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Abstract

PP1 is a major phosphoserine/threonine-specific phosphatase that is involved in diseases such 

as heart insufficiency and diabetes. PP1-disrupting peptides (PDPs) are selective modulators of 

PP1 activity that release its catalytic subunit, which then dephosphorylates nearby substrates. 

Recently, PDPs enabled the creation of phosphatase-recruiting chimeras, which are bifunctional 

molecules that guide PP1 to a kinase to dephosphorylate and inactivate it. However, PDPs are 

23mer peptides, which is not optimal for their use in therapy due to potential stability and 

immunogenicity issues. Therefore, we present here the sequence optimization of the 23mer PDP 

to a 5mer peptide, involving several attempts considering structure-based virtual screening, high 

throughput screening and peptide sequence optimization. We provide here a strong pharmacophore 

as lead structure to enable PP1 targeting in therapy or its use in phosphatase-recruiting chimeras in 

the future.
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1 Introduction

PP1 is a ubiquitously expressed protein serine/threonine phosphatase1 and it is estimated 

to counteract over hundred kinases.2–3 The activity, substrate specificity and localization 

of PP1 are regulated by the interaction with different, structurally unrelated regulatory 

interactors of protein phosphatase one (RIPPOs).3–6 The catalytic subunit of PP1 presents 

several binding sites and most RIPPOs bind to the “RVxF” hydrophobic channel, named 

according to the most common amino acids present in RIPPOs that bind to this pocket. To 

date, PP1 is known to be involved in a wide range of cellular processes such as mitosis,7 

calcium signalling 8–10 and cardiovascular processes.11–12 Accordingly, dysregu-lation or 

malfunction of these tightly regulated processes can lead to several diseases such as cancer, 

heart insufficiency or diabetes. In order to understand the pathways in which PP1 is involved 

and evaluate its therapeutic potential, an appealing approach consists of developing peptides 

that target the RVxF-binding site of PP1 and disrupt PP1-RIPPO interactions.13

Different peptides and peptidomimetics based on RIPPO sequences have been 

developed.13–16 The 23mer PP1 disrupting peptides (PDPs), such as PDP3 (Ac-

RRKRPKRKRKNARVTF-Bpa-EAAEII-NH2), were the first to be reported as active 

compounds both in vitro and in intact cells.13 They disrupt PP1 holoenzymes to release 

the catalytic subunit, which can dephosphorylate nearby substrates (Fig. 1).13 As an example 

for their application, PDP3 treatment was shown to seal the arrhythmogenic sarcoplasmic 

reticulum-Ca2+-leak, which when untreated leads to heart failure. Thus, releasing PP1 

activity may represent a promising future antiarrhythmic therapeutic approach.12 However, 

while active in cell and tissue culture, 23mer peptides can pose challenges such as 

immunogenicity and insufficient stability in an organism. In addition, PDPs were used 

to create phosphatase-recruiting chimeras (PhoRCs, a similar principle is also named 

PhosTACs,17) in order to guide PP1 to dephosphorylate and inactivate an oncogenic 

kinase.18 While these were somewhat active in intact cells, making a bifunctional molecule 

from a long peptide can also pose challenges for cell permeability.18 Developing a small 

molecule or a shorter pharmacophore from the 23mer PDP would be the first step toward 

solving such challenges.

2 Materials and methods

2.1 Virtual screen

2.8 million compounds from the available screening catalogues of the commercial vendors 

Enamine and ChemBridge were downloaded and 3D coordinates were generated as input 

for the docking software SurflexDock v.2.51 from BioPharmics IT as implemented in the 

software package SYBYL-X 1.3, Tripos, 1699 South Hanley Rd., St. Louis, Missouri, 

63144, USA. The crystal structure of PP1, deposited in the protein database (https://

www.ebi.ac.uk/pdbe/) with the pdb-code 4G9J was downloaded and prepared. With the 

help of the protein preparation tool inside the software package the protein got analysed 

and completed. The region which interacts with the sequence RVTF of the co-crystallized 

peptide PDP2 (included in the used protein (4G9J)) was defined as the docking site. All 

prepared small molecules were flexibly docked into this region. As primary filter only the 

compounds which yielded a high docking score were selected (defined threshold >= 7.0). 
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Further the docked poses of the compounds were checked for fulfilling at least two of 

the four pharmacophoric features (two hydrophobic groups, a hydrogen bond donor and 

a hydrogen bond acceptor). These were identified to be important for binding after visual 

inspection of crystal structures of several PP1 with PIPs binding to the RVxF binding. 

