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Abstract: Ultrathin molecular films deposited on a substrate are ubiquitously used in electronics,
photonics, and additive manufacturing methods. The nanoscale surface instability of these systems
under uniaxial compression is investigated here by molecular dynamics simulations. We focus on
deviations from the homogeneous macroscopic behavior due to the discrete, disordered nature of
the deformed system, which might have critical importance for applications. The instability, which
develops in the elastoplastic regime above a finite critical strain, leads to the growth of unidimensional
wrinkling up to strains as large as 0.5. We highlight both the dominant wavelength and the amplitude
of the wavy structure. The wavelength is found to scale geometrically with the film length, λ ∝ L,
up to a compressive strain of ε ' 0.4 at least, depending on the film length. The onset and growth
of the wrinkling under small compression are quite well described by an extended version of the
familiar square-root law in the strain ε observed in macroscopic systems. Under large compression
(ε & 0.25), we find that the wrinkling amplitude increases while leaving the cross section nearly
constant, offering a novel interpretation of the instability with a large amplitude. The contour length
of the film topography is not constant under compression, which is in disagreement with the simple
accordion model. These findings might be highly relevant for the design of novel and effective
wrinkling and buckling patterns and architectures in flexible platforms for electronics and photonics.

Keywords: ultrathin molecular films; nanoscale surface instabilities; elastoplasticity; wrinkling;
molecular dynamics

1. Introduction

Perfectly elastic rods buckle when subjected to an axial load exceeding a critical value,
as first noted by Euler in 1744 [1,2]. The Euler buckling is an example of saddle-point
elastic instability where disturbances drive the undeformed rod to a new stable buckled
conformation [3]. The bifurcation corresponds to the disappearance of the restoring force
opposing the lateral deformation of the rod, and the critical load can be straightforwardly
found by linear elastic response theory [1–3]. Post-buckling effects, e.g., the magnitude
of the lateral deflection, are instead inherently non-linear [4]. This leads to considerable
theoretical difficulties in order to reach a comprehensive interpretation of the associated
physical mechanisms which, moreover, are affected by deviations from ideality, e.g., im-
perfection sensitivity [5–8] and subsequent low reproducibility [9], plasticity [6,10–13] and
spatial heterogeneity [14,15]. For an ideal elastic rod with hinged ends, the deflection
curve obtained by the smallest, critical, uniaxial compression is described by one half-sine
wave [1,2]. With an elastic foundation supporting the rod, i.e., an actual or effective contin-
uous elastic medium with sufficient rigidity opposing the deflection of the rod, the resulting
antagonistic effect penalizes long wavelengths and the Euler single buckle is replaced by a
repeated pattern of multiple buckles [16,17]. These wavy patterns are ubiquitous [16] and
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have been observed over a huge range of multiple length scales from nanometers up to
geological ones [18]. Moreover, they exhibit a rich variety of geometries, both extended
wrinkles [19–21] and localized folds [22].

Over the last few decades, wrinkling—a possibly problematic aspect leading to ma-
terial failure [23–25]—turned into an opportunity for a wide range of applications in
2D materials such as graphene [26], micro- and nanofluidics [27–29], adaptive materi-
als [30], flexible electronics [31], film metrology [19,32], nanoelectromechanical systems
(NEMS) [33], and for pattern formation in micro- and nanofabrication [22,34–38].

Our main goal in the present paper is to make progress on the characterization of
surface instabilities when they occur on nanometric length scales. Nanometric instabilities
are expected to be affected by non-ideality owing to the perceptible discrete nature of
the system, requiring a microscopic model for accurate interpretation. As a first attempt,
we address this aspect through Molecular-Dynamics (MD) simulations of the in-plane
axial compression of an ultrathin molecular glassy film with nanometric height and length
supported by a flat foundation. We were inspired by a few previous MD studies investigat-
ing microscopic wrinkling on layered copolymer materials [39] and substrate-supported
graphene sheets [40]. Our study reveals that wrinkling occurs in the presence of plasticity.
It is worth noting that, while huge efforts have been generally made in examining elastic
systems, much less attention has been paid to consider the buckling and post-buckling be-
havior of plastic systems undergoing irreversible deformation even at macroscopic length
scales [6,10–13]. We especially aim to characterize the wavelength λ and the amplitude A
of the observed wrinkled structures due to their relevance in the applications mentioned
previously. In the small deflection limit, mechanical models developed for continuous,
elastic media lead to the following predictions [16,19,41–43]:

λ = λ0 (1)

A ∝
√

ε− εc ε ≥ εc (2)

where λ0 is a constant set by the elastic properties of the structure under deformation,
ε is the longitudinal strain ε = (L0 − L)/L0 of the uniaxial compression reducing the
longitudinal size from the original length L0 to L, and εc is a critical strain below which no
wrinkling is observed. Equations (1) and (2) state that, if the deformation exceeds the critical
strain, the wrinkling amplitude changes with no changes in the wavelength. Going beyond
the small deformation limit, experiments show that Equation (1) is untenable since wrinkles
exhibit shorter and shorter wavelengths upon increasing compression [20,43]. This is not
solved by a non-linear analysis of wrinkles, which would still predict Equation (1) though
extending the range of validity of Equation (2) [42]. For large deformations of stiff films
adhered to a soft substrate, the accordion approximation is often invoked. According
to this approximation, the contour length of the film is preserved after it buckles, e.g.,
see [16,20,22,43]. If the number of wrinkles does not change during compression, the
accordion approximation predicts [20]: (i) the decrease in the wavelength according to the
scaling λ ∝ L and (ii) the increase in the amplitude according to Equation (2) with εc = 0
for small amplitudes:

λ = λ0(1− ε) (3)

A =
λ0

π

√
ε (4)

In a different approach, considering the contour length constancy in the minimization
of the total elastic energy leads to Equations (1) and (4) in the wrinkling regime [16,22]
and allows for the description of the localized folding regime [22]. A finite-deformation
buckling theory, based on the non-linear elastic neo- Hookean constitutive law, has also
been developed to investigate the wrinkling of a thin stiff film on a compliant substrate
up to ∼30–40% compression [31,43,44]. The approach recovers both Equations (2) and (3)
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for small deformations and extends them to large deformations, showing good agreement
with experiments.

Our results suggest the partial robustness of some predictions provided by mechanical
models developed for continuous media and propose a suitable generalization. More
explicitly, we find:

• εc > 0, namely, the onset of wrinkling occurs at finite compression.
• The wavelength dependence on the compression is accounted for by Equation (3) up

to remarkably large deformations.
• Under small compression, the wrinkling amplitude A grows according to an extended

version of Equation (2), accounting for some rounding of the bifurcation at ε = εc.
• Under large compression, the amplitude A grows according to the geometrical law

that the wrinkling cross section is nearly constant.
• The contour length of the topography of the wrinkled film, `, changes under compres-

sion, which is in disagreement with the simple accordion model.

Overall, this set of results might be highly relevant for the design of novel, effective
and reproducible wrinkling and buckling patterns for flexible platforms in electronics
and photonics.

2. Results and Discussion
2.1. Elastic and Plastic Regimes of the Thin Film

To characterize the mechanical response, we perform a cycle where the film, initially
with length L0, is uniaxially compressed up to L1, L1 < L0, with the corresponding strain
ε = ε1. Later, the film is decompressed. The decompression leaves the sample with length
L2, L2 ≤ L0 and strain ε = ε2. With an elastic response, ε2 = 0 and L2 = L0, whereas
plasticity is signalled by ε2 > 0 and L2 < L0. Figure 1 provides information about ε2 vs. ε1.
It can be seen that for ε1 . 0.05, no residual deformation is left. Plastic effects are apparent
at larger compressions in a way which is virtually independent of the film length.

0.0 0.1 0.2 0.3 0.4 0.5
1

0.0
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0.4
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L0L1 L2

       L0
200
300
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Figure 1. Mechanical response of the film under a compression/decompression cycle. The film with
initial length L0 is uniaxially compressed up to L = L1 with strain ε = ε1 and later decompressed.
The decompression leaves the film with residual deformation L = L2 and strain ε = ε2. Elastic
response, corresponding to ε2 = 0, i.e., L2 = L0, is observed up to about ε1 ' 0.05. Plastic effects are
apparent at larger compressions and virtually independent of the film length. The film lengths are
in units of the reference length σ, the approximate monomer diameter. In the case of polyethylene
(polystyrene), one deduces a reference length σ = 5.3(9.7) Å; see Section 3.
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2.2. Buckling Wavelength

Figure 2 shows a representative sketch of the wavy pattern developing on the top,
free surface of the film when the system undergoes uniaxial compression (visualization
performed by OVITO—the Open Visualization Tool [45]). Wrinkles are observed along the
x̂ direction with substantial one-dimensional character, i.e., with features that are largely
ŷ-independent.

