exported as tif files and processed in

Metamorph (Molecular Devices, Sunnyvale, CA) using Equalize

Light and Median Pass Filter functions.

Results

P2X7 mediates rapid DAPI uptake
We used DAPI to evaluate the ability of P2X receptors to form

pores in response to ATP because it is a smaller divalent cation

than previously used dyes and likely to be more sensitive to pore

formation. To test DAPI uptake mediated by P2X receptors, we

expressed them in NRK cells by retroviral transduction. High

levels of P2X1, P2X4, and P2X7 were detected after transduction

by western blot, which also revealed low endogenous levels of

P2X4 in NRK cells (Fig. 1A). Following treatment with titrated

amounts of ATP, we found that P2X7 mediated rapid DAPI

uptake in a dose- and time-dependent fashion (Fig. 1B, C). There

was a clear distinction in DAPI uptake induced by ATP by the

different P2X receptors (p = 0.0001 by analysis of variance for data

derived from 15 min incubation with ATP) (Fig. 1D). Consistent

with the P2X receptors showing different sensitivities to ATP, cells

expressing P2X7 showed DAPI uptake at high concentrations of

ATP (1 mM and 3 mM) while those overexpressing P2X4 showed

DAPI uptake at moderate concentrations of ATP (0.01–1 mM)

(Fig. 1D). P2X1 did not induce any observable DAPI uptake

(Fig. 1D). YoPro1 uptake was similar to DAPI uptake in that cells

expressing P2X4 accumulated YoPro1 following stimulation with

100 mM ATP while cells expressing P2X7 took up YoPro1

following stimulation with 3 mM ATP (Fig. 1E). Further

experiments suggested that increasing dye size and/or reducing

dye charge reduced P2X receptor pore function. P2X4 did not

mediate the uptake of either Etd or PI, while P2X7expressing cells

accumulated low levels of Etd but no significant amount of PI

(Fig. 1E). Treatment of the cells with P2X7 inhibitors A740003 or

A438079 blocked DAPI uptake, indicating that DAPI uptake

required P2X7 function (Fig. 1F). These data indicate that DAPI

uptake serves as a sensitive measure of P2X receptor dependent

pore formation.

P2X7 C-terminus is required for efficient surface
expression and dye uptake

The 240aa C-terminal domain of P2X7 is longer than that of

other P2X receptors and is important for regulating pore

formation. [29,46]. To identify discrete functional regions within

this larger domain, we generated a series of truncated P2X7

constructs and transduced them into HEK293 and NRK cells.

While individual mutant proteins were detected in cells via western

blot, they did not reach the surface and did not mediate any dye

uptake (unpublished data). To further characterize the role of the

C-terminus in P2X7 pore formation, we constructed two chimeric

P2X7 receptors by exchanging the C-terminus of P2X7 with that

of either P2X1 (P2X7C1) or P2X4 (P2X7C4) (Fig. 2A). Both

P2X7C1 and P2X7C4 were detected as proteins in HEK293 cells

(Fig. 2B). Surface expression was tested using the anti-P2X7 mAb

HANO43. The C-terminus of P2X1 was sufficient to partially

rescue surface expression of the chimeric P2X7C1, though the C-

terminus of P2X4 was not (Fig. 2C). Cells expressing the chimeric

constructs were compared to wild type P2X7 and mock

transduced cells for their ability to internalize to DAPI, Etd, and

PI following stimulation by 3 mM ATP (Fig. 2D). Dye uptake was

absent in these transduced cells. P2X7C1 did internalize low levels

of DAPI relative to mock, though these levels were lower than one

might predict based on surface expression (Fig. 2D). In contrast to

NRK cells, P2X7 induced PI uptake in the transduced HEK293

cells (Fig. 1E vs Fig. 2D). These data illustrate that the C-terminus

of P2X7 is crucial for proper surface expression of P2X7.

