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FN400 amplitudes reveal the 
differentiation of semantic 
inferences within natural vs. 
artificial domains
Changquan Long1, Mingming Zhang1, Ruifang Cui1 & Jie Chen2

Category-based inferences allow inductions about novel properties based on categorical memberships 
(e.g., knowing all trout have genes [premise] allows us to infer that all fish have genes [conclusion]). 
Natural (N) and artificial (A) domains are the most obvious and traditional distinctions in categorization. 
The distinct event-related potential (ERP) responses for N and A domains have not yet been examined 
during category-based inferences. In this study, the differences between ERP inference parameters 
within N and A domains were measured during inductive decision processing, while controlling the 
premise−conclusion similarity and premise typicality between those two domains. Twenty-two 
adults were asked to make a decision on whether a conclusion was definitely weak, possibly weak, 
possibly strong, or definitely strong, based on a premise. The behavioral results showed that semantic 
inferences within the N domain shared similar inductive strength, similar “correct” response rates, and 
similar reaction times with that within the A domain. However, the ERP results showed that semantic 
inferences elicited smaller frontal-distributed N400 (FN400) amplitudes within the N domain than 
within the A domain, which suggested that knowledge of the ontological domain of a category affects 
category-based inferences, and underlaid the increased categorical coherence and homogeneity in the 
N as compared to the A categories. Therefore, we have distinguished the cognitive course of semantic 
inferences between N and A domains.

Categories are essential for human conceptual organization. A central function of categorization is making pre-
dictions1,2. People can use their categorical knowledge to generalize novel properties from categorical examples, 
termed category-based inferences. For example, hearing that “All trout [premise category] have novel property X 
[premise property]”, one may infer that “all fish [conclusion category] would have novel property X [conclusion 
property]”, because trout belongs to the fish category. This type of inference has various names in the literature, 
including category-based induction, categorical induction, property induction, feature induction, and induction 
projection3.

One of the most obvious and traditional distinctions in categorization is between the natural (N) and artificial 
(A) domains. The categories in the N domain include naturally occurring objects (e.g., animal), and the categories 
in the A domain include produced or manufactured objects (e.g., tool)4,5. Researchers suggest that the N and 
A domains are distinct in the nature of their ontology6–11. The categories in the N domain are generally tightly 
structured, coherent, and share many similarities (e.g., animals have similar internal parts, external structure, and 
behaviors). In contrast, the categories in the A domain are typically more loosely structured, less homogeneous, 
and share fewer important features (e.g., tools vary in their shape, color, and their constituents).

However, few studies have directly compared the differences between N and A domains during category-based 
inferences4,5. Many previous studies have examined category-based inferences in the N domain; relatively fewer 
studies include stimuli in both N and A domains during category-based inference tasks. Several studies have 
shown that knowledge about the nature of a category, including its ontological domain, such as N and A catego-
ries, influences inferences6–8,11. For example, in a study by Coley et al.8, only category coherence expectations were 
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found to predict inductive inferences for the N domain, but both knowledge and category coherence expectations 
predicted inductive inferences for the A domain. Moreover, several studies have found that adults drew more 
inferences within the N than within the A domain6–10. Researchers suggested that the varied patterns of inferences 
between the N and A domains can be explained by the differences in the categorical coherence and homogeneity 
between N and A domains (ontological distinction account)6–8,10,12.

However, most previous studies have not matched categories between the N and A domain during infer-
ring. For example, some studies have found that the degree of typicality of premise categories affected infer-
ences13,14, while few studies have matched the typicality of premise categories between the N and A domains 
when comparing inferences within these two kinds of categories. Moreover, several theories have suggested that 
category-based inferences are driven by similarities between premises and conclusions, termed similarity-based 
models of category-based inferences15–18. According to these models, if the degree of similarity between the prem-
ise and conclusion under the N and A domain are similar, then the inference decision in both domains would be 
similar. This hypothesis is supported by Badger and Shapiro4. They found that children’s inferences did not vary 
by domains while controlling for perceptual similarity across those two domains. However, Badger and Shapiro4 
did not test whether or not adults have similar pattern to children in their study.

