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Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for
population studies, or construction of brain atlases, among other important tasks. Given
the high dimensionality of the data, registration is usually performed by relying on scalar
representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted
(b0) images, thereby ignoring much of the directional information conveyed by DW-MR
datasets itself. Alternatively, model-based registration algorithms have been proposed to
exploit information on the preferred fiber orientation(s) at each voxel. Models such as the
diffusion tensor or orientation distribution function (ODF) have been used for this purpose.
Tensor-based registration methods rely on a model that does not completely capture the
information contained in DW-MRIs, and largely depends on the accurate estimation of ten-
sors. ODF-based approaches are more recent and computationally challenging, but also
better describe complex fiber configurations thereby potentially improving the accuracy
of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-
weighted volumes was proposed for affine registration, and does not rely on any specific
local diffusion model. In this work, we first extensively compare the performance of reg-
istration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar
volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of
angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB
Software Library (FSL).We demonstrate that AI registration of DW-MRIs is a powerful alter-
native to volume and tensor-based approaches. In particular, we show that AI improves
the registration accuracy in many cases over existing state-of-the-art algorithms, while
providing registered raw DW-MRI data, which can be used for any subsequent analysis.
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1. INTRODUCTION
Diffusion-weighted magnetic resonance imaging (DW-MRI) is
a non-invasive imaging technique that measures the diffusion
of water molecules in biological tissues, such as the brain’s
white matter, along several gradient directions. This informa-
tion can be used to estimate the local orientation of fiber bun-
dles, since water diffusion is favored along the fiber orienta-
tion, providing critical information for neuroscience and clin-
ical studies (Jones et al., 1999; Basser and Jones, 2002; Filler,
2009).

Registration of DW-MRIs is a key step in population stud-
ies or brain atlases construction, among other important tasks.
However, registration of such data is more challenging than for
three-dimensional scalar images, not only because of its high
dimensionality (hundreds of volumes) or noise and artifacts
present in MR scans (Jones et al., 1999; Behrens et al., 2003; Le
Bihan et al., 2006; Stobbe and Beaulieu, 2011), but because the sig-
nal, and any subsequently estimated local fiber orientation model,
must remain consistent with the underlying fiber geometry after
image transformations (Zhang et al., 2006; Barmpoutis et al., 2007;
Cheng et al., 2009; Dhollander et al., 2010; Verma and Bloy, 2010;

Yap et al., 2010; Du et al., 2011; Geng et al., 2011; Raffelt et al.,
2011).

The simplest approach to DW-MRI registration consists in reg-
istering these datasets using a single transformation obtained from
a representative volume, such as the Fractional Anisotropy (FA)
(Pierpaoli and Basser, 1996), or the non-diffusion-weighted (b0)
image. However, DW-MR registration using a single volume can be
unsatisfactory, since it disregards the fiber orientation information
provided by the diffusion-weighted volumes.

Another approach consists in registering instead the DTI esti-
mated from the DW-MRI using the Stejskal and Tanner (1965)
equation and assuming that the diffusion process follows a Gauss-
ian distribution (Basser et al., 1994). Besides the spatial registration
of DTI data, the images must also be reoriented so as to be con-
sistent with the transformations made to the anatomy (Alexander
et al., 2001; Zhang et al., 2006).

In order to overcome known limitations of the diffusion tensor
model (Skare et al., 2000; Descoteaux et al., 2006; Zhang et al.,
2006; Barmpoutis et al., 2007; Hess and Mukherjee, 2007; Koay
et al., 2009), higher order models have been proposed (Barmpoutis
et al., 2007; Cheng et al., 2009; Dhollander et al., 2010; Verma and
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Bloy, 2010; Yap et al., 2010; Du et al., 2011; Geng et al., 2011; Raffelt
et al., 2011). Nevertheless, relying on such diffusion models might
not completely capture the information contained in the raw data
and could therefore affect the registration accuracy. In addition,
these models are not generic and rely on specific assumptions.

The concept of “Angular Interpolation” (AI) was proposed by
Tao and Miller (2006) to perform linear registration of the raw
DW-MRIs, without imposing any specific diffusion model. The
spatial registration with an angular interpolation correction of the
image intensities attempts to match the registration of the under-
lying fiber structures. The evaluation of AI was entirely qualitative
in Tao and Miller (2006). In this work, we extend the AI algo-
rithm to non-linear registration and perform a wide range of
tests that include human brain DW-MRIs undergoing known syn-
thetic linear and non-linear transformations. We also evaluate our
algorithm on pairs of human brain DW-MRIs to quantify the reg-
istration accuracy of AI versus b0-based registration (FLIRT1 and
FNIRT2 in FSL3), and two well-known libraries that support reg-
istration of DTIs: DTI-TK4 (Zhang et al., 2006) and MedINRIA5.
In addition, we provide an efficient C++ implementation of the
algorithms in FSL, an open source and publicly available library
that provides several analysis tools for FMRI, MRI, and diffusion
MRI brain imaging data. Our implementation also handles the
registration of DW-MRI datasets obtained with different gradient
tables.

A recent work (Wang et al., 2011) compares the registration
accuracy of several state of the art non-linear registration algo-
rithms: FNIRT, MedINRIA, DTI-TK, and several demons algo-
rithms using real brain images and an atlas. The conclusions of this
work were that DTI-TK has the best registration performance. We
will demonstrate that AI has a competitive performance, while
providing registration of the raw DW-MRI data, not just the
tensors.

Some other works have been recently published addressing the
issue of gradient reorientation of DW-MRIs, in the context of
image registration (Dhollander et al., 2010; Yap et al., 2010), and
atlas building (Bouix et al., 2010). In particular, Yap et al. (2010)
compute rotated gradient directions to estimate the rotated tensors
from the spatially registered DW-MRIs. Dhollander et al. (2010)
and Bouix et al. (2010) model the DW-MR datasets as a weighted
superposition of spherical harmonic polynomials, updating the
intensity of the registered DW-MRIs with the estimated weights
and affine transformed basis. In fact, Dhollander et al. (2010)
shows, using a synthetic example, that AI can produce undesirable
rotation effects on fibers that have suffered pure shearing. This
is a well-known problem in DTI registration (Alexander et al.,
2001): pure shearing contains a complex rotational component
not accounted for, when extracting the rigid rotational compo-
nent of the affine matrix. In order to account for the complex
rotation effect that shearing, stretching, or non-uniform scaling

1FMRIB’s linear image registration tool (http://fsl.fmrib.ox.ac.uk/fsl/flirt/).
2FMRIB’s non-linear image registration tool (http://www.fmrib.ox.ac.uk/fsl/
fnirt/index.html).
3http://www.fmrib.ox.ac.uk/fsl.
4http://www.nitrc.org/projects/dtitk.
5http://www-sop.inria.fr/asclepios/software/MedINRIA.

can have on the fiber orientation, Alexander et al. (2001) pro-
posed the preservation of principal direction (PPD) algorithm.
Dhollander et al. (2010) work can be seen as an extension of the
PPD algorithm to their model of DW-MR datasets. However, as
Zhang et al. (2006) and Alexander et al. (2001) indicate, there is
little difference between using PPD or pure rigid rotation to reg-
ister real DT-MR images and that is why it has been successfully
used in the past (Zhang et al., 2006; Thomas Yeo et al., 2009), with
a much lower computational cost.