Finally, the docked compounds were visually checked and 58 got prioritized and purchased 

for in vitro testing as described below.

2.2 High throughput screening (HTS) and dose-response testing of potential hit 
compounds

A high throughput screen of 79,000 compounds at 40 μM for modulators of the PP1 

activity inhibited by I2 was performed at the Chemical Biology Core Facility at EMBL. 

Dephosphorylation of the fluorogenic substrate 6,8-difluoro-4-methylumbelliferylphosphate 

(DiFMUP) by PP1 was monitored by the increase in fluorescence at 460 nm after excitation 

at 340 nm in a kinetic mode to circumvent the interference of compounds showing auto-

fluorescence.19 With 40 pM PP1, 40 pM I2 and 20 μM of DiFMUP in 50 mM imidazole 

pH 7.5, 10 mM NaCl, 2 mM DTT, 1 mM MnCl2, 0.05% Tween 20 and 0.1% BSA a 

sufficient linear increase in fluorescence over 3 h was achieved with around 80% inhibition 

of PP1 activity. These conditions made the assay suitable to find both PP1 inhibitors 

and compounds disrupting the interaction between PP1 and I2, leading to de-inhibition 

of PP1. Pre-plated compounds were incubated with PP1 for 15 min, then I2 was added 

and incubated for 15 min and finally, the substrate DiFMUP was added and fluorescence 

intensity measured in kinetic mode on an Envision plate reader (PerkinElmer). Time-series 

data were subject to linear regression analysis in Activity-Base software (IDBS). Finally, 58 

compounds inducing over 40% of non-inhibited PP1 activity were selected from the HTS 

and purchased from the suppliers for conformation of their activity in the screening assay 

in dose-response from 200 μM to 200 nM and in parallel for specificity of their effect on 

PP1 phosphatase activity in a counter assay without PP1/ I2 in the reagent mix. PDP3 served 

as internal control standard on each assay plate. The 58 compounds from the virtual screen 

were tested in a similar way.

2.3 General materials and methods for the peptide synthesis and biochemical assays

Solvents were purchased and used as received from the following suppliers: N,N-

dimethylformamide (DMF), acetic anhydride and dimethylsulfoxide (DMSO) from Merck; 

N-methyl-2-pyrrolidone (NMP), diethylether, piperidine and pyridine from ROTH; N,N-

diisopropyle-thylamine (DIPEA) from abcr; acetonitrile (ACN) ≥ 99.9% HPLC grade, 

HPLC water LCMS chromasolv and methanol (MeOH) ≥ 99.9% HPLC grade from Sigma-

Aldrich; deuterium oxide (D2O) 99.95% and meth-anol-d4 (CD3OD) 99.8% from deutero 

GmbH.

Materials were used without further purification from the following commercial 

sources: Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-Orn(Boc)–OH, Fmoc-Lys(Boc)-OH, Fmoc-

Val-OH, Fmoc-His-OH, Fmoc-Phe-OH, Fmoc-β-homo-Lys-OH, Fmoc-homo-Arg(Pbf)–OH, 

Fmoc-Cpg-OH, Fmoc-N-Me-Phe-OH, Fmoc-D-Arg(Pbf)–OH, Fmoc-D-Lys-OH, H-D-Phe 

Wang resin, Rink amide resin, triethylamine (TEA), sodium chloride, glycerol and 

ethylenediaminetetraacetic acid (EDTA) from Merck Novabiochem; 2-(1H-ben-zotriazol-1-
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yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), Fmoc-N-Me-Arg(Mtr)OH 

and H-Phe-2-chlorotrityl resin 200–400 mesh 0.5–0.9 mmol/g substitution from Bachem; 

Fmoc-Arg(Pbf)-OH from GL Biochem (Shanghai); Fmoc-L-β-homo-Phe-OH, Fmoc-L-

β-Phe-OH and triisopropylsilane (TIPS) from Alfa Aesar; Fmoc-homo-Lys-OH, 7-

diethylami-nocoumarin-3-carboxylic acid, Triton X-100, imidazole ≥ 99.5%, dithiothreitol 