The present study therefore aimed to compare adults’ inferences within the N and A domains after match-
ing the degree of premise-conclusion similarity and the degree of premise typicality between them, by using 
event-related potentials (ERPs). ERPs can uncover cognitive processes in the brain with high temporal sensitiv-
ity19. Although previous studies have measured the ERP responses to semantic category-based inferences13,14,20–24, 
inferences within the N and the A domains were not directly compared. In the present study, the semantic cate-
gories of both the N and A domains were considered. Participants were asked to decide whether a conclusion was 
definitely weak, possible weak, possible strong, or definitely strong, based on a premise.

Behavioral and ERP responses to the conclusions were recorded and analyzed. As the similarity-based models 
suggested, we predicted that no significant behavior response differences would be found because the degree 
of premise typicality and premise-conclusion similarity between the two domains were matched in the present 
study. However, we predicted that the differences on ERP results would appear, as the ERP measurements are 
more sensitive to processing differences than behavioral data19. More specifically, we predicted that the semantic 
categories from the N domain would elicit smaller FN400 amplitudes than those from the A domain when mak-
ing inferences. FN400 is a negative deflection at 200–600 ms, with frontal scalp distribution. Previous ERP studies 
found that the amplitudes of FN400 were influenced by various factors during sematic category-based infer-
ences13,20–25. The attenuated FN400 amplitudes were associated with elevated conceptual priming26–28. Inferences 
within the N domain would therefore elicit smaller N400 amplitudes than those within the A domain because 
of the enhanced conceptual priming produced by increased categorical coherence and homogeneity in the N 
compared to the A domain.

Methods
Ethical statements.  This study was approved by the ethics review board at the Faculty of Psychology, 
Southwest University, Chongqing, China. Written informed consent was obtained from all participants. The 
methods were carried out in accordance with the relevant guidelines and regulations.

Participants.  Twenty-two paid undergraduates (mean age: 20.35 years, standard deviation [SD]: 1.45; 14 
women) were recruited for the ERP study. All participants were right-handed, had normal or corrected-to-normal 
eyesight, and had no neurological disorders. Prior to the formal ERP experiment, 35 undergraduates (mean age: 
20.71, SD: 1.81; 17 women) evaluated the degree of experimental items’ familiarity, 35 undergraduates (mean age: 
20.57, SD: 1.58; 18 women) evaluated the degree of experimental items’ typicality, and another 24 undergraduates 
(mean age: 20.41, SD: 1.32; 15 women) evaluated the degree of similarity between each item and its superordinate 
category. The evaluators did not participate in the ERP study.

Experimental design.  Two types of premise category domains were used: the N and the A domains. The 
novel properties were presented by a capital letter and an Arabic number (e.g., X1) as blank properties, to reduce 
the influence of background knowledge15. Similar to previous studies14,20, a category and a property were pre-
sented simultaneously, linked by a blank space to indicate that the category had this novel property (e.g., “apple 
X1” means “apple has novel property X1”.).

Two types of conclusion conditions were also involved: congruent (+) and incongruent (−) conclusions. For 
congruent conclusions, the conclusion categories included the premise categories (e.g., premise: apple X1; con-
clusion: fruit X1). For incongruent conclusions, the conclusion categories excluded the premise categories (e.g., 
premise: apple X1; conclusion: furniture X1). The premises and conclusions shared the same properties in each 
trial. Therefore, there were four sub-conditions: congruent conclusions with a natural premise category (N+), 
congruent conclusions with an artificial premise category (A+), incongruent conclusions with a natural premise 
category (N−), and incongruent conclusions with an artificial premise category (A−). Similar to previous stud-
ies14,20, both the conclusion categories and conclusion properties were presented simultaneously, with a question 
mark (?) to ask participants to judge the inference strength of the conclusions, based on a 4-point Likert scale.

Materials
All premise categories were basic level categories and were presented with Chinese characters, involving 48 N 
category items and 48 A category items. The premise categories came from four N (vegetables, birds, fruits, and 
mammals) and four A (tools, furniture, clothing, and household electrical appliances) categories, and these 
eight superordinate categories were used as the conclusion categories, and were presented in Chinese characters. 
Therefore, there were 48 trials for each sub-condition, resulting in a total of 192 trials in the formal experiment. 



www.nature.com/scientificreports/

3SCiENtifiC Reports |  (2018) 8:12364  | DOI:10.1038/s41598-018-30684-3

An additional 20 trials (five trials for each sub-condition) were used for training and did not appear in the formal 
experiment.