Based on the previous considerations, we choose in this work
to use the pure rigid rotational component of the affine matrices6.
Nevertheless, AI can also be implemented using PPD to extract the
rotation of general affine transformations to rotate independently
the gradients in the image, making it similar to the work of Dhol-
lander et al. (2010) and Bouix et al. (2010), with the advantage of
not having to model the image as a superposition of polynomials.

The main contributions of this work are:

• The extension of AI to non-linear registration (Section 2.2).
• Improved computational performance of AI and quality of the

associated FA estimate (see Section 2 in Appendix).
• Handling of DW-MR images with different gradient tables

(Sections 2.1, 2.3).
• Comparative study of AI versus b0-based registration and two

well-known tensor-based registration methods, MedINRIA and
DTI-TK (Section 2.3).
• Public domain software to run AI within FSL7, including AI

correction to b0-based and DTI-based spatial only registration.
This code will be released upon publication as a plug-in for
FSL8.

The concept of angular interpolation for linear registration
is introduced in Section 2.1. In Section 2.2, we extend AI to
non-linear registration by extending the FNIRT model to reg-
ister diffusion-weighted MR images using AI. Some important
details on the implementation of the registration algorithms in
FSL are provided in the Appendix. The experiments performed,
as well as the images used in this work are presented in Section
2.3. The results of these experiments are presented and discussed
in Section 3. We present the conclusions of this work in Section
4. Finally, note that the Appendix includes more details about the
implementation and complementary figures.

2. MATERIALS AND METHODS
2.1. AFFINE REGISTRATION WITH ANGULAR INTERPOLATION
For an n-voxel DW-MRI dataset taken with m different gradient
directions, the MR attenuation due to water diffusion in organized
tissues (such as the brain white matter) can be modeled as (Stejskal
and Tanner, 1965; Basser and Pierpaoli, 1996; Jones et al., 1999;
Hasan et al., 2001)

S(xi , gj , τ) = S0

∫
R3

P(xi + r|τ)e−2π iqj ·rdr, (1)

6The most recent version of DTI-TK uses the PPD reorientation algorithm.
7Currently available at www.nitrc.org/projects/dwiregistration/.
8https://www.fmrib.ox.ac.uk/phpwiki/index.php/FSL%20Plugins.
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where, xi ∈ R3, i = 1, . . . , n are the discrete spatial samples,
gj ∈ R3, j = 1, . . . , m, are the diffusion gradients, τ the molecu-
lar diffusion time, S0 the anatomical image taken with no gradient
applied, qj= γ δgj/ 2π is the displacement reciprocal vector (with
γ the gyromagnetic ratio of water protons and δ the duration of
the diffusion gradients), r the displacement vector relative to xi,
(·) is the dot product between vectors, and P(xi+ r|τ ) the ensem-
ble average propagator (EAP) at xi, whose shape depends on the
underlying fiber bundle structures. Without any loss of generality,
we can consider that ||gj||2= 1,hence from (1), the DW-MRI signal
can be seen as samples of the Fourier transform of the EAP taken
along different gradient directions on the unit sphere. Hence, the
intensity I (xi, gj) of the DW-MRI is a function of the position,
gradient orientation, and the underlying fiber structure (given by
the EAP at each voxel).

From now on, we assume that the volumes of the DW-MR
datasets have been properly aligned to correct for possible mis-
matches (Section 2.3.1), due to eddy current distortions, geometric
distortions, and head motion during the data acquisition. Hence,
it is assumed here that the DW-MRI datasets measure the true
underlying three-dimensional structures (through diffusion), and
any linear or non-linear spatial transformation should be applied
to every volume in the data set to reflect the corresponding spatial
transformation of those structures.

Let Iref(xi, gj) and Itest(xi, gj) be the reference and test DW-
MRIs, respectively. Also, let A be a given transformation matrix
that registers the test to the reference DW-MRI. The spatial regis-
tration of the test DW-MRI would be Ĩtest (A−1xi , gj), requiring

interpolation9 to compute the intensity at the spatial coordinates
A−1xi. Hence, all the m-volumes in the DW-MRI can be spatially
registered using the same affine registration. However, perform-
ing only spatial registration ignores the fact that the underlying
fibers have changed their orientation with respect to the gradient
orientations gj and hence, in general, the intensity of the reference
image will not be the same as the intensity obtained after spatial
registration of the test image.

The most widely used reorientation strategy in DTI consists in
reorienting the tensors as RDRT (Alexander et al., 2001; Zhang
et al., 2006), where D is the second order diffusion tensor and R is
the orthonormal matrix corresponding to the rotational compo-
nent of A. The rotational component of a matrix can be obtained
using the Finite Strain (FS) method, based on the polar decompo-
sition (Higham, 1986), A=RS, where S is the strain component
of A. A more accurate estimation of the rotational component
of A can be obtained with the preservation of principal direction
(PPD) algorithm, proposed by Alexander et al. (2001). Here, and
as in Zhang et al. (2006), we use the FS method given its good
performance by comparison with PPD, when the images are real
DW-MRIs (Alexander et al., 2001; Zhang et al., 2006). Also, FS
provides an analytical decomposition of A that allows the use of
closed form derivatives, necessary when using gradient descent
minimization methods (as in FNIRT), and it is simpler and com-
putationally more efficient than PPD. We must point out here that
in the original paper on AI (Tao and Miller, 2006), the authors do

9Usually nearest neighbor, trilinear, spline, or windowed sinc interpolation.

not use the rotational component of A, but use instead Ag/ ||Ag||2
to modify the gradient directions (see Section 2.1). However, as
Alexander et al. (2001) indicate, the shape of regions in the image
can change (due to spatial registration), but the underlying tissue
microstructure can only change through pure rotation.

We will explain now what angular interpolation is. From the fact
that gj · (Rr) = (RT gj) · r and (1), we can see that sampling the
reoriented fibers using the gradients gj is equivalent to sampling

the unrotated fibers using the rotated gradients RT gj . Hence, the
key idea in AI is that under an affine transformation, the rotation
of the underlying fiber orientations can be obtained by rotating
the applied gradient g′j = RT gj , so that in the new coordinate sys-

tem provided by g′j , the underlying fiber orientations are rotated

by R, as desired. This seems trivial, but the advantage of using
AI is that we do not need to compute tensors from the (noisy)
images or assume any other diffusion model. Also, we do not need
to know a priori the fiber orientations, or if there are fiber cross-
ings on a given voxel. We simply rotate the known gradients as
RT gj . and compute, by angular interpolation, the DW-MRI corre-
sponding to those new orientations, based on the full original test
DW-MRI dataset. Notice here that AI is done on the unit sphere
(||gj||2= ||RTgj||2= 1) and that is why it is called angular inter-
polation. Notice also that AI does not spatially affect the intensity
of the volumes, it interpolates among the volumes corresponding
to the known gradient directions gj. Hence, AI provides a natural
way to register DW-MR images. The usual spatial interpolation is
complemented by angular interpolation to reflect the change in
intensity due to fiber reorientation.