(DTT) and manganese(II) chloride tetrahydrate ≥ 99% from Sigma-Aldrich; Fmoc-

L-cyclopropylglycine from ChemImpexI; Fmoc-8-amino-3,6-dioxaoctanoic acid from 

PolyPeptid; Fmoc-β-homo-Arg(Pbf)-OH from Aapptec; Fmoc-D-His-OH from IrisBiotech; 

Fmoc-Pra-OH from aapptech; hydroxybenzotriazole (HOBT) from MOLEKULA; 

trifluoroacetic acid (TFA) from ROTH; 1-hydroxy-7-azabenzotriazole (HOAT) and O-7-

Azabenzotriazol-1-yl-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) from GL 

Biochem (Shanghai) Ltd; Dulbecco’s Modified Eagle’s Medium (DMEM), DiFMUP and 

Fluo-4 from Life Technologies; and Fetal Bovine Serum (FBS) from Thermo Fisher 

Scientific. PP1 and I2 were prepared as previously described.20

Optical rotation was measured with Polatronic H532 polarimeter (Schmidt Haensch). [α]D20

were reported in degmlg-1dm-1 and the concentration was in g/100 ml. 1H and 13C NMR 

spectra were recorded using Bruker UltraShield Avance III HD 400, 500 or 700 MHz using 

Topspin 3.2 as acquisition software and MestReNova 10.0 to analyze all data. Chemical 

shifts were quoted in ppm and reported using solvent as an internal standard: 1H NMR: 

3.31 ppm (CD3OD), 13C NMR: 49.00 ppm (CD3OD). In NMR experiments using D2O, 
1H NMR peaks were referenced using the solvent as an internal standard (4.766 ppm) and 

chemical shifts adjusted according to the temperature.21 13C NMR peaks were referenced 

indirectly relative to the proton reference considering the known gyromagnetic ratio.21 2D 

COSY, HSQC, HMBC and ROESY spectra were used to assist NMR signal assignments. 

Automatic synthesis of compounds was performed with a MultiSynTech Syro I Parallel 

Peptide Synthesis System using 5 ml plastic reactors with TF frit (from Multisyntech). 

Manual synthesis of peptides on solid phase and cleavage from the resin was performed 

using 5 ml or 2 ml reactors with TF frit and plastic plunges (from Multisyntech). Analytical 

HPLC runs (1.5 ml/min) and purifications (5 ml/min) were performed on a Shimadzu 

HPLC-MS 2010EV Evolution system with a reversed phase column from Macherey-Nagel 

(NUCLEODUR 100-5C18ec 250/4.0 or NUCLEODUR C18pyramid VP250/4.6 3 μm 

particle size for analytical runs and NUCLEODUR C18pyramid VP250/10 5 μm particle 

size for purifications) with a UV/ Vis detector operating at λ = 215 and 254 nm. As mobile 

phases, ACN/ 0.05% TFA and H2O/0.05% TFA were used.

2.4 Synthesis of compounds

Peptides were synthesized on solid support on a peptide synthesizer doing double couplings 

for 40 min using Fmoc-amino acids (5 equiv), HBTU (5 equiv), HOBt (0.2 M) and DIPEA 

(10 equiv) in DMF. Preloaded 2-chlorotrityl resins with Phe or D-Phe and Wang resins 

were used to synthesize peptides with free carboxylic acid in the C-terminus and Rink 

amide resins to obtain amidated C-terminus. Fmoc deprotection was performed using 40% 

piperidine/DMF for 3 min and then 20% piperidine/DMF for 14 min. In case acetylation 

of the N-terminus was required, reactions were manually carried out shaking peptides 

attached to the resin in a mixture of Ac2O/pyr (1:9) for five minutes three times. After 
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manual washings with DMF and DCM, peptides were deprotected and cleaved from the 

resin gently shaking in a cleavage cocktail (TFA/ TIPS/H2O 95:2.5:2.5) for 3 h. Peptides 

were precipitated in cold diethylether and washed three times. In case some peptides did 

not precipitate, TFA was removed by coevaporation with toluene using a rotary evaporator. 

Finally, purification was carried out by HPLC. Compound characterization can be found in 

the Supplementary Material.

2.5 In vitro assays

In vitro assays were manually carried out using 25 pM of protein PP1 in a buffer of 50 mM 

imidazole at pH 7.4 rt, 10 mM NaCl, 2 mM DTT, 1 mM MnCl2 and 0.05% Triton. Assays 

were performed in black 96-well plates (Thermo Fisher Scientific) and all compounds 

were dissolved in water or mixtures of water and DMSO and then diluted in assay buffer. 

