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Abstract

Multiscale integration of gene transcriptomic and neuroimaging data is becoming a

widely used approach for exploring the molecular underpinnings of large-scale brain orga-

nization in health and disease. Proper statistical evaluation of determined associations

between imaging-based phenotypic and transcriptomic data is key in these explorations,

in particular to establish whether observed associations exceed “chance level” of random,

nonspecific effects. Recent approaches have shown the importance of statistical models

that can correct for spatial autocorrelation effects in the data to avoid inflation of

reported statistics. Here, we discuss the need for examination of a second category of

statistical models in transcriptomic-neuroimaging analyses, namely those that can provide

“gene specificity.” By means of a couple of simple examples of commonly performed

transcriptomic-neuroimaging analyses, we illustrate some of the potentials and challenges

of transcriptomic-imaging analyses, showing that providing gene specificity on observed

transcriptomic-neuroimaging effects is of high importance to avoid reports of nonspecific

effects. Through means of simulations we show that the rate of reported nonspecific

effects (i.e., effects that cannot be specifically linked to a specific gene or gene-set) can

run as high as 60%, with only less than 5% of transcriptomic-neuroimaging associations

observed through ordinary linear regression analyses showing both spatial and gene

specificity. We provide a discussion, a tutorial, and an easy-to-use toolbox for the differ-

ent options of null models in transcriptomic-neuroimaging analyses.
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1 | INTRODUCTION

A fast-growing number of imaging-genetic studies have started to

investigate associations between spatial patterns of gene trans-

criptome data and macroscale imaging-derived brain phenotypes

(Anderson et al., 2018; Burt et al., 2018; Fornito, Arnatkeviciute, &

Fulcher, 2019; van den Heuvel, Scholtens, & Kahn, 2019; van den

Heuvel & Yeo, 2017; Krienen, Yeo, Ge, Buckner, & Sherwood, 2016;

Richiardi et al., 2015; Wang, Belgard, et al., 2015). Whole-brain trans-

criptome data, such as the extensive Allen Human Brain Atlas (AHBA)
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(Hawrylycz et al., 2012), the BrainSpan developing human brain atlas

(Kang et al., 2011) and the PsychEncode consortium (Wang

et al., 2018), serve as an invaluable quantitative reference to assess

transcriptomic-neuroimaging associations. Examples of such studies

include reports on genes related to oxidative metabolism to display

transcriptional profiles in a similar spatial pattern as the degree of

inter-module long-distance connectivity (FC) (Vertes et al., 2016),

reports on genes enriched for neuronal and synaptic connectivity to

show transcriptional profiles that capture the architecture of brain

functional networks (Krienen et al., 2016; Romero-Garcia et al., 2018),

and reports of transcriptional profiles of risk genes for brain disorders

(e.g., taken from genome-wide association studies (GWAS)) to display

overlap with patterns of disorder-specific brain changes, for example

for schizophrenia (Romme, de Reus, Ophoff, Kahn, & van den

Heuvel, 2017), autism spectrum disorder (Romero-Garcia, Warrier,

Bullmore, Baron-Cohen, & Bethlehem, 2019), major depressive disor-

der (Anderson et al., 2020), among others. This rapidly growing num-

ber of powerful transcriptomic-neuroimaging explorations stresses

the need for proper statistical evaluation methods that can deal with

the complicating covariance seen between genes and answer the

question, for example, “whether observed results are specific to the a-

priori selected genes of interest, or reflect a more common effect pre-

sent across more genes and not related to the genes of interest?”
One commonly examined question (and related hypothesis) in

transcriptomic-neuroimaging studies is summarized as follows: “Does

the spatial pattern of our gene/gene-set of interest X across brain

areas match the spatial pattern that we observe across brain regions

for brain phenotype Y”? For example, X here can be gene Apolipopro-

tein E (APOE), tested against the brain phenotype of cortical atrophy

as measured in Alzheimer's disease (AD); or X can be a gene-set

enriched in a specific class of cells or cortical layer, such as genes

enriched in supragranular layers, and Y the level of regional functional

connectivity of cortical areas. After preprocessing and normalization

of the transcriptomic data (Arnatkevi�ci�utė, Fulcher, & Fornito, 2019;