Previous studies have shown that the repetitions and frequencies of words affected N400 amplitudes29–31. To 
match the repetition times, for premise categories, every 12 basic level categories came from one superordinate 
level category. As a result, the N category items involved 12 kinds of vegetables, 12 kinds of birds, 12 kinds of 
fruits, and 12 kinds of mammals; the A category items involved 12 kinds of tools, 12 kinds of clothing, 12 kinds 
of furniture, and 12 kinds of appliances. Each premise category appeared twice. For conclusion categories, each 
superordinate category (vegetables, birds, fruits, mammals; tools, furniture, clothing, and appliances) appeared 24 
times: 12 times for congruent condition, and 12 times for incongruent condition. Moreover, we checked the char-
acters’ frequencies (times per 100,000) in the formal experiment against the Corpus Word list (www.cncorpus.
org), and found no significant differences between those two domains (N: 51.68 [SD = 7.46]; A: 42.09 [SD = 6.08]; 
F [1, 94] < 1, p = 0.76).

Before the ERP experiment, the familiarity and typicality of stimuli were evaluated. Participants were required 
to determine the degree to which they were familiar with the premise category words based on a 5-point Likert 
scale (1, least familiar; 5, most familiar). For example, participants were instructed to “please judge the degree to 
which you are familiar with the word ‘apple’ on a 5-point Likert scale; 1 represents least familiar, and 5 represents 
most familiar”. The familiarity differences between N and A stimuli were not significant (N: 4.20 [SD = 0.38], 
range: 3.10−4.95; A: 4.08 [SD = 0.51], range: 3.55 – 4.84; F [1, 34] = 1.38, p = 0.25). The degree of typicality of the 
premise categories was evaluated on a 6-point Likert scale (1, least typical; 6, most typical). For example, partic-
ipants were instructed to “please judge the degree to which you think that apples are typical of fruit on a 5-point 
Likert scale; 1 represents least typical, and 5 represents most typical”. The typicality for the two types of stimuli 
were not statistically significantly different (N: 4.80 [SD = 0.36], range: 3.53–5.64; A: 4.80 [SD = 0.53], range: 
4.03–5.48; F [1, 34] < 1, p = 0.99).

Moreover, the degree of global similarity between each item and its superordinate category was evaluated 
on a 7-point Likert scale (1, least similar; 7, most similar). For example, participants were instructed to “please 
judge the degree to which you think that apples are globally similar to fruit on a 7-point scale; 1 represents least 
similar, and 7 represents most similar”. The global similarities of the two types of stimuli were also not statistically 
significantly different between items and their superordinate categories, under congruent conclusions (N+ : 5.75 
[SD = 0.73], range: 4.50–7.00; A+ : 5.83 [SD = 0.80], range: 4.71–7.00; F [1, 23] = 1.90, p = 0.18) as well as under 
incongruent conclusions (N−: 1.22 [SD = 0.33], range: 1.00–2.33; A−: 1.19 [SD = 0.36], range: 1.00–2.29; F [1, 
23] = 1.27, p = 0.27).

Procedures.  Figure 1 illustrates the experimental procedure. Participants were seated 80 cm in front of a 
monitor and were instructed to decide on whether a conclusion was definitely weak, possibly weak, possibly 
strong, or definitely strong, based on a premise. In each trial, a “+” was first presented at the center of the screen. 
Following the “+”, as shown in Fig. 1, a premise was presented (e.g., “apple X1”). After the premise, the conclu-
sions (e.g., “fruit X1?”) were presented. Participants were asked to infer the inductive strength of the conclusion 
based on the premise, by pressing four different number keys representing definitely weak, possibly weak, pos-
sibly strong, and definitely strong responses, as accurately and quickly as possible. The experimental trials were 
divided into four blocks, and were presented randomly. Participants were allowed to rest for 60 s after completing 
each block. Moreover, to counterbalance key pressing across participants, 11 participants were instructed that 1 
was “definitely weak”, 2 was “possibly weak”, 3 was “possibly strong”, and 4 was “definitely strong”, while the other 
11 participants were instructed that 1 was “definitely strong”, 2 was “possibly strong”, 3 was “possibly weak”, and 
4 was “definitely weak”.