The second transmembrane domain (TM2) of P2X7 is
required for pore formation

We next examined whether the second transmembrane domain

(TM2) of P2X7 is required for pore formation. In zebrafish

P2X4.1 receptor (zfP2X4), three TM2 a-helices combine to form

the ion conducting pathway, using one TM2 from each subunit of

the trimer [47]. The pore of other P2X receptors is also lined by

residues within TM2, with TM1 making little contribution to ion

flow [48,49,50,51,52,53]. Based on alignment of amino acid

sequences in TM2 from available P2X receptors, P2X7 has higher

sequence identity to P2X1 (45.8%) and P2X4 (33.3%) than to

zfP2X4 (29.2%) and P2X2 (12.5%). To determine the importance

of P2X7 TM2 in pore formation, we generated chimeric P2X7

receptors where TM2 was replaced by that of P2X1 and P2X4

(Fig. 3A). Expression of the chimeric constructs was confirmed by

western blotting (unpublished data). All of the chimeric constructs

were expressed on the surface, though the chimeras had reduced

surface expression (Fig. 3B). When the TM2 domain of P2X7 was

swapped with either P2X1 or P2X4, dye uptake was abolished,

potentially due to low surface expression (Fig. 3C). We generated

two more chimeric constructs where the C-terminal or N-terminal

portion of P2X1 replaced that of P2X7. When the C-terminus of

P2X1 was substituted into P2X7, surface expression was much

higher than in other chimeric constructs (Fig. 3B). Interestingly,

DAPI uptake persisted, though at a reduced level, while uptake of

P2X7 Receptor Pore Formation
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Figure 1. P2X7 mediates rapid ATP-dependent DAPI uptake. (A) NRK cell lysates (30 mg/lane) stably expressing P2X1, P2X4, P2X7 or vector
alone (mock) were resolved by SDS-PAGE, transferred to PVDF and membranes probed with the indicated antibodies. (B) NRK cells stably expressing
P2X7 were treated with the indicated concentrations ATP for 15 min and DAPI uptake analyzed by flow cytometry. (C) NRK cells stably expressing
either P2X7 or vector alone (mock) were incubated with the indicated concentrations of ATP for the indicated times, and DAPI uptake measured by
flow cytometry. The geometric mean fluorescence intensity (GMFI) is shown. (D, E) NRK cells stably expressing P2X1, P2X4, P2X7 or vector alone
(mock) were treated with ATP for 15 min and uptake of DAPI (D), Etd, YoPro1, and PI (E) measured by flow cytometry. Fold fluorescent increase was
determined by dividing the GMFI of cells in the presence of ATP by the GMFI in the same cells without addition of ATP (GMFIATP/GMFIno-ATP). (F) NRK
cells stably expressing P2X1, P2X4, P2X7 or vector alone (mock) were treated with ATP for 15 min in the absence (NT) or presence of 100 mM A74003
(A74) or 10 mM A438079 (A43) and uptake of DAPI was measured by flow cytometry. The data shown are representative of more than three
independent experiments and two tailed Student’s t-tests (unpaired) compared to mock yielded p values ,0.05 (*), ,0.01 (**), or ,0.001(***).
doi:10.1371/journal.pone.0061886.g001
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the larger dyes was abolished (Fig. 3C). Thus, TM2 is critical for

surface expression and pore formation of P2X7.

Single amino acid substitutions in TM2 control surface
expression and pore formation

To further compare the TM2 of P2X7 with that of P2X1 and

P2X4, we introduced single amino acid substitutions between

positions 332–343. One of these, the mutation S342F confers ATP

resistance to RAW cells [54]. This mutation is predicted to almost

completely obstruct the pore, as shown recently by Browne et al

[55] and may interfere with successful folding or trimerization.

S342 is also the most divergent residue predicted to line the pore

amongst the P2X receptors, as the other residues are either

identical or very similar, except C350, which is predicted to lie

furthest away from the narrowest portion of the pore. Although we

observed decreased dye uptake when substituting P2X1 or P2X4

TM2 for P2X7, substituting S342 for the corresponding residue in

either P2X1 or P2X4, might be expected to result in a pore that is

slightly larger and less charged.

Since the pore-lining residues are highly conserved between

P2X receptors, we hypothesized that the residues not lining the

pore, which are more variable between P2X receptors, are more

likely to govern pore permeability. Based on our alignment of the

P2X receptors (Fig. 3A), we selected eight single residues within

TM2 to mutate to the corresponding residue in either P2X1 or

P2X4. Three of the substitutions (Q332P, L333T, T340G)

matched residues conserved between P2X1 and P2X4, while

two matched the P2X1-specific residues (V335T, Y336T) and one

matched a P2X4-specific residue (Y343L). We also mutated the

pore-lining S342 to the corresponding residue in either P2X1 or

P2X4, as well as to the ATP-resistant S342F mutation. We

transduced HEK293, NRK, and C6 cells with these P2X7

constructs and measured surface expression and dye uptake. All

mutants were expressed on the cell surface, except S342F, which

only expressed at extremely low levels on C6 and NRK cells

(Fig. 4A). We found that Y336T and Y343L had reduced surface

expression in all three cell types compared to the wild type P2X7

(Fig. 4A). All of the constructs mediated some degree of DAPI

uptake in the transduced C6, HEK293, NRK cells (Fig. 4B).