Markello et al., 2021), values for gene(s) X are selected from the trans-

criptomic dataset and the level of cortical expression across areas is

correlated with the cortical profile of Y across the same set of regions

(Figure 1a). When a significant correlation is observed between X and

F IGURE 1 Approaches for statistical testing of overlapping patterns of gene transcription and imaging-derived brain phenotypes.
(a) Permutation test procedure. The expression profile (X) of a user-defined gene/gene-set of interest (GOI) is computed. Association between
the expression profile and the imaging-derived pattern (Y) is assessed using linear regression. Permutation testing is used to examine whether the
observed β1 is larger than null distributions of β1 derived from null models. Different statistical null models are possible: (b) Correction for spatial
effects. The “null-spatial” model (Alexander-Bloch et al., 2018) is proposed as a method to correct for spatial autocorrelation of the observed
associations. Randomized brain parcellations are obtained by spinning the inflated sphere of the real brain parcellation (1,000 randomizations
used in the current study). Gene expression data matrices are then rebuilt using these randomized brain parcellations. The rebuilt gene expression
data are used to re-evaluate transcriptomic-neuroimaging associations to generate null distributions. (c) Examination of gene specificity. Three
null models (from more lenient to more stringent) are used to examine the gene specificity. “null-random-gene” model: random genes are selected
from all N ≈ 20,000 genes included in AHBA. “null-coexpressed-gene” model: random genes that conserve the mean coexpression level of the
original genes are selected from all N ≈ 20,000 genes included in AHBA. “null-brain-gene” model: random genes are selected from a subset of
genes (2,711 genes) that show up-regulated expression levels in brain tissues in contrast to other body sites
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Y (often statistically evaluated by means of simple linear regression),

the observed correlation is interpreted as an indication of an associa-

tion between the gene/gene-set of interest and examined phenotype:

for example, “our analysis supports our hypothesis of the level of nor-

mative expression of APOE across brain regions to be associated with

the pattern of cortical atrophy, with regions showing a high level of

(normative) expression of APOE arguably displaying a higher level of

involvement or vulnerability in the disease process.” And this makes

sense: APOE ε4 is a well-known risk gene for AD (Cacciaglia

et al., 2018), so a high level of normative expression of APOE could

indeed in some way be related to cortical atrophy in the disease

condition.

When we find and discuss such an observed association, we

are however often quickly tempted to interpret this finding as that

it is specifically APOE—and not some other gene—that shows this

pattern. This is however not directly tested when we test gene X

against phenotypic pattern Y. What if another gene would also

show this pattern? This would be informative if this gene is also

linked to AD (for example, other risk genes identified in AD's GWAS

(Jansen et al., 2019)). But what if a gene that is not related to AD

would also show this effect? Or when the majority or a consider-

able part of all genes for which data are available in the trans-

criptomic dataset would show a similar association? A thorough

further investigation into the level of specificity of our shown asso-

ciation to gene or gene-set X would make our claim much stronger

and show that it is indeed X that shows this effect, and not just any

subset of genes. In contrast, if many other genes would also show

the same pattern, one could argue that this makes our observed

correlation between X and Y less powerful, and perhaps of less

interest for further functional follow-up.