EEG data acquisition and pre-processing.  An electroencephalogram (EEG) was recorded from 64 elec-
trode sites across the scalp using a Neuroscan cap (Neuroscan, Herndon, VA, USA) with Ag/AgCl electrodes 
while participants responded to the conclusions. The electrodes were positioned according to the International 
10–20 system. A ground electrode was placed at the middle of FPz and Fz. The recording was referenced to an 
electrode between Cz and CPz. A vertical electrooculogram (EOG) was recorded supra- and infra-orbitally at 
the left eye; and the horizontal EOG was recorded from the left versus the right orbital rim. The EEG and EOG 

Figure 1.  Experimental procedure.

http://www.cncorpus.org
http://www.cncorpus.org
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were amplified using a SynAmps2 amplifier (Neuroscan) and digitized in a 500-Hz sample size. The EEG and 
EOG were amplified with a band-pass filter from 0.05 to 200 Hz in AC mode. All interelectrode impedances were 
maintained below 5 kΩ. Off-line analyses were performed in MATLAB (MathWorks, Natick, MA, USA) using the 
EEGLAB32 and ERPLAB toolboxes33. EEG data were filtered using IIR-Butterworth filters with half-power cutoffs 
at 0.1 and 30 Hz (roll-off = 12 dB/oct)19. Independent component analysis (ICA) was subsequently performed 
to correct components associated with eye movements and eye-blinks. Then, the ICA-corrected EEG data were 
re-referenced to the average of the left and right mastoids19.

The epochs were segmented time-locked to the conclusions. The “definitely strong” and “possibly strong” 
responses to congruent conclusions, and the “definitely weak” responses and “possibly weak” responses to incon-
gruent conclusions were identified as “correct” responses. Only “correct” responses were overlapped and aver-
aged. Each epoch was 1200 ms, including a 200-ms pre-stimulus baseline correction. Trials were excluded as noise 
by using peak-to-peak amplitude sliding window method19, with a window-width of 200 ms, a window step of 
100 ms, and a threshold of 65 μV. This resulted in 36.82 trials (SD: 5.03) for N+, 38.27 trials (SD: 5.17) for N−, 
37.45 trials (SD: 4.65) for A+, and 37.68 trials (SD: 5.75) for A− conditions. There was no significant difference 
among the number of trials under four conditions.

Data analyses.  Behavioral and ERP responses to the conclusions were analyzed. Two-factor 
repeated-measures analyses of variances (ANOVAs) were used to analyze the response strength, “correct” 
response rates, and reaction times of “correct” responses. The factors were domains (N or A) and congruencies 
(+ or −). For the response strength, the “definitely weak” response was defined as a score of 1, the “possibly weak” 
response was defined as a score of 2, the “possibly strong” response was defined as a score of 3, and the “definitely 
strong” response was defined as a score of 4.

Figure 2 shows the electrode layout and the region of interest (ROI). According to previous studies14,20,28,34 
and visual observation, the F3, F1, Fz, F2, F4, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, and C4 electrode sites 
at the fronto-central region were selected, and the mean amplitudes of FN400 were measured in a 250–450-ms 
time-window after conclusion onset. To illustrate relatively precise temporal courses, data analysis was executed 
for each 50 ms. Moreover, to increase the statistical strength, and to reduce false effects35, these electrodes were 
collapsed by averaging. The 2-factor repeated-measures ANOVAs were used to analyze the mean amplitudes of 
FN400. The factors were domains (N or A) and congruencies (+ or −). For all analyses, the p-values of F tests 
were corrected for deviations using the Greenhouse–Geisser method, and post-hoc multiple comparisons were 
performed by the Bonferroni procedure. For the analysis of the mean amplitudes of FN400 at 250–450-ms, the 
p-values were corrected using the false discovery rate for multiple comparisons (p < 0.05 determined statistical 
significance).