Figure 3 shows the Fourier transform (FT) of the topography of the film in Figure 2
at two different compressions. A dominant wavenumber κmax clearly emerges. Due to
the disordered and discrete nature of the molecular film, the value of κmax depends on
the particular sample under examination. Therefore, to capture significant information
about the dominant wavenumber, we averaged the wavenumber associated with the FT
maximum, κmax, over all the replicas of the film. Henceforth, the resulting average will be
denoted as k.

Figure 2. Slices with depth 13σ of a glassy film of pristine height h0 = 9σ and length L0 (L0 = 300σ) compressed to
length L = L0/2. Hotter colors indicate particles with higher elevations z. The black and red curves represent the surface
topography of the uncompressed and compressed systems, respectively. Both the elevation and the film lengths are in units
of the reference length σ, the approximate monomer diameter. In the case of polyethylene (polystyrene), one deduces a
reference length σ = 5.3(9.7) Å; see Section 3.
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Figure 3. Normalized power spectrum of the FT of the topography of the thin film shown in Figure 2
at two different compressions. The plot gives evidence that wrinkling is characterized by a well-
defined dominant wavenumber κmax (marked by a dot). The wavenumbers are in units of σ−1; see
Section 3.

Figure 4a shows the dependence of the wrinkling wavenumber on the deformation
strain for different film lengths. The plot covers a range with appreciable wrinkling
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amplitude, roughly ε & 0.08. According to Figure 1, plastic effects are not negligible in
this range. For the longer films, the wavenumber exhibits a steady increase when the
compression is increased, i.e., the wavelength decreases. The decrease in the wavelength
is also observed in the shortest films up to significant compressions, ε ' 0.4, levelling
off at larger compressions. Noticeably, looking at the behavior for L0 ≥ 500, it appears
that we are approaching a limit in which, for a given compression, the wavenumber is
unaffected by the film length, pointing to the intrinsic nature of the phenomenon, namely
that the specific wavelength, at a given deformation, is controlled only by the system’s
microscopic details.

Figure 4b inspects the product k L. It is seen that the product k L is nearly constant
in the wide range of 0.08 . ε . 0.4 (for the longest film there is a tendency to extend the
upper boundary up to about 0.5). This finding is consistent with the hypothesis that the
dominant wavelength is proportional to the length of the compressed sample, λ ∝ L, which
is equivalent to Equation (3).

Our results show that the geometric law k ∝ 1/L holds only if the film is long enough.
This could be due to the presence of the two walls at the ends of the film at X = 0, L. We
suggest that each wall constrains the adjacent region of the film with width ξx along the
x̂ direction and ξx being poorly dependent on the film length L if ξx . L, and it could be
argued that k ∝ 1/L only in films with length &2ξx. To provide a rough estimate of ξx,
we note that, upon compressing the shortest film with L0 = 200, the quantity kL starts
to decrease around ε ∼ 0.5, corresponding to the length L = 100. This suggests that
ξx ∼ 100/2 = 50. The above picture needs confirmation by additional studies which are
beyond the scope of the present paper and postponed to later investigations.
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Figure 4. Dependence of the wavenumber (a) and reduced wavenumber (b) upon compression. The
wavenumbers are in units of σ−1; see Section 3.

2.3. Buckling Amplitude

We evaluate the average amplitude of the wrinkling A over all the film replicas with
initial length L0 when compression increases. The results are shown in Figure 5. The overall
pattern shows three characteristic regions. For 0 . ε . 0.02, one has A ' 0.6. In this regime,
our PH algorithm, see Section 3, simply reveals the intrinsic roughness of the film, in the
order of the particle radius, and no wrinkling is detected. In the range 0.02 . ε . 0.25, the
amplitude A increases with the compression and reaches an inflection point at ε ∼ 0.25
(the position of the inflection point is anticipated to be model-dependent). Finally, in the
range 0.25 . ε ≤ 0.5 a new steeper growth regime of the wrinkling amplitude sets in by
increasing the compression. The small and large compression regimes are analyzed in
depth in the following.