In practice, we do not have an oracle that provide us with the
optimal affine transformation to register the test image. We need
to estimate the affine matrix by minimizing a cost function that
measures the distance between the reference and registered test
images. Hence, we want to find the optimal affine transformation
A that minimize the cost function,

C(A) =
n∑

i=1

m∑
j=1

D
(

Iref (xi , gj), Ĩtest (A
−1xi , RT gj)

)
, (2)

where, D is an appropriate distance metric, such as Euclidean
distance, cross-correlation, or Mutual Information.

In general, angular interpolation of DW-MR images can be
done as (Tao and Miller, 2006),

I̊
(

xi , gj
)
=

∑p
k=1 αk I

(
xi , gk

)∑p
k=1 αk

, i = 1, . . . , n, j = 1, . . . , m, (3)

where αk are the interpolation weights assigned to each of the
p volumes in the test image, defined as non-linear functions of
cos−1(gj · gk), the geodesic distance on the unit sphere between
the desired target gradient, gj, and the available gradients in the
image, gk (see Tao and Miller (2006) for details on the non-linear
function used). Since gj can be any gradient direction, we can use
AI to match two DW-MR images with different gradient tables,
by defining gj as the gradients in the reference image and gk the
available gradients in the test image. From now on, we assume that
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the gradients in the test image have been matched to the gradients
in the reference image (using AI) and hence, p=m.

The linear registration algorithm in FSL is FLIRT (Jenkin-
son et al., 2002), which provides single volume registration using
Euclidean distance, Cross-correlation, and Mutual Information
metrics. Our extension of FLIRT to register DW-MRIs is based
on AI, where, besides simultaneous spatial registration of all the
volumes, AI is also applied on all gradient directions, at each step
of the minimization, as indicated in (3), where can be any of the
distance metrics provided by FLIRT. We will explain in much
more detail the extension to non-linear registration in the next
section, since there, the implementation is more involved with
the particular cost function and small displacement model used
in FSL.

2.2. NON-LINEAR REGISTRATION WITH ANGULAR INTERPOLATION
In the previous section, we introduced the concept of angu-
lar interpolation to linearly register DW-MRIs. This idea can be
extended to non-linear registration of DW-MRIs, if the non-linear
transformation is locally affine. Let T (x)= x+u(x) be a non-
linear transformation applied at x ∈R3, where u(x) is the so called
deformation field, then (Irfanoglu et al., 2008),

T (x) = x + u(x) = A(x)x + t(x),

A(x) = I+ Ju(x), Ju(x) =
du(x)

dx
, (4)

where, A(x) is the equivalent local affine transformation at the
spatial coordinate x, t(x) a pure translation vector, I the identity
matrix, and Ju the Jacobian of u. Hence, the deformation field can
be decomposed into a local affine transformation plus a translation
field.

The non-linear registration tool in FSL is FNIRT (Anders-
son et al., 2007). However, FNIRT can only be used to register
scalar volumes10 and it works under the assumption of a small
deformation field. Here, we will extend FNIRT to the non-linear
registration of DW-MRIs using angular interpolation (AI). We
extend here FNIRT, based on the derivation made by Andersson
et al. (2007), for the case of scalar volumes. In this section, we will
refer only to our FNIRT-based AI model and hence, the equations
apply to DW-MRIs, not just single volumes. As in the case of affine
registration, where the affine matrix applies to all the volumes in
the image, the deformation field here is three-dimensional and
also applies to the whole DW-MR image.

FNIRT models the deformation field as a linear superposition
of three-dimensional cubic B-splines (Andersson et al., 2007),

u(xi) =
∑

k

wk Bk(xi), k = 1, . . . , s, (5)

where wk is the weight along each coordinate for the B-spline
Bk, and s the number of splines, which depends on the spatial
resolution of the field. Then, the non-linearly warped test image
Ĩtest (xi + u(xi), gj) = Ĩtest (xi , gj , w) is a function of the position,

10FNIRT accepts 4D images, but works only with the first volume it encounters and
disregards the remaining volumes.

the gradient orientations, and w, the vector of all the B-spline coef-
ficients defining the deformation field. Notice that all the diffusion
images are in Rm× n, where n correspond to the number of voxels
in the image and m the number of diffusion gradients. Hence, the
entire DWI series can be expressed in vector form as

Iref = [I
T
ref (g1) . . . IT

ref (gm)]
T
∈ Rm×n ,

Ĩtest (w) = [Ĩ
T
test (g1, w) . . . Ĩ

T
test (gm , w)]T ∈ Rm×n ,

(6)

where

Iref (gi) = [Iref (x1, gi) . . . Iref (xn , gi)]
T
∈ Rn ,

Ĩtest (gi , w) = [Ĩtest (x1, gi , w) . . . Ĩtest (xn , gi , w)]
T
∈ Rn .

The cost function to be minimized in FNIRT is the mean square
error11

C(w) =
1

mn
ET E, E = Ĩtest (w)− Iref , (7)

where E is the error between the reference and test images. We
are interested in estimating the deformation field, defined by the
coefficients w, such that it minimizes C(w).

We are going to derive next a solution to (7) that extends the
equations derived in (Andersson et al., 2007) for single volume
registration to registering diffusion data sets. FNIRT solves (7)
using a Gauss-Newton minimization method,

wl+1
= H(wl)−1

∇C(wl),∈ Rs (8)

where l is the iteration index and H is the Hessian, which
can be approximated in terms of the Jacobian as H(wk) ≈

2
mn J(wk)T J(wk) (Fletcher, 1987), with the Jacobian given by

J(w) =
dE

dw
=

d(Ĩtest (w))

dw

=

[
d(Ĩ

T
test (g1, w))

dw
. . .

d(Ĩ
T
test (gm , w))

dw

]T

∈ Rm(n×s). (9)

Let x′ = x + u(w),

d(Ĩtest (gj , w))

dw
=

[
∂ Ĩtest (x′i , gj)

∂wk

]
ik

= Jj(w) ∈ Rn×s . (10)

By the chain rule and (5),

Jj(w) =

[
∂ Ĩtest (x′, gj)

∂x′

∣∣∣
x′ i
�
∂x′

∂wk

∣∣∣
xi

]
ik

=

[
∂ Ĩtest (x, gj)

∂x

∣∣∣
x′ i

Bk(x
′
i)

]
ik

, (11)

11FNIRT minimization algorithm is a gradient descent approach, hence, its
extension to other non analytically derivable cost functions is not straightforward.
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where� is the Hadamard product and
d(Ĩtest (gj ,w))

dw corresponds to
the gradient of the moving image being warped by the defor-
mation field, conveniently expressed as a vector derivative to
highlight the derivative chain rule, and following the derivation
in Andersson et al. (2007). This gradient is computed in FNIRT
using finite differences on an image that is the non-linearly warped
current test image (using the deformation field). Since the defor-
mation field applies the same warp to all the diffusion images, we
compute this gradient on each diffusion gradient, gj, as indicated
in (11).

From (9) and (10),

H(w) =
2

mn

∑
j

(Jj(w))
T

Jj(w) ∈ Rs×s , (12)

where Jj(w) is given by (11). Now, the gradient of the cost function
is given by (see (7) and (9))

∇C(w)=
dC(w)

dw
=

2

mn

dET

dw
E=

2

mn
JT (w)(Ĩtest (w)−Iref ) ∈ Rs .