Compared to wild type P2X7, Q332P, Y336T, and S342F had

greatly reduced DAPI uptake, while S342A in C6 cells and S342G

in NRK cells showed increased DAPI uptake (Fig. 4B). Similarly,

no PI uptake was observed in the cells transduced with Q332P,

Y336T, S342F, and Y343L while S342G promoted increased PI

uptake (Figure 4C). Significant PI uptake was also found in the C6

and HEK293 cells transduced with L333T, V335T, T340G,

S342A, and wild type P2X7 (Fig. 4D). Similar results to PI were

obtained using Etd and YoPro1, except Y343L (Fig. 4E–F). Cells

Figure 2. The C-termini of P2X1 and P2X4 do not substitute for
the C-terminus of P2X7. (A) Schematic representation of chimeric
constructs generated by swapping the C-termini of P2X receptors.
P2X7C1 is P2X7 where the C-terminus swapped for P2X1, while P2X7C4
is P2X7 where the C-terminus has been swapped for P2X4. (B) HEK293
cell lysates (30 mg/lane) stably expressing vector alone (mock), P2X1,
P2X4, P2X7, P2X7C1 or P2X7C4 were resolved by SDS-PAGE, transferred
to PVDF and membranes probed with the indicated antibodies. (C, D)
HEK293 cells stably expressing vector alone (mock), P2X7, P2X7C1 or
P2X7C4 were either (C) surface stained with the anti-P2X7 mAb
HANO43 or (D) treated with 3 mM ATP for 30 min in the presence of
DAPI, Etd and PI and analyzed by flow cytometry. The data shown are
representative of more than three independent experiments and two
tailed Student’s t-tests (unpaired) compared to wild type P2X7 yielded p
values ,0.001 (###), while comparisons to mock yielded p values
,0.01 (**), or ,0.001 (***).
doi:10.1371/journal.pone.0061886.g002

P2X7 Receptor Pore Formation
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with Y343L mutant showed uptake of both Etd and YoPro1

(Fig. 4E–F). Taken together, these dye uptake assays indicate that

positions 332, 336, 342, and 343 in the TM2 region are

responsible for regulating pore formation in P2X7. It should be

noted that the Y336T mutation is expressed at reduced levels

Figure 3. The TM2 of P2X7 confers surface expression and
channel activity. (A) Schematic representation of the chimeric
constructs used. All constructs are P2X7 with either the entire TM2
replaced with that of P2X1 (TM21), that of P2X4 (TM24) or the first or
second half of TM2 replaced with that of P2X1 (TM21N and TM21C,
respectively). A sequence alignment of P2X1, P2X4 and P2X7 are shown
with *, : and . indicating identical, conserved and similar residues,
respectively. (B, C) HEK293 cells stably expressing the vector alone
(mock), P2X7 or the chimeric constructs were either (B) surface stained
with anti-P2X7 mAb HANO43 or (C) treated with 3 mM ATP for 30 min
in the presence of DAPI, Etd, YoPro1 and PI and analyzed by flow
cytometry. The data shown are representative of more than three
independent experiments and two tailed Student’s t-tests (unpaired)
compared to mock yielded p values of ,0.05 (*), ,0.01 (**), or
,0.001(***) while comparisons to wild type P2X7 yielded p values
,0.05 (#).
doi:10.1371/journal.pone.0061886.g003

Figure 4. Point mutations of P2X7 TM2 domain alter dye
permeability. The indicated cell lines were transduced with either
vector alone (mock), wild type P2X7 or P2X7 expressing the indicated
mutations and either (A) surface stained with anti-P2X7 mAb HANO43,
or treated with 3 mM ATP for 30 min in the presence of (B) DAPI, (C) PI,
(D) Etd, or (E) YoPro1 and analyzed by flow cytometry. GMFI was
determined for live transduced cells. The data shown are representative
of more than three independent experiments and two tailed Student’s
t-tests (unpaired) compared to wild type P2X7 yielded p values ,0.05
(#), ,0.01 (##), or ,0.001(##), and compared to mock yielded p
values of ,0.05 (*), ,0.01 (**) or ,0.001(***).
doi:10.1371/journal.pone.0061886.g004

P2X7 Receptor Pore Formation
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particularly in C6 transfectants, and that this might account at

least in part for impaired dye uptake by these cells.