Results
Behavioral results.  Figure 3 shows the averaged inference strength, “correct” response rates (ACC), and 
reaction times (RTs) of “correct” responses for each sub-condition. For averaged inference strength, no significant 
main effect of domains (F [1, 21] = 3.19, p = 0.09, η2

p = 0.13) suggests that N arguments had similar response 
scores to A arguments. A significant main effect of congruencies (F [1, 21] = 675.76, p < 0.001, η2

p = 0.97) sug-
gests that the response scores under congruent conclusions were greater than those under incongruent conclu-
sions. The interaction of domains and congruencies did not reach significance (F [1, 21] < 1, p = 0.45, η2

p = 0.03).
For both “correct” response rates and reaction times of “correct” responses, the main effects of domains (ACC: 

F [1, 21] < 1, p = 0.85, η2
p < 0.01; RT: F [1, 21] < 1, p = 0.88, η2

p < 0.01) and congruencies (ACC: F [1, 21] = 2.39, 
p = 0.14, η2

p = 0.10; RT: F [1, 21] < 1, p = 0.87, η2
p < 0.01) were not significant. The interactions between domains 

Figure 2.  The electrode layout and the region of interest (ROI). The red cluster is ROI that be used for the 
further two-factor repeated-measures analyses of variances (ANOVAs) for ERP data.
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and congruencies also did not reach significance (ACC: F [1, 21] < 1, p = 0.45, η2
p = 0.03; RT: F [1, 21] < 1, 

p = 0.41, η2
p = 0.03). Altogether, inferences within the N and A domain categories had similar response strengths 

(N+: M = 3.63, SD = 0.40; A+: M = 3.67, SD = 0.39; N−: M = 1.07, SD = 0.15; A−: M = 1.08, SD = 0.18), “cor-
rect” response rates (N+: M = 93.42%, SD = 6.15%; A+: M = 94.32%, SD = 5.05%; N−: M = 95.50%, SD = 4.45%; 
A-: M = 94.89%, SD = 4.72), and reaction times for correct responses (N+: M = 830 ms, SD = 199 ms; A+: 
M = 825 ms, SD = 196; N−: M = 827 ms, SD = 203 ms; A−: M = 835 ms, SD = 197 ms).

ERP results.  Figure 4 shows the ERP responses to the congruency effects. Figure 5 shows the ERP responses to the 
domain effects. Table 1 shows the results of two-way repeated-measures ANOVAs during 250–450-ms for every 50-ms.

During the 250–300-ms, 300–350-ms, and 350–400-ms time window, the interaction between domains and 
congruencies was not significance (Table 1). However, a main effect of domains reached significance, revealing 
that A arguments elicited more negative amplitudes than N arguments. Also, a main effect of conclusion congru-
ency reached significance, revealing that incongruence arguments elicited more negative amplitudes than con-
gruency arguments (Table 1). During the 400–450-ms time window, no significant conclusion congruency effects 
and domain effects were found (Table 1). Altogether, the results indicated that A arguments elicited more negative 
amplitudes than N arguments under both congruent and incongruent conditions, and incongruent conclusions 
elicited more negative amplitudes than congruent conclusions under both N and A arguments in the 250–400-ms 
time window at the fronto-central region.

Discussion
The present study distinguished between the ERP responses to semantic inferences in the N and A domains 
after matching the degree of premise-conclusion similarity and the degree of premise typicality between the two 
domains. There were no significant differences in inference strength, “correct” response rates, and reaction times 
of “correct” responses between inferences in the N and A domains. However, the ERP results, in terms of the 
FN400 amplitudes, differentiated the inferences between the N and A domains.

Figure 3.  The averaged inference strength, “correct” response rates (ACC), and reaction times (RTs) of “correct” 
responses for each sub-condition. N+ indicates “congruent conclusions with a natural premise category”; A+ 
indicates “congruent conclusions with an artificial premise category”; N− indicates “incongruent conclusions 
with a natural premise category”; A− indicates “incongruent conclusions with an artificial premise category”. 
Error bars represent mean ± s.e.m. ***p < 0.001.
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In line with the prediction of the similarity-based models of semantic inference15–17, the behavioral results 
of this study showed that semantic inferences within the N and A domains shared similar inference strength, 
“correct” response rates, and reaction times of “correct” response. The similarity-based models of semantic 
inference15–17 suggested that premise–conclusion similarity and premise typicality play central roles during 
category-based inferences. Badger and Shapiro4 found that 4–9-year-old children did not vary their inferences 
between the N and A domains while matching over perceptual similarity across those two domains. Extending 
to Badger and Shapiro4, in the present study, adults have no significant behavior differences between inferences 
in the N and A domains, after controlling the degree of premise–conclusion similarity and the degree of premise 
typicality between those two domains.