(13)
Until now, we have extended FNIRT to DW-MRIs and pro-

vided the equations to update w, from (8), (12), and (13), based
on the deformation field model in FNIRT. However, this minimiza-
tion algorithm still does not account for the intensity correction
provided by angular interpolation. Hence, we need to extract the
rotational component from the local affine matrix (see (4)),

I+ Ju(xi) = R(xi)S(xi), i = 1, . . . , n, (14)

where R(xi) and S(xi) are respectively the rotational and strain
components at each voxel. Hence, the transformed test image
becomes

I̊test (w) = [I̊
T
test (R

T (x1)g, w) . . . I̊
T
test (R

T (xn)g, w)]T , (15)

where, g= [g1 . . . gm] and I̊test (RT (xi)g, w) = [I̊test (xi , RT (xi)gj ,
w)]j is the spatially and angularly interpolated test DW-MRI at xi.
Now, the Jacobian is given by

J(w) =

[
∂(I̊

T
test (R

T (x1)g, w))

∂w
. . .

∂(I̊
T
test (R

T (xm)g, w))

∂w

]T

.

(16)
As before, by the chain rule and (5),

Jj(w) =

[
∂ I̊test (xi , RT (xi)gj , w)

∂x

∣∣∣
x′ i

Bk(x
′
i)

]
jk

. (17)

The Hessian can be computed as indicated in (12), and the gra-
dient of the cost function as in (13), but with J as defined in (16),
(17), and I̊test (w) as defined in (15). It remains to define the local
angular interpolation, given by,

I̊test

(
xi , RT (xi)gj , w

)
=

∑m
k=1 αk Ĩtest

(
xi , gk , w

)∑m
k=1 αk

, j = 1, . . . , m.

(18)

As indicated in Equations (7), (12), and (13), the cost func-
tion, Hessian, and gradient are functions of the B-splines rep-
resenting the displacement field. Hence, we can use the multi-
scale Levenberg-Marquart (LM) minimization algorithm used in
FNIRT (Andersson et al., 2007) to iteratively estimate the displace-
ment field. At every iteration of the LM algorithm, the diffusion
volumes are spatially registered using the local affine matrix (14)
and their intensity interpolated using AI (15). This minimiza-
tion method is commonly employed by other algorithms in FSL.
The algorithm for non-linear registration using AI is detailed in
Algorithm 1.

Algorithm 1. Non-linear Registration with Angular Interpola-
tion

Require: Initial deformation field u0(x)
(zero if not provided).
while C(w) decreases do {OPTIMIZATION}

for i = 1 → n do
Compute the Jacobian and Hessian of

the error E using (17) and (12).
Compute the rotational component

R(xi) of I + Ju (xi) as indicated
in (14).

Compute the overall cost C(w) as
indicated in (7).

Compute the gradient of the cost
function ∇C(w) as indicated
in (13).

w ← H(w)−1
∇C(w).

for j = 1 → m do
Compute Ĩtest (xi ,gj ,w) using spatial
interpolation.

end for

Compute I̊test (Xi ,RT (xi)gj ,w) using
angular interpolation (15).

end for
end while

2.3. EXPERIMENTAL DETAILS
2.3.1. Diffusion-weighted MRI acquisitions
Five diffusion-weighted MRI datasets were obtained on a 7T
scanner (Magnex Scientific, UK) driven by a Siemens console
(Erlangen, Germany), and using a Siemens head-gradient insert
capable of 80 mT/m using a single refocused 2D single shot spin
echo EPI sequence, 1.5 mm isotropic voxels, 128 directions at
b= 1500 s/mm2 and 15 b0s (Lenglet et al., 2012). We also use
two DW-MRI datasets obtained on a 3T scanner (Siemens MAG-
NETOM Trio) using whole-body gradients capable of 40 mT/m,
a single refocused 2D single shot spin echo EPI sequence, 2 mm
isotropic voxels, 128 directions at b= 1000 s/mm2 and 16 addi-
tional b0s (Zhan et al., 2013). Each DWI dataset was corrected for
eddy current distortions and head motion using a 12 degree of
freedom linear registration with the initial b0 image. They were
also corrected for geometric distortions,by unwrapping the images
using a field map. The diffusion gradients were reoriented to take
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Table 1 |Tested registration pairs.

Test image Reference image

Subject1 Subject2 Subject3 Subject4 Subject3-2 Subject5 Subject6

Subject1 X X X

Subject2 X X

Subject3 X X

Subject5 X

Subject6 X

into account the spatial transformations used for eddy current dis-
tortions correction [see details in Lenglet et al. (2012), Zhan et al.
(2013)].

The nomenclature used here refers to these images as Subject1
to Subject6, the first four subjects correspond to the 7T data, while
the last two correspond to the 3T data. Subject3 was scanned twice,
at two different dates. We refer here to Subject3 and Subject3-2 to
differentiate them. The research protocols used for the acquisition
of the 7T and 3T data were approved by the Institutional Review
Board (IRB) of the University of Minnesota. All subjects provided
informed written consent prior to participating in the research
protocols. We performed inter-subject registrations among all five
datasets (subjects 1-4) acquired at 7T and separated inter-subject
registrations between the pair of datasets acquired at 3T (Subjects
5 and 6).

There are 20 possible registrations between Subjects 1–4. Tak-
ing into account that Subject3 and Subject3-2 correspond to the
same subject, we choose seven registration pairs (see Table 1),
which cover all the intra-subject and inter-subject registration
cases, without reversing the roles of the reference and test images,
nor registering to the same subject twice. We also performed two
registrations between Subjects 5 and 6 as indicated in Table 1.

Linear registrations in FSL are performed with FLIRT and
the new FLIRT-based AI using cross-correlation as the distance
measure between images (see Section 2.1).

2.3.2. Synthetic transformations
In order to obtain unbiased synthetic transformations, we use the
advanced normalization tools (ANTs)12 to warp spatially a DW-
MRI dataset Subject2 using a pre-defined random set of affine
and non-linear transformations. ANTs uses one of the top five
MRI non-linear registration tools identified in a recent evaluation
study Klein et al. (2009). We generated 20 random affine matrices
(see Kannala et al., 2005, for instance) of the form A=RSD, where
R is a pure rotation matrix, S an upper triangular skew matrix, and
D a diagonal matrix providing scale change (see details in Section
1.1 of the Appendix). We also generated 20 random non-linear
deformation fields, based on the work of Noblet et al. (2006) (see
details in Section 1.2 of the Appendix). These non-linear deforma-
tion fields ensures a topology preserving transformation (Noblet
et al., 2006). As indicated in the introduction, registration of DW-
MRIs requires also intensity corrections to reflect the change in

12http://www.picsl.upenn.edu/ANTS/

fiber orientation. To avoid bias in favor of our proposed tech-
nique, we do not use here our AI method to perform the intensity
correction [Equation (18)]. Instead, we use an eighth order spheri-
cal harmonics (SH) representation of the DW-MRI datasets. Using
this SH basis, it is straightforward to interpolate the intensities at
different gradient directions (see Dhollander et al. (2010); Bouix
et al. (2010); Kamath et al. (2012), for instance). We must point out
here that while the SH representation of DW-MRIs can smooth
out certain features of the diffusion signal (at each particular b-
value), it provides at least an unbiased correction of the image
intensities that will be used for all the other algorithms tested. In
addition, we only use ANTs to perform the spatial warping of each
diffusion direction with a known pre-defined transformation. We
do not use ANTs to try to register the warped images, since that
would bias the results toward ANTs, as it was used to perform the
warp in the first place.