P2X7-mediated blebbing and death requires residues
important for pore permeability

To determine whether TM2 substitutions influenced down-

stream effects of P2X7, such as plasma membrane blebbing, we

exposed transduced NRK cells to 3 mM ATP in the presence of

DAPI and PI. Live cell imaging was used to detect changes in cell

morphology and in dye uptake. Mock-transduced cells showed

slow P2X7-independent DAPI uptake and no membrane blebbing

or PI uptake following addition of 3 mM ATP (Fig. 5). Wild type

P2X7 exhibited rapid DAPI uptake and robust membrane

blebbing, finally resulting in PI uptake and cell death (Fig. 5). In

contrast Q332P, Y336T, and Y343L mediated DAPI uptake and

minor membrane blebbing, but no PI uptake or cell death (Fig. 5).

The S342G which showed increased DAPI and PI uptake also

showed more robust membrane blebbing and PI uptake than wild

type P2X7 (Fig. 5). Whereas blebbing in wild type P2X7

transduced cells was evident at 33 min and death by 45 min,

cells bearing the S342G mutation showed blebbing as early as

5 min and death by 30 min (Fig. 5). Thus, the kinetics of P2X7-

mediated membrane blebbing correlates with the ATP-gated pore

formation of P2X7.

Discussion

Here we compared the ability of three P2X receptors, P2X1,

P2X4 and P2X7 to promote ATP-dependent pore formation.

P2X1 did not promote pore formation, while P2X4 did so only at

low ATP concentrations. To determine what unique structural

requirements permit P2X7 to induce pores, we generated chimeric

P2X receptors. We found that the C-terminus of P2X7 was

necessary for surface expression while TM2 was necessary for

surface expression and pore formation. Specifically within TM2,

we identify four amino acid residues unique to P2X7 that are

needed for pore formation, and in which substitutions are

deleterious to function, as demonstrated by altered membrane

blebbing and cell death. An additional position, S342, is also

critical to function, and substitution of a less bulky side group

(glycine) results in a hyperactive receptor with enhanced capacity

for mediating dye uptake, membrane blebbing, and cell death.

The ability of P2X7 receptor to form a pore has been

questioned previously since an associated protein, pannexin-1,

has been shown to mediate dye uptake following ATP stimulation

[41,42]. However, there is strong evidence that P2X2, P2X4, and

P2X7, can autonomously form dilated pore structures [1,39,40].

To exclude a role for pannexin-1 in our system, we used two cells

lines for transfection, NRK and C6, which lack pannexin-1

[56,57]. A third line, HEK293, expresses pannexin-1 based on

RT-PCR analysis, but we have no evidence that it is functional

since panx10, a peptide mimetic, does not block dye uptake in

P2X7 transfectants (data not shown).

Previously, it has been reported that only homomeric P2X2,

P2X4, and P2X7 can form integral pores during the prolonged

agonist application, but not the other P2X receptors [1,39,40].

Consistent with these data, we find that P2X4 and P2X7 can

mediate rapid DAPI uptake and YoPro1 uptake, but P2X1 could

not. Since truncated P2X7 receptors lack dye uptake but retain ion

channel activities [46], we generated a series of P2X7 receptors

where the C-terminus was lacking. These constructs did not reach

the cell surface, and were presumed to be non-functional. We next

tested whether the C-terminus from either P2X1 or P2X4 could

rescue surface expression. Neither of these chimeras rescued

surface expression, indicating that the long P2X7 C-terminus is

required for its efficient surface expression.

To further probe the specific ability of P2X7 to form pores, we

examined the TM2 region. Most structural information on TM2

has been derived from studies on P2X2 and P2X4. The crystal

structure of the closed zP2X4 receptor directly reveals that the ion-

conducting pathway is formed by three TM2 a-helices, each

provided by one subunit of the trimer [47]. The P2X pore is lined

by TM2, with TM1 making little contribution to ion flow [51,58].