However, a difference in semantic inferences in the N and A domains was found in the 250–400-ms time win-
dow, suggesting that ERP measurements are more sensitive to processing differences than behavioral data19. In the 
present study, incongruent conclusions elicited greater frontal-distributed negative deflections than did congru-
ent conclusions in the 250–400-ms time window. The current ERP effects on conclusion congruent effects were 
similar to previous FN400 effects related to conclusion congruency effects during category-based induction20,21. 
Moreover, in the present study, ERP responses to domain effects were found, and A arguments elicited greater 
negative deflections than did N arguments. The ERP responses to the domain effects differed slightly from the 
FN400 effects shown by the conclusion congruent effects, as the effect sizes were smaller for the former than for 
the later in the 300–400-ms time window. However, the ERP responses to the domain effects strongly overlapped 

Figure 4.  The ERP responses to the congruency effects. Figure 4a shows the grandaveraged waveforms elicited 
by N+ and N− arguments and the difference waveform (N− minus N+) in the fronto-central region, and the 
topography of the difference waveform at 250–400-ms. Figure 4b illustrates the grand-averaged waveforms 
elicited by A+ and A− arguments and the difference waveform (A− minus A+) in the fronto-central region, 
and the topography of the difference waveform at 250–400-ms. N+ indicates “congruent conclusions with 
a natural premise category”; A+ indicates “congruent conclusions with an artificial premise category”; N− 
indicates “incongruent conclusions with a natural premise category”; A− indicates “incongruent conclusions 
with an artificial premise category”.
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Figure 5.  The ERP responses to the domain effects. Figure 5a shows the grandaveraged waveforms elicited by N+ 
and A+ arguments and the difference waveform (A+ minus N+) in the fronto-central region, and the topography 
of the difference waveform at 250–400-ms. Figure 5b illustrates the grand-averaged waveforms elicited by N− and 
A− arguments and the difference waveform (A− minus N−) in the fronto-central region, and the topography of the 
difference waveform at 250–400-ms. N+ indicates “congruent conclusions with a natural premise category”; A+ 
indicates “congruent conclusions with an artificial premise category”; N− indicates “incongruent conclusions with 
a natural premise category”; A− indicates “incongruent conclusions with an artificial premise category”.

Parameter

Time window (ms)

250–300 300–350 350–400 400–450

Domains (D)

F 7.58 8.24 11.65 2.74

p 0.01 0.01 0.01 0.11

Corrected p 0.02 0.02 0.01 0.17

η2
p 0.27 0.28 0.36 0.12

Congruencies (C)

F 8.30 41.14 23.23 3.28

p 0.01 <0.001 <0.001 0.08

Corrected p 0.02 <0.001 <0.001 0.14

η2
p 0.28 0.66 0.53 0.14

D*C

F 0.01 0.28 0.006 1.49

p 0.91 0.60 0.94 0.24

Corrected p 0.94 0.72 0.94 0.32

η2
p <0.01 0.01 <0.01 0.07

Table 1.  Results of 2-way repeated-measures ANOVAs of the 250–450-ms time window for each 50-ms. The 
bold font illustrates a significant corrected p value.
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the FN400 effects in terms of time windows and distributions. From this observation, we inferred that the ERP 
responses to both conclusion congruence effects and domain effects are the FN400 effects.

The current FN400 effects are not due to differences in repetition or word frequency, because the number of 
repetitions and word frequency were controlled for both domains in the present study. Rather, we argue that the 
current FN400 effects between the N and A domains might be related to the ontological distinction between the 
N and A domains. FN400 is related to conceptual priming, with smaller N400 amplitudes in increased conceptual 
priming26–28. According to the ontological distinction account, the categories in the N domain are more coherent 
and homogenous than those in the A domain7–10, which may increase conceptual priming for categories from 
the N domain rather than those from the A domain. As a result, the semantic inferences in the N domain elicited 
smaller FN400 amplitudes than did those within the A domain.