DiFMUP was used at a concentration of 50 μM. Fluorescence of the hydrolysis product 

DiFMU was measured at 25°C every 15 s during 30 min on a Tecan Infinite M1000 PRO 

using a 358 nm excitation wavelength and a 452 nm emission wavelength.

PP1 was first incubated for 10 min with Inhibitor-2 on ice using a concentration of Inhibitor 

2 that led to 50% inhibition of PP1, which was around 10 pM. As a control, an experiment 

using 10% inhibition was carried out with compounds 32 and PDP3. After that, different 

concentrations of compounds were incubated for 20 min at room temperature to compete 

with Inhibitor 2 for binding to the RVxF binding site of PP1. Then, DiFMUP was added 

and the fluorescence was immediately measured. The initial linear part of the slopes 

was measured and EC50s were determined by fitting the inhibition data with GraphPad 

Prism. Experiments were done in triplicates and two or more independent experiments 

were conducted depending on the amount of compound obtained and required for each 

experiment.

2.6 ALPHA assay

The assay buffer consisted of 50 mM TrisCl pH 7.5 rt, 150 mM NaCl, 0.05% Tween 20, 

1 mM MnCl2 and 0.1% BSA. 200 nM of His-PP1 and 67 nM of Biotin-PDP213,15 were 

mixed in a 384 well plate. Serial dilutions of 1 starting from 10 mM were added and 

incubated for 60 min at room temperature. After that, a final concentration of 5 μg/ml of 

streptavidin-donor and anti-His-acceptor beads were added and incubated in a final volume 

of 15 μl/well for 90 min at room temperature in the dark. Finally, an excitation wavelength 

of 680 nm was used and fluorescence at 570 nm was measured in an Envision plate reader 

from PerkinElmer. As a control for non-specific interactions, the same concentrations of 1 
were incubated with 22 nM of GST(His-Biotin) instead of His-PP1 and Biotin-PDP2 and the 

assay was carried out under the same assay conditions.

2.7 ITC

PP1 was dialyzed in the ITC buffer consisting of 20 mM TrisCl pH 7.4 rt, 200 mM 

NaCl, 1 mM TCEP. The precipitated protein was removed and the rest was concentrated. 

The concentration, measured with Nanodrop ND-1000 spectrophotometer, was 0.72 mg/ml 

or 19.16 μM. In the case of Inhibitor 2, it was dialyzed in the ITC buffer and its final 

concentration was 0.3 mg/ml or 13.16 μM. Compound 35 was dissolved in the last dialysis 
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buffer used for protein sample preparation and the same buffer solution was used as the 

reference solution. ITC was performed at 25°C using MicroCal ITC200 micro calorimeter 

(GE Health-care). The protein solution was placed in the calorimetric cell and injections of 

1.8 μl of a solution of 500 μM of 35 were added into a solution of protein every 2 min. 

ITC data for the interactions were corrected for the dilution heat and analyzed using the 

MicroCal Origin™ software package.

2.8 Calcium release assay

HeLa Kyoto cells were maintained in DMEM low in glucose, supplemented with 10% 

FBS, 1% Penicillin/Streptomycin and 1% L-gluta-mine in 10 cm dishes at 37 °C with 

5% CO2. Cells were seeded in eight-chambered LabTeks (from VWR) with expected 80% 

confluency the day before imaging using an Olympus FV1200 confocal laser scanning 

microscope (Advanced light microscopy facility at EMBL) equipped with a 60x oil 

immersion objective and two scanners. For the extracellular calcium-free imaging, an LSM-

DUO-Live microscope was used (Light imaging center at the University of Freiburg).

Concerning the calcium release assay to evaluate PP1 activity in intact cells, HeLa cells 

were incubated with 0.5 μM Fluo-4 in imaging buffer (20 mM HEPES pH 7.4 rt, 115 mM 

NaCl, 1.2 mM MgCl2, 1.2 mM CaCl2, 1.2 mM K2HPO4 and 2 g/l D-glucose) for 30 min at 

room temperature. For calcium-free imaging the same buffer without CaCl2 containing 250 

μM EGTA was used. Cells were washed with warm imaging buffer and they were excited 

at 488 nm and recorded at 516 nm for two minutes to confirm the absence of calcium 

transients. After that, compounds were added and cells were recorded for 30 min. Image 

processing was performed using ImageJ Software.