2.3.1. Small Compression: ε . 0.25

We interpret the amplitude increase in the range 0 . ε . 0.25 as the nanometric coun-
terpart of the square-law amplitude following the bifurcation at εc observed at macroscopic
length scales, i.e., Equation (2). To account for the rounding of the wrinkling onset, ascribed
to the distribution of the microscopic arrangements of each replica of the film with given
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length, we assume that the critical onset εc exhibits a rectangular distribution with lower
and upper bounds εm and εm + ∆, respectively. This yields the following fit function:

A(ε) = A0 +
2b
3∆

[
(ε− εm)

3/2Θ(ε− εm)− (ε− εm − ∆)3/2Θ(ε− εm − ∆)
]

(5)

where Θ(x) is the Heaviside step function (Θ(x) = 0 for x < 0 and Θ(x) = 1 otherwise).
A0 and b are the residual amplitude and a scale parameter, respectively. Since we take the
former from the pre-wrinkling regime, the fit function, Equation (5), has three adjustable
parameters, b, εm and ∆. The best-fit parameters are summarized in Table 1 and the
resulting best-fit curves are drawn up to ε = 0.25 in Figure 5.
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Figure 5. Wrinkling amplitude over the whole range of uniaxial compression. The superimposed
lines are the best-fit curves according to Equation (5). The best-fit parameters are summarized in
Table 1. The amplitude is in units of σ, see Section 3.

Table 1. Best-fit parameters of Equation (5).

L0/σ b/σ εm ∆

200 2.05 ± 0.01 0.016 ± 0.001 0.068 ± 0.003
300 2.20 ± 0.02 0.012 ± 0.001 0.063 ± 0.003
500 2.45 ± 0.01 0.012 ± 0.001 0.067 ± 0.002
700 2.56 ± 0.02 0.006 ± 0.002 0.078 ± 0.004

2.3.2. Large Compression: 0.25 . ε ≤ 0.5

Obviously, Equation (5) is unable to account for the change in concavity which is
observed at the inflection point ε ∼ 0.25 in Figure 5. The same conclusion is reached
by considering the accordion approximation, predicting Equation (4). The accordion
approximation is based on the assumption that the contour length of the wrinkling, `, is
unaffected by the film compression. We have inspected this assumption and evaluated the
contour length of the topography of a film of original length L0 under compressive strain ε,
`(ε, L0). Our analysis is rather preliminary. Nonetheless, it points to the conclusion that
the contour length is not constant and hints at the scaling `(ε, L0) ∝ L. In fact, one finds
`(0, 200) = 201 and `(0.5, 200) = 104; `(0, 500) = 502 and `(0.5, 500) = 259; `(0, 700) = 704
and `(0.5, 700) = 363. A simple explanation of the scaling comes from the remark that the
number of the wrinkles of our thin film is constant during compression and their amplitude
is small with respect to their wavelengths. Then, ` ∝

√
A2 + (2π/k)2 ' 2π/k ∝ L, where

the last passage follows from Figure 4b, i.e., k ∝ 1/L.
We find that an explanation of the amplitude growth in the hig-compression regime

comes from consideration of the cross section of the wrinkles. To this aim, we first consider
a proxy of this quantity, namely the product of the amplitude A λ where λ is the average
of the quantity 2π/κmax over the replicas of a given film. To test the robustness of the
procedure, we also evaluated the product of the amplitude of a given film with 2π/κmax
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and then averaged the replicas. The results are indistinguishable from the quantity A λ.
Figure 6a plots the product A λ while increasing the compression. It is clearly seen that,
after an initial steep growth, the product exhibits a mild increase, especially for the longest
films in the wide deformation range 0.25 . ε ≤ 0.5. To gain further insight, we evaluated
the overall cross section of all the wrinkles according to the procedure detailed in Section 3.
The results are presented in Figure 6b. It is seen that the more precise evaluation exposes
in a neater way that above ε ' 0.25 the cross section of the wrinkles changes very weakly
apart from the shorter film where the influence of the compressing walls is anticipated to
be larger. Since the wrinkling pattern is nearly y-independent, the finding that the overall
cross section of the wrinkles does not change appreciably after a first increase suggests that
the volume of the wrinkling pattern does the same.