Figure 1A shows the main direction of diffusion in the reference
image, color coded with an RGB colormap (red for left-right, green
for antero-posterior, and blue for superior-inferior), with bright-
ness modulated by the value of the FA. Figure 1B shows the main
direction of diffusion (same color code as before) for a linearly
transformed test image. Figure 1C shows the main direction of dif-
fusion for a non-linearly warped test image, and Figure 1D shows
the corresponding non-linear deformation field, color coded by
the magnitude of the displacement.

2.3.3. Intra- and inter-subject registration
In the previous section, we used known linear and non-linear
transformations, since it allows us to consider the reference image
as ground truth and therefore evaluate the registration accuracy.
On the other hand, there is no consensus on how to evaluate
the registration accuracy for any pair of images (Kannala et al.,
2005; Noblet et al., 2006). In fact, the optimal registration of
a pair of images depends largely on the application and regis-
tering two different subjects should not reduce or eliminate the
structural differences between different brains. Nevertheless, and
for completeness, we also tested the registration algorithms for
pairs of different DW-MRIs, even though registration errors and
anatomical variability cannot be differentiated from each other in
this case.

Non-linear registration between any pair of DW-MR images
requires to conduct first an affine registration. We will use here the
best affine registration found, so that all the non-linear registration
algorithms start with the same linearly registered image.
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FIGURE 1 | (A) Reference image. (B) Affinely warped reference image. (C)
Non-linearly warped reference image using a small displacement field, (D)
Non-linear small deformation field.

2.3.4. Evaluation of results
We compare the results from linear and non-linear registration
using b0-based, DTI-based, and DWI-based registration. The reg-
istration error in terms of the mean squared error (MSE) is
given by

MSE =
1

mn

n,m∑
i=1,j=1

∣∣∣∣∣∣ Itest (xi , gj)− Iref (xi , gj)

Imax

∣∣∣∣∣∣2
2
× 100, (19)

where n is the total number of voxels, m the number of gradi-
ent directions in the reference image, and we are normalizing the
error by the maximum intensity in the reference image Imax. Based
on Wang et al. (2011), we also define the mean fiber orientation
error as

foe =
1

n

n∑
i=1

cos−1
|

〈
vtest

i , v
ref
i

〉
|, (20)

where v
ref
i , vtest

i are respectively, the estimated fiber orientations of
the reference and registered DW-MR images at the i-th voxel.

The fiber orientations of the linearly and non-linearly registered
images correspond to the first eigenvector of the second order ten-
sor model for the reference and registered test images. The second
order tensors (DTI) required by DTI-TK were computed using

DTIFIT from FSL. MedINRIA on the other hand, it uses its own
algorithm to estimate the tensors from the diffusion volumes and
diffusion gradients/b-value(s) information, so we use those within
MedINRIA. DTI-TK and MedINRIA can register scalar and ten-
sor volumes. Hence, the first eigenvector can be extracted from
the registered tensors using DTI-TK interoperability tools, which
also works for MedINRIA, since they are both NIFTI13 compliant.
Given that FLIRT and FNIRT can only register scalar volumes,
we generate registered DW-MRIs by applying the transformation
found (using the b0 volume) by FLIRT and FNIRT to each one
of the volumes in the DW-MR data set. Intensity correction was
also applied to these spatially registered datasets using SH. From
these registered DW-MRIs, we can compute the second order ten-
sors using DTIFIT. Similarly, we can use the spatial transformation
(affine matrix or deformation field) found by DTI-TK and Med-
INRIA to spatially register every volume in the DW-MR datasets,
applying optionally SH intensity correction. This allows us to
obtain registered DW-MR datasets for FLIRT, FNIRT, DTI-TK,
and MedINRIA. The advantage of obtaining registered DW-MRIs
for all methods considered here is that we can then compute, in an
unbiased fashion, the registration MSE from the registered DW-
MR datasets with and without intensity correction. It also allows
us to compare the registration foe of these registered DW-MRIs
with the foe of the registered DTIs and the proposed FLIRT-based
and FNIRT-based AI registration algorithms.

The second order tensors (DTI) can be computed from the
linearly and spatially only registered DW-MRIs (i.e., without SH
correction), by providing the reoriented gradients g′j = RT gj , j =
1, . . . , m, to DTIFIT (see Section 2.1), where R is the rota-
tional component of the affine matrix used to spatially register
the DW-MRIs.

The registration foe was computed on forty14 regions of inter-
est (ROIs) taken from the John Hopkins University (JHU) white
matter atlas (Hua et al., 2008)15. The JHU white matter regions
were registered (using the FA volumes) from the atlas to each one
of the DW-MR reference datasets. The MSE was also computed
on the the same brain regions.

3. RESULTS
3.1. LINEAR REGISTRATION
Table 2 summarizes the results of all the linear registration exper-
iments, as described in Section 2.3, in terms of the mean foe
and MSE, with their corresponding standard deviation, within
parenthesis. Since only two 3T datasets were used to illustrate the
performance of the algorithms at lower spatial resolution, we do
not report here the standard deviation of the registration error.
FLIRT4D-AI indicates the proposed registration of (4D) DW-MR
datasets using angular interpolation. The appended suffix – ten-
sors indicates that the foes were estimated directly from the ten-
sors registered using the corresponding registration method. The
appended suffix – volumes indicates that the affine transformations

13http://nifti.nimh.nih.gov/nifti-1.
14We discarded 8 regions (see supplementary material) from the 48 white matter
labels in the JHU atlas, located in the lower brain areas and that were not always
fully visible in our datasets.
15Available within the FSL library.
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Table 2 | Linear registration (best results are indicated in bold).

Method Registration of 20 synthetic

affinely warped DW-MRIs

Intra- and Inter-subject registration of DW-MRIs

7T 3T

foe MSE foe MSE foe MSE

FLIRT4D-AI 14.5 (1.2) 1.43 (0.3)×10−3 27.5 (3.4) 1.11 (0.2)× 10−3 22.6 0.99× 10−3

FLIRT-volumes 19.2 (3.3) 2.43 (0.7)×10−3 26.7 (3.1) 1.11 (0.2)× 10−3 22.5 0.99× 10−3

FLIRT-volumes-SH 19.3 (3.3) 2.45 (0.7)×10−3 26.8 (3.1) 1.06 (0.2)× 10−3 22.5 0.92× 10−3

DTI-TK-tensors 16.0 (1.4) – 24.0 (2.3) – 21.1 –

DTI-TK-volumes 16.3 (1.4) 1.23 (0.3)×10−3 24.7 (2.5) 1.07 (0.2)× 10−3 23.6 0.86× 10−3

DTI-TK-volumes-SH 15.7 (1.4) 1.26 (0.3)×10−3 26.0 (2.0) 1.06 (0.2)× 10−3 21.8 0.80× 10−3

MedINRIA-tensors 13.8 (0.7) – 24.0 (2.5) – 22.0 –

MedINRIA-volumes 9.6 (0.3) 1.35 (0.3)×10−3 24.5 (2.4) 1.09 (0.2)× 10−3 28.6 0.92× 10−3

MedINRIA-volumes-SH 8.5 (0.4) 1.26 (0.3)×10−3 24.2 (2.3) 1.05 (0.2)× 10−3 21.6 0.86× 10−3

found by the corresponding registration method were used to
spatially register all the diffusion volumes of the test DW-MRIs.
Finally, the appended suffix – SH indicates that SH intensity cor-
rection was performed on top of the spatial registration. There
were 20 affine registrations performed, for all experiments per-
formed using random synthetic affine warps (see Section 2.3.2)
and 9 intra- and inter-subject affine registrations, seven of which
are indicated in Table 1, and the remaining two correspond to
registering back and forth the two 3T datasets (see Section 2.3.3).