3 Results and discussion

3.1 High throughput and structure-based virtual screening to find PP1 binders

Initially, we attempted two often used approaches to find small molecule binders, namely 

in silico and high throughput screening (HTS). For the in silico screening of commercially 

available small molecules, 2.8 million commercially available compounds were docked 

against the crystal structure of PP1 bound to PDP2,13 with PDP2 removed. The region that 

interacts with the sequence RVTF of the co-crystallized peptide

PDP2 was defined as the docking site. All small molecules were flexibly docked into this 

region. After filtering for a high docking score the docked poses of the compounds were 

checked for fulfilling at least two of the four pharmacophoric features, which were two 

hydrophobic groups, a hydrogen bond donor and a hydrogen bond acceptor (Supp. Fig. 

1). These were identified to be important for binding after visual inspection of crystal 

structures of PP1 with RIPPOs binding to the RVxF binding site. 58 compounds were 

finally prioritized and purchased for in vitro testing. For the HTS, a library of 79,000 

compounds available at the Chemical Biology Core Facility at EMBL was screened. As for 

the development of PDP-Nal,20 dephosphorylation of the unnatural substrate 6,8-difluoro-4-

methylumbelliferyl phosphate (DiFMUP) was measured as read-out of the biochemical 

screen. The assay was optimized to achieve around 80% inhibition of PP1 by its native 
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inhibitory protein inhibitor-2 (I2) without compound treatment, leading to a linear increase 

in fluorescence over 3 h. This made the assay suitable to find compounds disrupting the 

interaction of the inactive PP1:I2 holoenzyme, leading to de-inhibition of PP1 by releasing 

the catalytic subunit as measured by an increase in the fluorescence signal. From the screen 

of 79,000 compounds, 58 compounds inducing over 40% of PP1 activity were selected 

and purchased from the suppliers. Together with the compounds from the virtual screen, 

they were tested to confirm their activity in the screening assay in dose-response and in 

parallel for specificity of their effect on PP1 phosphatase activity in a counter assay without 

PP1:I2 in the reagent mix. A PDP served as internal positive control standard on each 

assay plate. The activity in the PP1 screening assay could be confirmed for only 13 of 

the 58 re-ordered compounds from the initial HTS. All these compounds showed mostly 

strong auto-fluorescence and their effect on the increase of fluorescence over time was not 

specific for the phosphatase-activity of PP1:I2, as they all had a similar effect in the counter 

assay without PP1:I2. Most probably these compounds aggregate slowly in aqueous buffer 

causing an increase of their intrinsic fluorescence. Only 3 of the 58 compounds from the 

docking approach showed a moderate activity in the PP1:I2-assay, but all were fluorescent 

and had a similar activity in the counter assay without PP1:I2. In summary, using the 

kinetic measurement we could overcome most well-known problems of assays based on 

short-wavelength fluorescence substrates and identify putative small-molecule antagonists 

in the primary screen. The methodology was sound in that the PDP produced consistent 

results. However, none of the small molecule hit compounds from the HTS or virtual 

screen could be confirmed as PP1/I2-specific. This outcome showed the difficulty to target 

protein-protein interactions with small molecules and encouraged us to optimize and shorten 

the peptide-based modulators.

3.2 Development of short peptidomimetics as PP1 binders

As a starting point for the development of these peptidic compounds, a short tetrapeptide 

with the sequence RVTF (1) was prepared because it is the part of PDPs that binds to the 

RVxF binding site of PP1.13 The ability of 1 to disrupt the interaction between PP1 and the 

I2 was tested in vitro giving an EC50 of 234 ± 48.6 μM (Table 1). In order to validate that 

1 binds to the same site as the PDPs, an Amplified Luminescent Proximity Homogeneous 

Assay (ALPHA), where 1 competed with a PDP for binding to the RVxF binding site 

of PP1, was performed, resulting in an IC50 of 124 μM. After these encouraging results, 

chemically similar proteinogenic amino acids were replaced one by one in the sequence 

of RVTF (1). The results displayed in Table 1 showed that arginine and valine were the 

most favorable amino acids in the first and second position, respectively. Regarding the “x” 

position, it was discovered that a hydrogen-bond donating group was required, achieving 

the highest potency in the presence of histidine (9). Interestingly, histidine is also found in 

the equivalent “x” position of several RIPPOs such as I222 and spinophilin,23 where the 

imidazole group binds to Thr288 in PP1. This additional interaction could be responsible 

for the higher potency of 9. Concerning the fourth position, peptides were more active with 

phenylalanine but also tolerated tryptophan (18).