As recently pointed out (Alexander-Bloch et al., 2018;

Arnatkevi�ci�utė et al., 2019; Burt, Helmer, Shinn, Anticevic, &

Murray, 2020; Fulcher, Arnatkeviciute, & Fornito, 2021; Markello &

Misic, 2021) a first important point in this context is that the com-

monly used linear regression model assumes independent observa-

tions. This is however not always the case for brain gene

expression data, as expression levels of neighboring regions tend to

be often strongly correlated. It has thus been proposed to take

these spatial effects (referred to as spatial autocorrelation (Fulcher

et al., 2021; Markello & Misic, 2021)) into account by means of a

spatially constrained null model (Markello & Misic, 2021), which

generates surrogate brain maps based on the parameterized

variogram model (Burt et al., 2020) or based on spatial permuta-

tions (Alexander-Bloch et al., 2018) (Figure 1b). Implementations of

such null models strongly reduce false-positive findings (Fulcher

et al., 2021; Markello & Misic, 2021), showing the importance of

correcting for spatial autocorrelation effects in transcriptomic-

neuroimaging analyses.

What is however not yet answered by means of spatially con-

strained null models is the importance of evaluating whether an

observed correlating transcriptomic-neuroimaging pattern goes

beyond effects that one can expect from taking any other gene or

gene-set from the data, that is, to what extent is our effect really

unique to our gene(s)-of-interest X or are we looking at a much

more general effect? To address the notion of “gene specificity,”
statistical comparisons of our effect for gene X to effects derived

from other genes are needed. Several options are proposed, the

most simple one being to compare the effect of gene X against a

null distribution of effects based on selecting random genes from

the pool of all N ≈ 20,000 genes (Romme et al., 2017) (Figure 1c).

Such a “random gene” model may indeed provide an important first

indication of whether or not our observed association with Y is rel-

atively unique for our gene(s)-of-interest X or whether it can easily

be found for many other genes (resulting in a pseudo p > .05). The

random-gene null model can serve as a first simple evaluation of

whether or not our observed effect has some level of specificity

or not.

As mentioned (Fulcher et al., 2021; Wei et al., 2019) the random-

gene null model may however not always give us enough information

about the specificity of our effect to our gene(s) of interest. It has

been noted that the simple random-gene null model ignores common

levels of coexpression present among genes (Fulcher et al., 2021). The

genes in a gene-set X (taken from a GWAS, or a Gene Ontology

(GO) pathway that we want to study) typically show a high level of

coexpression among them. If we just compare the gene-expression

pattern from the genes in X to a random set X' of randomly selected

genes across all N ≈ 20,000 genes, we ignore the internal structure of

X. Not incorporating information on coexpression into our null condi-

tion may lead to an over-evaluation of our effect, that is, we claim that

gene-set X has a relatively unique association to Y, but we over-

estimate its importance as we compare it to a (too) liberal null condi-

tion where we mix signals from nonrelated genes. This nonspecificity

strikingly increases when we want to investigate a set of biologically

relevant genes (i.e., when we test GO pathways (Fulcher et al., 2021)),

which are generally much higher coexpressed than a set of random

genes. If our hypothesis is that gene-set X shows a unique pattern of

expression that significantly correlates to brain pattern Y, testing with

more fine-tuned null models that take into account coexpression and

biologically relevant relationships may be warranted.

Here, we evaluate and discuss proposed and used options for sta-

tistical evaluation of transcriptomic-neuroimaging associations, includ-

ing the (most) commonly applied linear regression model, previously

proposed null models that maintain spatial relationships, and null

models that aim to provide insight into the level of gene specificity on

the basis of comparing our effect-of-interest with effects that can

occur among random genes. Through means of three simple examples,

we point out that controlling for spatial effects is important to reduce

false-positive findings (Arnatkevi�ci�utė et al., 2019; Burt et al., 2018;

Fulcher et al., 2021), but we also show that this is not enough if we

want to test a meaningful specific hypothesis: We suggest that further

examinations of gene specificity using null models that account for

(pseudo)random gene effects is equally important in minimizing

reports of nonspecific results in transcriptomic-neuroimaging studies.