Conversion from the ITK16 matrix format used by Med-
INRIA to the standard 4× 4 affine matrix was done using
the c3d_affine_tool17. DTI-TK matrix format directly provides
the 3× 3 submatrix of the affine transformation plus the
displacement. Hence, the rotational component of the affine
matrix can be easily extracted in DTI-TK. The rotational compo-
nent of the affine registration matrices found by all the algorithms
was computed using the decompose_aff method in FSL. We used
the baloo (Ourselin et al., 2000), which is the affine registration
algorithm in MedINRIA 2.0118 and worked very well in all cases
considered.

MedINRIA achieved the lowest foe as well as very low MSE
using the affine transformation to spatially register each diffu-
sion volume and then performing SH intensity correction. The
MSE correlates for the most part with the foe, but not always. For
instance, DTI-TK-volumes have the lowest MSE in Table 2, for the
synthetic affinely warped datasets, but it also has the largest foe.
This could indicate that minimizing the MSE does not necessarily
reduces the foe. Also, The SH intensity correction helps reduce the
foe in some, but not in all cases. This can be understood from the
fact that if the spatial registration was not accurate, then the SH
correction is also going to be inaccurate and could even increase
the error, as can be appreciated in the FLIRT-volumes-SH results
compared to FLIRT-volumes. Notice also that the foe is low in
MedINRIA-volumes despite not having intensity correction using

16http://www.itk.org/
17http://www.itksnap.org/pmwiki/pmwiki.php?n=Convert3D.Documentation
18http://med.inria.fr/

SH. This is due to the fact that we are providing the reoriented
diffusion gradients, nonetheless, the foes and MSE are even lower
using the SH intensity correction, which confirms the importance
of adjusting the intensity of spatially registered diffusion volumes.

A paired t-test reveals that there is significant statistical dif-
ference in favor of SH intensity correction, which reduced the
foe by almost 12% (p= 0.0015), in the synthetic transformations.
FLIRT4D-AI has a much lower foe and MSE than FLIRT-volumes
as well as a lower variance. However, no significant statistical
difference was found in this case, given the large variance of
FLIRT-volumes results. Overall, the results indicate that perform-
ing intensity correction is important, but the accuracy of the
registration algorithm is obviously critical, as can be seen from the
very good results of MedINRIA. The fact that MedINRIA did better
than the other methods, including FLIRT4D-AI, could be attrib-
uted to the fact that its affine registration algorithm is superior to
the other registration methods considered here.

Figure 2 shows a checkerboard comparison between the main
diffusion direction (RGB color coded) of the reference DW-
MRI (Subject2) and one of the synthetic affine transformations.
Figure 3 shows the tensors (represented as RGB color coded
glyphs) of the reference (Subject2) and the registered images
indicated in Figure 2. The best performance of MedINRIA can
be appreciated in these figures, where the checkerboard effect is
lower than in the other methods, followed by DTI-TK, FLIRT4D-
AI, and finally FLIRT-volumes. Figure 4 shows a checkerboard
comparison between the main diffusion direction in Subject3-2
and Subject3 registered to Subject3-2. Figure 5 shows the ten-
sors (represented as RGB color coded glyphs) of the reference
(Subject3-2) and Subject 3 registered to Subject3-2. Since this is
the same individual, the registration errors are much lower than
between different subjects. In terms of the mean foe FLIRT4D-AI
has the lowest error (10.1), followed by FLIRT4D (10.6), DTI-TK
(11.0), and MedINRIA (11.7).

3.2. NON-LINEAR REGISTRATION
Table 3 summarizes the results of all the non-linear registrations
indicated in Section 2.3, in terms of the mean foe and MSE, with
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FIGURE 2 | Checkerboard comparison of the RGB color coded main
diffusion direction between Subject2 and a registered random affine
transformation of Subject2 using (A) FLIRT-volumes-SH. (B)
FLIRT4D-AI. (C) MedINRIA-volumes-SH, (D) DTI-TK-volumes-SH.

their corresponding standard deviation, except for the two 3T
datasets, where only the mean is reported.

The notation is the same as in Table 2, except that now FLIRT is
replaced by FNIRT. Also, the non-linear registration used in Med-
INRIA corresponds to the diffeomorphic demons algorithm. In
this case the appended suffix −volumes indicates that the corre-
sponding registration algorithm used the estimated deformation
field to non-linearly register each one of the diffusion volumes.
The appended suffix −SH indicates that besides non-linear spa-
tial registration, the intensity of the diffusion volumes is corrected
using SH q-space interpolation and the rotational component of
the equivalent local affine transformation [see Equation (14)].
The local affine transformation depends on the Jacobian of the
deformation field [Equation (14)], which was computed using the
deffield2jacobian method in FSL. The estimated deformation fields
in MedINRIA and DTI-TK were converted to FSL format using the
NIFTI Matlab toolbox19.

Table 3 indicates that the lowest foe for the synthetic non-
linearly warped DW-MRIs correspond to FNIRT4D-AI, while
the best foe for the intra and inter-subject registration was
achieved by DTI-TK, which coincides with previous studies

19http://www.mathworks.com/matlabcentral/fileexchange/8797.

FIGURE 3 | Comparison of the tensors (represented as RGB color
coded glyphs) of Subject2 and the registered tensors of a random
affine transformation of Subject2. (A) Subject2 FA indicating the region
selected to show the tensors. (B) Subject2 tensors. Registered tensors
using (C) FLIRT-volumes-SH, (D) FLIRT4D-AI, (E) MedINRIA-volumes-SH,
and (F) DTI-TK-volumes-SH.

reporting that DTI-TK performed very well when compared
to other tensor-based non-linear registration algorithms (Wang
et al., 2011). MedINRIA (demons registration algorithm) did
not perform as well as FNIRT or DTI-TK. Our results also
indicate that SH correction did not improve any of the results
obtained using non-linear spatial registration. This might be
due to the rather coarse internal representation of deformation
fields in FSL that is based on splines (as used in FNIRT). A
paired t-test indicates that FNIRT4D-AI has a 6% lower error
than FNIRT in the synthetic transformations (p= 0.001). The
fact that DTI-TK performed better than FNIRT4D-AI for intra-
and inter-subject registration possibly indicates that differences
between the underlying algorithms are bigger than the gain
obtained using AI or SH. This also corroborates our previ-
ous results on linear registration, where MedINRIA performed
optimally. This is also inevitable for such a study, where var-
ious algorithms, with various strengths, and weaknesses are
compared.
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FIGURE 4 | Checkerboard comparison of the RGB color coded main
diffusion direction between Subject3-2 and Subject3 registered to
Subject3-2 using (A) FLIRT-volumes-SH. (B) FLIRT4D-AI. (C)
MedINRIA-volumes-SH, (D) DTI-TK-volumes-SH.