With the purpose of understanding the relevance of the stereochemistry of the amino acid 

side chains and to increase the stability of the peptides,24 L-amino acids were exchanged 
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with D-amino acids one by one (19-22) and two random combinations were also tested (23 
and 24). However, none of the resulting compounds were active (Table 1), showing that 

L-amino acid stereochemistry was required for potency. Moreover, the reverse peptide (25) 

was also inactive. The retroinverse peptide, which is probably the most related isosteric 

substitution of the peptide bond25 while being less susceptible to proteolysis due to the 

presence of non-proteinogenic amino acids,26 was evaluated with both threonine (26) and 

histidine (27) in the equivalent “x” position. None of them were active, indicating that the 

overall stereochemistry and conformation did not allow changes without losing potency.

Additionally, both termini were modified trying to mimic native proteins and increasing 

their proteolytic stability. Acetylation of the N-terminus (28) produced an inactive peptide 

probably due to observed gel formation and insolubility issues. However, amidation of the 

C-ter-minus (29) increased the potency. The combination of both termini modifications (30) 

again slightly increased the potency, showing that C-terminal amidation was beneficial and 

N-acetylation did not abolish binding to PP1 (Table 1).

With the aim of increasing the potency, peptides were N-terminally extended with arginine 

or lysine because many RIPPOs contain a highly flexible polybasic sequence connected 

to the N-terminus of the RVxF sequence.27 As expected, pentapeptides RRVHF (31) and 

KRVHF (32) showed an increase in potency (Table 1). KRVHF (32) was around 30-fold 

less potent than the parent compound PDP3 (8 μM vs. 233 nM, respectively), which is 

quite remarkable given the difference in length of 18 amino acids missing in KRVHF 

(Supp. Fig. 2A and B, respectively). N-Acetylation, Ac-KRVHF (33) and together with 

C-amidation, Ac-KRVHF-NH2 (34), did not increase the potency. As observed with the 

potency increase of 29, C-terminal amidation of 32, KRVHF-NH2 (35), led to the most 

active pentapeptide with an EC50 of 609 ± 38.6 nM (Supp. Fig. 2C). Of note, a previously 

reported 6mer peptide RKIQFT gave at a comparable starting inhibition of PP1 by I2 

of 50% an EC50 of 54 μM,15 demonstrating the value of sequence optimization. Taken 

together, after several rounds of rational sequence optimization of short peptides starting 

with RVTF (1), it was possible to increase their potency from 3-digit micromolar to 

sub-micromolar concentrations, which is quite remarkable considering the difficulties in 

targeting this site.28

Next, in order to increase the stability of the peptides peptidomimetics based on the most 

active peptide 35 but containing non-proteinogenic amino acids and modifications such as 

N-methyl, beta, homo, beta-homo and non-natural side chain amino acids (36-50) were 

rationally designed and tested in vitro (Table 1). Although the most active compound 

(35) contained natural lysine, this position admitted more variability than other positions 

without a dramatic impact on the activity. Regarding substitutions in the position of arginine, 

replacement with homo-arginine (43) led to one of the most active peptidomimetics in vitro 
(Supp. Fig. 2D). Valine was replaced with L-cyclopropylglycine (Cpg) (46) restricting the 

conformation and angles of the side chain, but the potency decreased. In the position of 

phenylalanine, the importance of the aromaticity and planarity of the phenyl group was 

confirmed as well as the decrease in efficacy in the presence of naphtylalanine (NaI), where 

unlike other compounds, 48 and 49 only reached around 80% of PP1 activity (Supp. Fig. 2E 
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and F, respectively), which suggested that the hydrophobic pocket is not big enough to fit the 

two fused rings. Still, peptide 35 remained to be the most potent compound.

We then aimed at showing that 35 bound specifically to PP1 and not to I2 by Isothermal 

Titration Calorimetry (ITC). While compound 35 bound to PP1 in a molar ratio of 1:1 with a 

dissociation constant of 2.1 ± 0.4 μM (ΔH = -6580 ± 74 cal/mol and ΔS = 3.94 cal/mol/deg) 

(Fig. 2A), no interaction was detected between 35 and I2 (Fig. 2B), confirming that 35 
specifically bound to PP1 in this assay.