We provide an overview of the several steps to consider (Figure 2),

together with a toolbox to easily perform various null-model evalua-

tions for transcriptomic-neuroimaging studies.
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2 | RESULTS

2.1 | Overview of results

We demonstrate the use and importance of different null models by

means of discussing the analysis strategy and results of three common

examples, followed by simulations of effects. We assess how different

null models (i.e., null models that give spatial or gene specificity) can

serve as a tool to identify possibly inflated statistical effects and sepa-

rate potential spatial and gene-specific effects from more common,

global effects present in the transcriptomic and neuroimaging data. In

our examples, we show the usage of the different null-models with

respect to gene/gene-set of interest (GOI), including genes related to

cortico-cortical connectivity, AD-risk gene APOE, and genes associ-

ated with autism spectrum disorder (ASD). We hypothesize that the

transcriptional profile of a GOI X relates to a brain phenotype Y, like

the spatial pattern of brain atrophy (McColgan et al., 2018) or brain

disconnectivity (Romme et al., 2017). We first test our hypothesized

association between GOI X and the brain phenotype Y by means of

correlation analysis and, when found significant, then further test the

statistical relevance of this association using (1) spatial null models to

correct for spatial autocorrelation in our data and (2) random-gene

null models to assess gene specificity. We show that statistical

evaluations based on null models that maintain spatial relationships

do not necessarily provide gene specificity, nor vice versa.

2.2 | Example 1: Genes related to cortico-cortical
connectivity

We start by (re-)assessing a commonly examined and powerful rela-

tionship between expressions of genes important for neuronal con-

nectivity and macroscale connectome organization in the healthy

brain (e.g., Krienen et al., 2016; Romero-Garcia et al., 2018). We test

this by focusing on a set of 19 genes known to be enriched in

supragranular layers of the human cerebral cortex (referred to as

human supragranular enriched [HSE] genes), revealed by a previous

study that compared gene expression profiles in different cortical

layers between mice and humans (Zeng et al., 2012). These HSE genes

are suggested to play a role in shaping long-range cortico-cortical con-

nections of layer III pyramidal neurons and as such to show a spatial

expression pattern that runs parallel to the organization of brain struc-

tural and functional networks (Krienen et al., 2016; Romero-Garcia

et al., 2018). The transcriptional profile of HSE genes is shown in

Figure 3a.

2.2.1 | Transcriptomic-neuroimaging overlap: Linear
regression

We first test the potential association between the spatial expression

pattern of HSE genes and macroscale functional connectivity (Krienen

et al., 2016). Using simple linear regression, we indeed find the

expression pattern of HSE genes to be significantly associated with

the pattern of connectivity strength of cortical areas—a measurement

describing the extent to which a region is connected to the rest of the

brain—under the assumption of “independent” gene expressions in

the brain (standardized beta β = 0.678, p < .001 for connectivity

weighted by the number of streamlines [NOS]; β = 0.637, p < .001 for

connectivity weighted by streamline density [SD]; false discovery rate

[FDR] corrected q < 0.05 for multiple testing across five connectome-

related metrics; Figure 3b,c). A similar association can be found

between the pattern of HSE gene expression and the pattern of nodal

strength of the functional connectome (FC; β = 0.450, p < .001; FDR

corrected; Figure 3b,c), which is in line with the notion of a strong cor-

respondence between structural and functional connectivity (Wang,

Dai, Gong, Zhou, & He, 2015).