Figure 6 shows a checkerboard comparison between the main
diffusion direction (RGB color coded) of the reference DW-MRI
(Subject2) and one of the registered synthetic random non-linear
warped DW-MRIs. Figure 7 shows the tensors (represented as
RGB color coded glyphs) of the reference (Subject2) and the reg-
istered images indicated in Figure 6. The best performance of
FNIRT4D-AI and FNIRT-volumes is clear over the other meth-
ods. Figure 8 shows a checkerboard comparison between the main
diffusion direction in Subject3 and Subject2 registered to this sub-
ject. Figure 9 shows the tensors (represented as RGB color coded
glyphs) of the reference (Subject3) and Subject2 registered to Sub-
ject3. As expected, there are many differences between the reference
and registered image, since they correspond to different individ-
uals. However, it is not difficult to see that the registered images
using DTI-TK followed by FNIRT4D-AI have lower differences
with respect to the reference, compared to FNIRT-volumes and
MedINRIA.

4. DISCUSSION
Previous work using higher order models (Barmpoutis et al., 2007;
Cheng et al., 2009; Dhollander et al., 2010; Verma and Bloy, 2010;
Yap et al., 2010; Du et al., 2011; Geng et al., 2011) compared
their proposed model with DTI or single volume registration,
using exactly the same underlying registration algorithm, where
the difference is due only to the model used. We addressed here a

FIGURE 5 | Comparison of the tensors (represented as RGB color
coded glyphs) of Subject3-2 and the tensors Subject3 registered to
Subject3-2. (A) Subject3-2 FA indicating the region selected to show the
tensors. (B) Subject3-2 tensors. Registered tensors of Subject3 using (C)
FLIRT-volumes-SH, (D) FLIRT4D-AI, (E) MedINRIA-volumes-SH, and (F)
DTI-TK-volumes-SH.

slightly more challenging task using different registration algo-
rithms (with the exception of FLIRT and FNIRT in FSL), in
order to provide a useful and more practical comparison. The
intrinsic differences among the different registration algorithms
analyzed here can be larger than the differences found using AI or
SH intensity correction. Consequently, AI should also be imple-
mented within other registration algorithms, in order to make
it competitive with other well-known and tested state of the art
registration algorithms (based on second order tensors or higher
order models such as the ODF), a representative set of which has
been used in this study. Nonetheless, we have clearly demonstrated
that AI improves the registration accuracy in many cases over
existing state-of-the-art algorithms. We also provided a frame-
work and software to perform FNIRT-based AI registration or just
intensity correction, which will enable future comparative studies
between various registration algorithms using different diffusion
models.

Despite the strong differences between the different algorithms
used here, the results indicate that registration of DW-MR datasets
should include intensity correction within the minimization algo-
rithm, as proposed in our extension of FNIRT. Intensity correc-
tion as a post-processing step after spatial correction does not
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Table 3 | Non-linear registration (best results are indicated in bold).

Method Registration of 20 synthetic

affinely warped DW-MRIs

Intra- and Inter-subject registration of DW-MRIs

7T 3T

foe MSE foe MSE foe MSE

FLIRT4D-AI 3.6 (0.1) 1.0 (0.01)×10−4 19.8 (1.9) 2.9 (0.3)×10−4 18.4 6.1×10−4

FLIRT-volumes 3.8 (0.1) 1.4 (0.01)×10−4 21.5 (1.8) 3.2 (0.4)×10−4 20.9 6.6×10−4

FLIRT-volumes-SH 4.2 (0.2) 1.1 (0.02)×10−4 21.5 (1.8) 3.1 (0.4)×10−4 20.8 6.3×10−4

DTI-TK-tensors 4.5 (0.2) – 13.4 (0.7) – 13.3 –

DTI-TK-volumes 4.3 (0.2) 1.1 (0.03)×10−4 15.1 (1.0) 3.3 (0.5)×10−4 24.0 9.3×10−4

DTI-TK-volumes-SH 4.2 (0.2) 1.2 (0.03)×10−4 16.5 (1.2) 3.3 (0.5)×10−4 27.9 10.0×10−4

MedINRIA-tensors 5.7 (0.4) – 29.3 (2.0) – 23.0 –

MedINRIA-volumes 4.7 (0.3) 0.6 (0.07)×10−4 25.9 (1.9) 2.6 (0.3)×10−4 27.1 8.1×10−4

MedINRIA-volumes-SH 6.5 (0.5) 1.4 (0.07)×10−4 32.6 (2.2) 2.7 (0.3)×10−4 30.6 8.7×10−4

FIGURE 6 | Checkerboard comparison of the RGB color coded main
diffusion direction between Subject2 and a registered random
non-linear transformation of Subject2 using (A) FNIRT-volumes-SH. (B)
FNIRT4D-AI. (C) MedINRIA-volumes-SH, (D) DTI-TK-volumes-SH.

necessarily improve results, and in fact can increase the foe. In addi-
tion, minimizing the MSE does not necessarily minimize the foe.
We proposed here to use angular interpolation of q-space rather
than SH interpolation, since it is simpler and uses the information
in the image to perform intensity correction in the DW-MRIs,
while SH uses a smooth basis that might lead to loss of informa-
tion. Hence, AI should provide a better intensity correction than
SH. Since AI is currently based on the intensity of the images,

FIGURE 7 | Comparison of the tensors (represented as RGB color
coded glyphs) of Subject2 and the tensors of a registered random
non-linear transformation of Subject2. (A) Subject2 FA indicating the
region selected to show the tensors. (B) Subject2 tensors. Registered
tensors using (C) FLIRT-volumes-SH, (D) FLIRT4D-AI, (E)
MedINRIA-volumes-SH, and (F) DTI-TK-volumes-SH.

future work should address the possibility of extending the idea of
AI to use a different feature.

Finally, no significant difference was found between the reg-
istration errors using the 3T dataset and the 7T datasets. This
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FIGURE 8 | Checkerboard comparison of the RGB color coded main
diffusion direction between Subject3 and Subject2 registered to
Subject3 using (A) FNIRT-volumes-SH. (B) FNIRT4D-AI. (C)
MedINRIA-volumes-SH, (D) DTI-TK-volumes-SH.

indicates that the algorithms studied can be applied to clinical
data, where 3T datasets are more common than 7T data.
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APPENDIX
GENERATION OF SYNTHETIC DEFORMATIONS
The following matrices R, S, and D provide random three-
dimensional rotations, skewness, and change of scale, respectively

R =


1 0 0 0
0 cosα −sinα 0
0 sinα cosα 0
0 0 0 1




cosβ 0 sinβ 0
0 1 0 0
−sinβ 0 cosβ 0

0 0 0 1



×


cosγ −sinγ 0 0
sinγ cosγ 0 0

0 0 1 0
0 0 0 1

 ,

S =


1 a b 0
0 1 c 0
0 0 1 0
0 0 0 1

 , D =


δ 0 0 0
0 δ 0 0
0 0 δ 0
0 0 0 1

 ,

where α, β, γ are uniform random rotation angles along the x, y,
and z axis respectively in the [−15˚, 15˚] range; a, b, c are uniform
random numbers in the −0.125, 0.125] range; and δ is a scale
uniform random number in the [0.875, 1.125] range.