3.3 Evaluation of the cellular activity of the peptidomimetic PP1 binders

Next, we aimed at testing whether the most active compounds would show activity in 

intact cells. As previously reported, histone H3 phosphorylated on threonine 3 (H3pT3) 

during mitosis is a substrate of PP1, and PDP treatment promoted its dephosphorylation 

during mitotic arrest.13,20 Therefore, we screened a range of the most potent pentapeptides 

(33-41, 43, 45, 46) for their ability to trigger H3pT3 dephosphorylation in U2OS cells at a 

concentration of 100 μM using the reported method.13 Unfortunately, none of the peptides 

were reproducibly active in this assay (data not shown). Since this assay requires longer 

incubation times (at least 30 min) and mitotic arrest13,20 which could have an effect on 

the stability of the peptides, we then aimed at testing their activity in an assay with a 

very short incubation time. PP1 is involved in intracellular calcium release processes. Upon 

disruption of the interaction of PP1 with RIPPOs using PDPs, the active free catalytic 

subunit of PP1 induces calcium oscillations in HeLa cells.10 With the objective of evaluating 

whether the developed compounds could trigger calcium sparking, intact HeLa cells were 

incubated with Fluo-4, a fluorescent Ca2+-indicator dye,29 and compounds were added 

to measure calcium release by fluorescence microscopy. After both negative (buffer) and 

positive (PDP3) control experiments were carried out (Supp. Fig. 3A,B), compounds with an 

in vitro EC50 < 5 μM were tested in living cells. The most active compound in vitro, 35, was 

tested at different concentrations but did not produce calcium spikes even at 10 mM (Fig. 

3A). Peptidomimetics 34, 36 and 37 were also inactive, but compounds 39, 41, 45 and 46 
appeared slightly active with a few cells responding (Supp. Fig. 3C-I). Peptidomimetic 43 
triggered the strongest response in a concentration-dependent manner (Fig. 3B,C). However, 

the cellular response of releasing calcium required high peptide concentrations, and did not 

correlate well with the EC50s and with the presence of unnatural amino acids, which would 

stabilize peptides against degradation. Therefore, we asked whether the calcium originates 

from the inside of the cell, as is the case for the longer PDPs,10 or if the calcium spikes 

depend on external calcium, which would for example occur if the peptide treatment led to 

a disruption in the plasma membrane and enabled external calcium to enter the cell. When 

we repeated the treatment of 43 in Ca2+-free medium in the presence of ethylene glycol 

tetraacetic acid (EGTA, Fig. 3D) to chelate extracellular Ca2+, we did not observe any Ca2+ 

spiking anymore, suggesting that the cellular response is not PP1-dependent, and that these 

peptides did not act in the same manner as PDPs.10
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4 Conclusions

In summary, to approach our aim to find a pharmacophore we have successfully set up a 

structure-based virtual and a high throughput screen. Unfortunately, no hits resulted from 

these screens, which shows how difficult it is to target this phosphatase. We then carried out 

a rational structure-activity relationship study of short peptides and peptidomimetics binding 

to the RVxF binding site of PP1, revealing information about the functional groups required 

for binding to the RVxF binding site. After several rounds of optimization, we were able to 

optimize a pentapeptide with sub-micromolar activity in disrupting the interaction between 

PP1 and Inhibitor-2 in vitro. As other short peptides before,15 these peptides were not active 

in cells. Adding a poly-arginine tail could help to enhance cell penetration and with this 

in-cell activity,15 however, it would defeat the purpose of reducing the peptide size and offer 

no advantage over the optimized PDP-Nal.20 Future efforts will have to focus on strategies 

morphing the peptidomimetic pentapeptides into more drug-like molecules. Considering 

the biological relevance of PP1 in health and disease and the difficulties in targeting this 

allosteric site, as well as the PDP’s use for phosphatase-recruiting (or targeting) chimeras 

(PhoRCs18 or PhosTACs17), our results form an important basis for optimizing current 

strategies to study and target PP1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Mechanism of action of PDPs.
PP1 is bound to regulatory proteins (RIPPOs) in cells. These specify its interactions 

and activity. Through binding to the allosteric RVxF-binding site, PDPs disrupt these 

holoenzymes and release PP1 catalytic unit, which can dephosphorylate nearby substrates. 