2.2.2 | Correction for spatial autocorrelation: Null-
spatial model

These findings confirm a potential association between HSE gene

expression and macroscale connectome organization (Krienen

et al., 2016; Romero-Garcia et al., 2018), but it is worth checking

whether this association is not accidentally driven by inter-regional

F IGURE 2 Flow chart of the statistical framework that tests
associations between the spatial pattern of expressions of the gene(s)
of interest (GOI) and imaging-derived phenotypes (IDP)
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auto-correlations in our data (Figure 2). As pointed out recently

(Alexander-Bloch et al., 2018; Arnatkevi�ci�utė et al., 2019; Burt

et al., 2020; Fulcher et al., 2021), the commonly used linear regression

method assumes independent observations, which means no correla-

tion between values (i.e., expression levels) of the same variable

(i.e., gene(s)) across different observations (i.e., regions). However,

both the transcriptomic data and neuroimaging data of neighboring

regions are likely not independent (Fulcher et al., 2021) and it is thus

crucial to examine whether the observed associations are biased by

potentially correlated expressions of neighboring brain regions, that is,

preserving spatial relationships across regions. To this end, an impor-

tant null model was introduced (here referred to as “null-spatial”)

where transcriptomic samples are assigned to brain regions from ran-

domized parcellations that are obtained by “spinning” the

reconstructed sphere of the real brain parcellation (Alexander-Bloch

et al., 2018), importantly preserving spatial relationships across brain

regions (1,000 randomizations; see Methods, Figure 1b; we note that

other variations are possible but not included here [Burt et al., 2020;

Markello & Misic, 2021]). The rebuilt gene expression data matrices

are used to generate a null distribution of β, which is used to assess

whether the original effect goes beyond the null condition. Using the

null-spatial model, the associations between the expression pattern of

HSE genes and the pattern of structural/functional connectivity

strength are again found to be significant (NOS: z = 3.057, p = .002;

F IGURE 3 Example 1: HSE gene expression and macroscale connectome properties. (a) Brain plots of normalized gene expression levels of
HSE genes. (b) Overview of linear regression results between HSE gene expression profile and five imaging-derived phenotypes (IDPs) that
correspond to connectome properties. Dark blue indicates significant (q < 0.05, FDR corrected across five connectome traits). (c) Scatter plots for
significant correlations between HSE gene expression and nodal strength of the structural (NOS-weighted, β = 0.678 and SD-weighted,
β = 0.637) and functional connectome (β = 0.450). (d) Permutation testing results showing whether the observed effect size (β in panel B) is
significantly beyond four distinct null distributions of effect sizes for null-spatial, null-random-gene, null-coexpressed-gene, and null-brain-gene
models. Dark blue indicates q < .05 (two-tailed z-test, FDR corrected)
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SD: z = 2.516, p = .012; FC: z = 1.963, p = .049; FDR-corrected for

multiple testing across three tests, Figure 3d). These effects thus sig-

nificantly go beyond effects that one can expect using randomized

brain regions with the same neighboring relationships, suggesting that

the observed associations are specific to the spatial organization of

brain regions.

2.2.3 | Gene specificity

As laid out, correcting for spatial auto-correlation however does not

yet tell us whether the observed effect is specific to this set of genes

or whether the same pattern might be present for all genes (including

those not related to neuronal processes). We thus further want to

examine whether our observed association is also gene-specific

(i.e., whether it is relatively unique or can be found for many other

genes). This is of particular importance as multiple examinations have

pointed out general (global) posterior–anterior gradients of expression

levels across brain areas (McColgan et al., 2018; Vogel et al., 2020),

effects that may more reflect spatial patterns general to genes

expressed in the brain, rather than reflecting patterns unique to the

GOI. We argue that a next important step in the evaluation of

observed transcriptomic-neuroimaging association(s) is to examine to

what extent the computed linear correlations exceed effects that one

could also observe when any other gene or set of genes would have

been chosen (Figure 2).

Null-random-gene model

To this end, we can employ permutations to generate null distribu-

tions of effect sizes, β, based on gene expression profiles of same-

sized gene sets randomly selected from all genes (by default 10,000

permutations are used). We refer to this used null model (Fulcher

et al., 2021; Romme et al., 2017) as the “null-random-gene” model

(Figure 1c). When the original β significantly exceeds this null model,

it indicates the observed association cannot be found for all genes,

but is unique for the GOI. For our HSE example, we show that the

observed effect sizes for associations between HSE genes and nodal

strength of structural and functional connectivity are significantly

larger than effect sizes of random genes (NOS: z = 5.742, p < .001;

SD: z = 4.646, p < .001; FC: z = 3.541, p < .001; Figure 3d).