TM2 is also involved in protein folding and assembly of P2X

subunits [59,60]. When we exchanged the TM2 of P2X7 for that

of either P2X1 or P2X4, we found highly reduced surface

expression and no pore formation. This implies that the intrinsic

fine amino acid structure of TM2 might be necessary for the

folding and function of P2X receptors. Given that P2X4 itself can

form a large, permeable pore, the domains may require unique

residues on other domains within the same protein [39,61]. To

avoid this potential problem, we swapped smaller portions of

TM2, either the N-terminal or C-terminal domains of the P2X7

TM2 with that of the pore-incompetent P2X1 (TM21N and

TM21C constructs). TM21C restored surface expression and

displayed limited pore permeability to DAPI. The homology

between the P2X1 and P2X7 C-terminal fourteen residues of

TM2 (57%) is much higher than that of the N-terminal ten

residues (30%). This may account for the higher surface expression

and DAPI uptake we obtained in cells transduced with TM21C

over those transduced with TM21N. Neither chimeric construct

permitted uptake of larger dyes. This may be due to the location of

the gate region within P2X receptors. Previous studies on P2X2

and P2X4 have suggested that the gate region is located in the

outer half of TM2 in the closed state [47,51,61,62].

To further map the structural determinants of pore formation,

we examined individual residues within TM2. The TM2 helices

cross in the outer leaflet of the membrane, giving the pore an

hourglass appearance, with the narrowest constriction formed by

three residues in the TM2 helix: L340, A344 and A347 in zfP2X4

and I332, T336, and T339 in rat P2X4 [47,53,62]. The residues at

the corresponding positions in P2X1 and P2X7 are T333, S337

and G340 in murine P2X1 and V335, S339 and S342 in murine

P2X7. Recently, homology models of rP2X2 and hP2X7 have

been generated based on the crystal structure of the zfP2X4

[53,63]. These models predict that residues I332, T336, T339,

V343, and D349 line the pore in the open conformation of rP2X2

[53]. The point mutations we made in V335 and S342 in mouse

P2X7 correspond with I332 and T339 of rP2X2. We found that

mutation of either residue to the corresponding one in P2X1

enhanced pore formation, consistent with these residues residing

near the pore. Mutation of S342F, which confers ATP-resistance

in RAW cells [54], resulted in nearly complete loss of surface

expression and pore formation of P2X7. This may be due to poor

trimerization or folding of this mutant P2X7. Taken together, our

data suggest certain residues may be important for pore formation

in P2X7.

We found that V335T, S342G, and S342A enhanced dye

uptake, without significant increase in surface expression.

Although S342 is thought to be the narrowest part of the pore

[55], V335T may not be required for initial P2X7 pore formation,

but rather for the transition from the small ion and DAPI

permeable pore to the larger pore. Similarly, the residue A348 in

hP2X7 is predicted to be part of intracellular pore and close to the

physical gate that occludes the ion permeating pathway in the

closed state [53]. A348T is a gain of function SNP (A348T) that

affects the pore formation function and enhances IL-1b release

[34,63,64], which we predict would be similar to that observed for
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V335T. In contrast to V335, we predict that S342 does line the

pore of P2X7. We find that mutation to either the non-polar

alanine or the much smaller glycine enhances P2X7 pore activity

to the extent that cells with a mutant receptor bleb and die much

faster than cells expressing wild type P2X7. We conclude that

residues near the pore may alter pore sensitivity.

Substitution of three other residues for those in P2X1 or P2X4

(Q332P, Y336T, and Y343L) limited the ATP-gated pore

formation in the transduced cells. These mutants exhibited a

decrease in DAPI uptake, larger dye uptake and membrane

blebbing, indicating they had compromised pore-activity. While it

is possible these residues could indirectly contribute the size of the

pore, we cannot rule out that they are needed for interacting with

other proteins or portions of P2X7. Interestingly, substitution of

G347Y in P2X4 (corresponds to G345 in P2X7) abolishes

permeability to NMDG [39]. Thus, we have identified residues

important for full P2X7 function.

Supporting Information

Figure S1 Translated amino acid sequences of the P2X
constructs used in this study. Details of cloning procedures for

isolating cDNAs and vector use are described in the Methods section.

(DOC)

Figure 5. Point mutations of P2X7 TM2 alter cell viability. NRK cells stably transduced with the indicated constructs were imaged at 2 frames/
minute for 45 minutes in the presence of DAPI (blue) and PI (red) following the addition of 3 mM ATP. Arrowheads indicate blebs. Images shown are
representative of at least 10 fields of cells from at least two independent experiments. Scale bar = 20 mm.
doi:10.1371/journal.pone.0061886.g005
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