Another potential explanation for the different FN400 effects on semantic inference in the N and A domain 
is that the FN400 amplitude was associated with the degree of similarity. Previous studies have suggested that 
the FN400 amplitudes are associated with familiarity, with greater familiarity eliciting smaller FN400 ampli-
tudes34,36–39. Familiarity can reflect an assessment of the global similarity between items40,41. However, in present 
study, the degree of premise–conclusion similarity within the N domain was similar to that within the A domain. 
Thus, the observed FN400 effects demonstrated here were not related to differences in the degree of premise–con-
clusion similarity between the two domains.

The distinctive patterns between behavior and ERP results for inferences within N vs. A domains do not sug-
gest that the similarity-based account and the ontological distinction account are mutually exclusive. Knowledge 
can form on the basis of perceptual and conceptual experience18. The different representations and processing of 
ontological knowledge for N and A domains can be shaped by their perceived perceptual and conceptual simi-
larity during learning. The ontological distinction was shown by FN400 amplitudes when the premise typicality 
and premise–conclusion similarity were controlled, providing further evidence that the ontological distinction is 
a parameter influencing category-based inferences.

The effects of the FN400 amplitudes between the N and A domains during inference-making was incon-
sistent with previous studies, and provided further evidence that N400 effects between the N and A domains 
were task-dependent. Previous studies have compared the ERP responses between N and A domains, but found 
inconsistent results in terms of N400 amplitudes. Several studies have reported that the N domain elicited greater 
N400 amplitudes in the frontal region, and elicited smaller N400 amplitudes in the central and parietal regions, 
as compared to A domain42–44. However, Satori et al.45 and Fuggetta et al.46 did not find significant differences in 
N400 between N and A domains. In the present study, the N400 difference pattern did not correspond with these 
previous studies.

Devlin et al.47 pointed out that the inconsistency within the differences between N and A domains was due 
to task differences. In previous studies, various tasks were used, involving semantic categorization42,44,48–51, lex-
ical decision43, picture-word matching46, semantic priming51,52, feature-category matching45, picture naming49, 
gender decision44, and visual/functional judgment48. In these studies, participants were required to assess what 
they had learned. In the present study, a categorical inductive inference task was used in which participants 
were required to go beyond what they had learned3,53. During categorical inductive inferences, more flexible rep-
resentations were produced, involving similarity, categorical inclusion, and causal-explanatory categorical rela-
tionships to determine inferences54–56. Distinct task demands may therefore explain inconsistency of the results 
in the literature.

However, the ERP parameter differences between inferences for N and A categories did not provide strong 
evidence for the conceptual representation hypotheses. Whether semantic memory representations of N and A 
categories are supported by single or multiple cortical systems is debated57–59. The single cortical system hypoth-
esis60–63 suggests that various activation patterns correspond to different semantic properties in the perceptual 
and motor systems of the brain. However, the objects’ sensory or motor features will be transformed into a com-
mon amodal representation. The multiple cortical systems hypothesis57 proposes that semantic memories are 
organized in modality-specific semantic subsystems. The multiple cortical systems hypothesis involves two dis-
tinct theoretical approaches. The whole-object account suggests that each semantic category has its own dis-
crete neuroanatomical structure in the brain64, and the feature-based account suggests that sematic categories are 
grounded in different object feature types (e.g., visual, motor)58.

Ković et al.63 suggested that ERP parameter differences between N and A categories may not reflect modality 
specificity, but variability or homogeneity in those two categories, as suggested by the present study. However, 
other studies have suggested that N400 differences between N and A categories support modality-specific hypoth-
eses42–44,48. By this logic, the significant FN400 amplitude differences between N and A categories in our study 
provide further evidence for modality-specific hypotheses of conceptual representations. Therefore, a limitation 
of our study is that it did not provide strong evidence for either amodal or modality-specific conceptual rep-
resentation hypotheses. More research is needed on this issue.

Conclusions
The present study contributed to the elucidation of the complex differential processes underlying semantic infer-
ences within N and A domains. The behavioral results showed that semantic inferences within N and A domains 
shared similar inference strength “correct” response rates, and reaction times after matching the degree of prem-
ise–conclusion similarity and the degree of premise typicality between the two domains. However, the ERP results 
showed that differences existed during semantic inferences within the N and A domain. The N domain elicited 
smaller FN400 amplitudes than the A domain, suggesting a role for increased categorical coherence and homoge-
neity in the N domain, as compared to the A domain, during semantic inferences.
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