Random nonlinear warps
The following equation defines the displacement field u(x) along
the x, y, and z axis,

u(x) =


ax sin

(
wπx

nx

)
ay sin

(
wπy

ny

)
az sin

(
wπz

nz

) s.t .

(
|ax |

nx
+
|ay |

ny
+
|ay |

ny

)
≤

1

wπ
,

where nx, ny, nz are the number of voxels along the x, y, z
axis, respectively, and w, ax, ay, az are uniform random variables
satisfying the indicated conditions.

IMPLEMENTATION DETAILS
Effect of Interpolation on FA
The effect of spatial interpolation on DT-MRIs has been recently
studied (Chao et al., 2009), indicating that the measured Fractional
Anisotropy (FA) can be significantly reduced if linear interpolation
is used. Basically, linear interpolation acts as a low-pass filter with
equal weights that averages the tensors, leading to tensor swelling
(Arsigny et al., 2005) and a reduction of the estimated FA values.
We have not found an equivalent study for the effect of spatial
interpolation of DW-MRIs on the estimated FAs, but we were able
to see the same effect on the estimated FA values from the regis-
tered DW-MRIs when tri-linear interpolation is used, which is the
default interpolation in FSL. In addition, we also found that using
the recommended values in Tao and Miller (2006) for the stan-
dard deviation in (3) and (19), AI can also reduce the calculated
FA values. Notice that AI can also be seen as a Gaussian filter, with
zero mean and standard deviation σ defining the weights of the
interpolating window.

We address this problem by using a Blackman windowed sinc
interpolation filter (provided by FSL) for the spatial interpolation

and reducing the standard deviation of the Gaussian coefficients
for AI, in such a way that only the volumes closest to the speci-
fied gradient are accounted for. Only the closest gradients in the
image should indeed be used to interpolate along a given gradient
direction, otherwise, volumes with different gradients (and very
different intensity responses) could affect the intensities computed
for a new gradient direction.

Figure A1A shows the estimated FA for the registered test
image using trilinear interpolation and the smoothing parameter
σ computed from the average of the geodesic distances between
neighboring gradients, as indicated in Tao and Miller (2006),
Figure A1B shows the estimated FA for the registered test image
using windowed sinc interpolation and a much lower σ (0.005)
value, and Figure A1C compares the histogram of FA values for the
reference and registered test images using the cited interpolation
methods. As can be seen from these images, using sinc interpo-
lation and a lower σ the FA values gets closer to those from the
original image.

Registration
We extended FSL to register DW-MR images, trying always to
minimize the impact on the library, by using as much as possible
the algorithms and classes already implemented there. Given that
working with the whole DW-MR image with AI increases the com-
putation cost, especially for nonlinear registration, we parallelized
the linear and nonlinear registration algorithms using OpenMP1

and modify the AI algorithm to reduce computational costs. As can
be seen from (3) and (18), we need to combine linearly hundreds
of volumes, which is a costly operation. We reduced significantly
the running time by fixing a low σ and using a kd-tree to search for
the 16 closest gradients to a given target gradient orientation. The
value of σ and the number of closest neighbors used were found
experimentally as those values that produces a negligible differ-
ence with the original algorithm that uses all the volumes in the
DW-MR image. The kd-tree is constructed only once, using all the
gradients in the image, and it is used later in all the computations
involving AI, which provides a reduction in the time complexity of
the algorithm from O(mn) to O(n log (m)), where m is the number
of volumes in the image and n the number of voxels.

We investigated also the effect of the number of volumes, for
nonlinear registration, and found that using just m = 65 volumes
were enough to register the whole DW-MRIs obtaining results
very close to those using all the volumes in the original images
(128 volumes), which provides a further reduction in the running
time of nonlinear registration. Currently, linear registration can
take 15 min using 4 processors and all the volumes in the image,
while nonlinear registration can take 30–45 min using 8 processors
and 65 volumes.

In MedINRIA, we used the b0 volume to obtain a transforma-
tion matrix and then perform linear and nonlinear registration of
the estimated DT-MRIs. DTI-TK provides registration algorithms
to register linearly and nonlinearly (Zhang et al., 2006) DT-MRIs
as well as tools to convert from the tensor estimates from FSL-dtifit
to the NIFTI2 format that DTI-TK adheres to.

1http://openmp.org/wp.
2http://nifti.nimh.nih.gov/
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Table A1 | John Hopkins University (JHU) white matter selected labels.

Label Region

1 Genu of corpus callosum

2 Body of corpus callosum

3 Medial lemniscus R

4 Medial lemniscus L

5 Inferior cerebellar peduncle R

6 Inferior cerebellar peduncle L

7 Superior cerebellar peduncle R

8 Superior cerebellar peduncle L

9 Cerebral peduncle R

10 Cerebral peduncle L

11 Anterior limb of internal capsule R

12 Anterior limb of internal capsule L

13 Posterior limb of internal capsule R

14 Posterior limb of internal capsule L

15 Retrolenticular part of internal capsule R

16 Retrolenticular part of internal capsule L

17 Anterior corona radiata R

18 Anterior corona radiata L

19 Superior corona radiata R

20 Superior corona radiata L

21 Posterior corona radiata R

22 Posterior corona radiata L

23 Posterior thalamic radiation (include optic radiation) R

24 Posterior thalamic radiation (include optic radiation) L

25 Sagittal stratum (include inferior longitidinal fasciculus and

inferior fronto-occipital fasciculus) R

26 Sagittal stratum (include inferior longitidinal fasciculus and

inferior fronto-occipital fasciculus) L

27 External capsule R

28 External capsule L

29 Cingulum (cingulate gyrus) R

30 Cingulum (cingulate gyrus) L

31 Cingulum (hippocampus) R

32 Cingulum (hippocampus) L

33 Fornix (cres) / Stria terminalis (can not be resolved with

current resolution) R

34 Fornix (cres) / Stria terminalis (can not be resolved with

current resolution) L

35 Superior longitudinal fasciculus R

36 Superior longitudinal fasciculus L

37 Superior fronto-occipital fasciculus (could be a part of

anterior internal capsule) R

38 Superior fronto-occipital fasciculus (could be a part of

anterior internal capsule) L

39 Uncinate fasciculus R

40 Uncinate fasciculus L

The following regions were not considered, since they are located in the lower

brain areas and that were not always fully visible in our datasets because of

restricted field of view: middle cerebellar peduncle, pontine crossing tract, sple-

nium of corpus callosum, fornix (column and body of fornix), corticospinal tract

R, corticospinal tract L, tapetum R, and tapetum L.

FIGURE A1 | (A) FA of the registered image using trilinear interpolation and
large σ . (B) FA registered using sinc interpolation and small σ , (C)
Histograms of the FAs.
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