Inhibitory RIPPOs, in particular Inhibitor-2 (I2), bind to the active site and the RVxF-

binding site (Protein Data Bank PDB code 2O8A and 2O8G), thereby blocking the activity. 

Replacement of I2 with a PDP therefore leads to de-inhibition by de-blocking the active site.
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Fig. 2. 
ITC measurement at 25 °C with VP-ITC Microcal calorimeter (Microcal, Northhampton, 

MA, USA). Raw data (upper part) and processed data (lower part). ITC measurements were 

carried out in a buffer of 20 mM TrisCl at pH 7.4 rt, 200 mM NaCl, 1 mM TCEP using 500 

μM of 35 and (A) 0.72 mg/ml of PP1 or (B) 0.3 mg/ ml of Inhibitor 2.
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Fig. 3. 
Induction of calcium transient release in HeLa Cells measured by fluorescent Ca2+-indicator 

dye Fluo-4 imaging. Representative traces of ten cells are plotted. In all cases, compounds 

were added 10 s after starting the recording. (A) 10 mM 35 (total n = 80 cells, 0% 

responder). (B) 100 μM 43 (total n = 136 cells, 35% responder). (C) 500 μM 43 (total n = 

53 cells, 47% responder). (D) Incubation of HeLa cells in imaging buffer containing no Ca2+ 

and 250 mM EGTA with 500 μM 43 (total n = 30 cells, 0% responder, higher background 

due to different microscope used).
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Table 1

EC50 (μM) of the disruption of the interaction between PP1 and Inhibitor 2 with compounds, where D-amino 

acids are indicated with “d” before the one letter code and amino acids rationally changed from the sequence 

of RVTF (1) are in bold. EC50s (μM) of pentapeptides 31-50, where amino acids changed from KRVHF-NH2 

(35) are in bold. EC50s where measured starting at 50% inhibition of PP1 with I2 and using DiFMUP as a 

substrate (see Methods).

Compound Sequence EC50 (μM)

1 RVTF 234 ± 48.6

2 KVTF > 500

3 RITF Slightly active at 500 μM

4 RLTF Slightly active at 500 μM

5 RVSF > 500

6 RVGF Slightly active at 500 μM

7 RVVF Slightly active at 500 μM

8 RVKF 249 ± 51.0

9 RVHF 69.7 ± 18.1

10 RVNF 220 ± 53.8

11 RVQF 224 ± 82.1

12 RVDF > 500

13 RVEF Slightly active at 500 μM

14 RVFF > 500

15 RVYF Slightly active a 500 μM

16 RVWF 104 ± 39.6

17 RVTY > 500

18 RVTW 256 ± 59.8

19 dRVTF > 500

20 RdVTF > 500

21 RVdTF > 500

22 RVTdF > 500

23 dRdVdTF > 500

24 dRVTdF > 500

25 FTVR > 500

26 dFdTdVdR > 500

27 dFdHdVdR Slightly active at 500 μM

28 Ac-RVTF > 500

29 RVTF-NH2 101 ± 11.1

30 Ac-RVTF-NH2 85.7 ± 1.6

31 RRVHF 2.7 ± 0.6

32 KRVHF 1.5 ± 0.6

33 Ac-KRVHF 3.2 ± 0.5

34 Ac-KRVHF-NH2 1.7 ± 0.1
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Compound Sequence EC50 (μM)

35 KRVHF-NH2 0.6 ± 0.04

36 dKRVHF-NH2 2.6 ± 0.4

37 (β-K)-RVHF-NH2 2.9 ± 0.1

38 (β-homo-K)-RVHF-NH2 9.8 ± 0.2

39 Orn-RVHF-NH2 4.1 ± 0.1

40 (homo-R)-RVHF-NH2 6.6 ± 0.2

41 (β-homo-R)-RVHF-NH2 3.2 ± 0.2

42 KHVHF-NH2 24.6 ± 2.1

43 K-(homo-R)-VHF-NH2 1.7 ± 0.2

44 K-(β-homo-R)-VHF-NH2 204 ± 1.9

45 K-(N-Me-R)-VHF-NH2 4.7 ± 0.3

46 KR-Cpg-HF-NH2 2.1 ± 0.1

47 KRVH-Cha-NH2 52.5 ± 1.8

48 KRVH-(1-NaI)-NH2 2.5 ± 0.2

49 KRVH-(2-NaI)-NH2 1.5 ± 0.4

50 KRVH-(N-Me-F)-NH2 23.5 ± 0.7
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