In other words, our results indicate that the net flux of matter exchanged between the
wrinkling pattern and the underlying bulk region of the film is quite small for ε & 0.25. It
is a simple matter to show that the near constancy of the cross section recovers the upward
concavity of the curve A vs ε at large compression. In fact, A ∝ 1/λ ∝ 1/(1− ε), where the
last passage follows from Equation (3).
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Figure 6. (a) Product of the average amplitude A and wavelength λ of the wrinkling. The product
is a proxy of the cross section of a wrinkle. The relative increases in the amplitude in the range
0.25 ≤ ε ≤ 0.5 with respect to the overall increase are 0.43, 0.32, 0.15, 0.05, from the shortest to
the longest film. The curves corresponding to L0 = 300, 500, 700 have been shifted upwards by
20, 40, 60 units, respectively, for clarity. (b) Overall cross section of the wrinkling (error bars smaller
than the dot size). The sketch illustrates the evaluation according to the PH algorithm detailed in
Section 3. The relative increases in the amplitude in the range 0.25 ≤ ε ≤ 0.5 with respect to the
overall increase are −0.33, 0.05, 0.09, 0.14 from the shortest to the longest film. Both the quantity Aλ

and the cross section are in units of σ2; see Section 3.

3. Model and Methods

MD simulations are carried out with the open-source software LAMMPS [46,47].
We consider a dense ensemble of chains made of linear trimers. Bending and torsional
interactions are neglected, i.e., the chain is completely flexible. Adjacent monomers in
the same chain are bonded by an harmonic potential k(`− `0)

2/2. Pairs of non-adjacent
monomers of the same chain, as well as monomers belonging to different chains, interact
through the truncated Lennard–Jones (LJ) potential:

ULJ(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]
+ Ucut r ≤ rcut (6)

= 0 otherwise (7)

where rcut = 2.5 σ. The vertical shift Ucut ensures that the potential is continuous at r = rcut.
Henceforth, both the monomer mass m and the Boltzmann constant kB have unit values,
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with energies expressed in units of ε, temperature in units of ε/kB and lengths in units
of σ, roughly the monomer diameter. A suitable comparison between experimental and
numerical data establishes correspondence between MD and reference units. For instance,
in the case of polyethylene (polystyrene), one deduces a reference length σ = 5.3(9.7) Å, a
reference mass m = 42.3(364) g/mol and a reference energy ε/kB = 443(490) K [48].

We set the bond equilibrium length to `0 = 0.9 σ and elastic constant to k = 1110 ε/σ2 [49].
The present model is known to resist crystallization [49–51] and to capture the phenomenology
of bulk and confined organic molecular systems [49].

The preparation of the solid amorphous film with the initial length L0 and height
h0 = 9σ was performed as follows. First, the system is placed in a box with length L0 and
fixed depth 13σ, along the x̂ and ŷ directions, respectively. Periodic boundary conditions are
ensured across the y axis. The film is initially equilibrated in the NPT ensemble (constant
particle number, constant temperature, constant pressure) at temperature T = 1.5 under
confinement by four smooth, i.e., structureless, rigid and flat walls. The four walls are
located at X = 0, X = L0, Z = 0 and Z = h0. Monomers at distance r⊥ from a wall
experience a force perpendicular to the latter due to the potential:

Uwall(r) = ε

[
2

15

(
σ

r⊥

)9
−
(

σ

r⊥

)3
]

. (8)

The equilibration is terminated when the normalized time correlation function of the
end-to-end vector of a single chain is less than 0.1. Then, the system is instantaneously
quenched at T = 0.001 and the wall at Z = h0 is removed to create a free, flat, upper
interface, while leaving the vertical walls at X = 0, X = L0 and the lower horizontal
surface at Z = 0, the latter acting as a foundation; see Figure 2. This choice leaves only one
free surface where wrinkling takes place upon uniaxial compression, the upper one of the
film, thus simplifying considerably the interpretation of the results.

Finally, to ensure mechanical equilibration (negligible total force on each particle),
a suitable energy minimization was carried out using a steepest descent algorithm. We
studied films with lengths L0 = 200, 300, 500, 700. The total number of particles of a film
depends on the length: N = 24,000 (L0 = 200), N = 36,000 (L0 = 300), N = 60,000
(L0 = 500) and N = 84,000 (L0 = 700), resulting in a number density ρ ∼ 1 for all the
films. For a given length L0, 70 replicas are prepared to ensure significant statistics. The
uniaxial in-plane compression of the film proceeds stepwise according to the Athermal
Quasi-Static (AQS) procedure [52]. In each step, the coordinates of the particles constituting
the film as well as the position of the vertical walls are affinely scaled along the x̂ direction
by the homogeneous strain δε = 2.5 · 10−5 with a later energy minimization to recover
the mechanical equilibrium. The step was iterated to reach the desired film length L, the
distance between the vertical planes. To expand the film, if needed, an analogous procedure
is followed.

Given the uniaxial nature of the deformation, the analysis of the wrinkling involves
an average along the depth of the film, i.e., across the ŷ direction, in addition to the average
over all the replicas of the films. In more detail, to study the topography of the free surface
along ẑ, first we created a grid in the foundation, i.e., the horizontal plane at z = 0. The
grid was formed by bins with size 1× 2 along x̂ and ŷ, respectively. The size ensures that
three particles at least being located at the free surface have suitable (x, y) coordinates
to be assigned to the same bin. Then, for each bin, an average height was evaluated
considering the three particles at larger distances from the foundation. The procedure
returned a two-dimensional scalar function which was finally averaged along ŷ to provide
a one-dimensional representation of the average topography of the free surface. Henceforth,
for sake of simplicity, the latter quantity will be referred to as the topography. Three basic
quantities were evaluated, namely the wavelength of the wrinkles, their amplitude and
cross-section. The wavelength was evaluated by spatial discrete fast Fourier transform
of the topography with rectangular windowing. The evaluation of the amplitude of the
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wrinkling was assisted by a persistent homology (PH) algorithm, an algebraic method
which is robust against perturbations of input data and used in topological data analysis for
measuring the features of shapes and functions that persist across multiple scales [53–55].
To this aim, the local extrema of the film topography were first identified. Then, to assign
the physically acceptable contributions to the wrinkling amplitude, each local maximum
was paired to its closest local minimum, according to their persistence p, a key concept
elaborated on in the PH theory. All the pairs with p < p0 were removed. Roughly speaking,
p0 sets the minimum physically acceptable amplitude value that is distinguishable from
the inherent roughness of the film interface, i.e., monomers with diameter sizes in the order
of ∼ σ = 1. Therefore, p0 was adjusted in the range 0.5 ≤ p0 ≤ 1. Going into detail, we
took p0 = 1 for ε ≥ 0.1 where wrinkles are apparent, whereas in the range 0 ≤ ε < 0.1, we
adopted the linear interpolation p0(ε) = 5(ε− 0.1) + 1. The computation of the transverse
cross section of the wrinkles was performed by joining the minima of the PH-filtered
topography with a polygonal chain and calculating the area bounded by this baseline and
the height profile.

4. Conclusions

We carried out an extensive numerical investigation of the nanoscale surface insta-
bility of supported glassy ultrathin films under uniaxial compression. To the best of our
knowledge, this is the first ever attempt to investigate the role of the discrete, disordered
nature of the deformed system. The instability, which develops in the elastoplastic regime
above a critical strain εc ' 0.02, leads to the growth of wrinkling up to ε = 0.5. We
investigated both the dominant wavelength λ and the amplitude A of the wavy structure.
The wavelength scales with the film length, λ ∝ L, up to ε ' 0.4 at least, depending on
the film length. The amplitude exhibits a complex dependence on the compression with
two distinct regimes, pertaining to small and large compressions, being clearly separated
by an inflection point occurring at ε ∼ 0.25. For small compressions, the initial growth is
well described by an extended form of the familiar square-root law with respect to the
strain ε observed in macroscopic homogeneous systems. At large compressions, we find
that the cross section of the wrinkling is nearly constant, offering a novel interpretation of
the large wrinkling amplitude. The contour length of the film topography changes under
compression, which is at odds with the simple accordion model, and a simple scaling law
is tentatively suggested.
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