Null-coexpressed-gene model

We (Wei et al., 2019) and others (Fulcher et al., 2021) have earlier

noted that when a set of genes (instead of a single gene) is examined,

the coexpression level within a set of genes may easily set apart the

average expression profile of this set of genes from a set of randomly

selected genes. Genes are organized into biological pathways and sys-

tems (Ashburner et al., 2000) and our GOI likely contains high biologi-

cal overlap as the GOI is usually selected as genes associated with the

same trait. In contrast, randomly selected sets of genes describe an

intersection across less similar biological pathways (see details in Sup-

plementary Results, Appendix S1). The GOI therefore may show high

levels of covariance (i.e., coexpression), something that is not

conserved in a random mixture of genes (Fulcher et al., 2021). There-

fore, we argue that it would be more informative to further include a

null model for stricter statistical evaluation, comparing the observed

effect size to the null distribution of effect sizes yielded by random

genes conserving the same level of coexpression as the input GOI

(referred to as “null-coexpressed-gene”; Figure 1c). For our HSE

example, we use simulated annealing to look for random genes with

the mean coexpression levels converging to those of HSE genes (see

Methods). Application of this null model still shows significant associa-

tions between HSE gene expression and connectivity strength (NOS:

z = 6.002, p < .001; SD: z = 4.763, p < .001; FC: z = 3.869, p < .001;

Figure 3d).

Null-brain-gene model

We anticipate that the strongest usability of transcriptomic-

neuroimaging examinations is to link brain transcriptomic data (like

AHBA) to brain phenotypes (like MRI measurements). Most of such

examinations will thus be centered on testing a GOI pre-selected

based on the findings from previous brain-related studies, for exam-

ple, GWAS of a disease phenotype such as schizophrenia

(Schizophrenia Working Group of the Psychiatric Genomics,

Consortium, 2014) or Alzheimer's disease (Jansen et al., 2019), a spe-

cific pathway related to neuronal properties (Kepecs & Fishell, 2014)

as in our first HSE example, genetic variants related to brain volume

(Jansen et al., 2020), and so on. The result of such pre-selected GOI is

that most of them will likely be related to processes related to the

brain, and as such reflect genes likely over-expressed in brain tissue.

As a consequence, we argue that in these cases a null condition gen-

erated by randomly selecting genes from the total set of N ≈ 20,000

genes (including genes related to all body processes, certainly not only

to the brain) is not fair and too liberal, as the null-condition will

include a body of background genes not, or less, expressed in brain

tissue. Including such genes into the null-condition will lead to a liberal

null-distribution of effects and with that a possible overestimation of

the original effect (de Leeuw, Stringer, Dekkers, Heskes, &

Posthuma, 2018).

To avoid this and to be able to make more specific claims on our

GOI, we advise also testing observed transcriptomic-neuroimaging

associations by means of a null model that tests whether the observed

effect size is larger than the null distribution of effect sizes based on

background genes that are more closely related to the GOI (i.e., here

brain tissue). For our neuroimaging analysis, we refer to this null

model as “null-brain-gene” (Figure 1c) (Wei et al., 2019), with random

genes now selected from the pool of genes that are significantly

(more) expressed in brain tissues in contrast to other body sites. This

selection can be made by using an external resource like the GTEx

database (Consortium, G. TEx, 2015), containing gene expression data

of all sorts of body tissues, including the brain (2,711 brain-expressed

genes selected by q < 0.05, FDR correction, one-sided two-sample t-

test comparing brain tissues and other body sites). Alternative less

stringent selections can be made when the GOI is not particularly

over-expressed in the brain, for example by selecting background

genes that are over- or similarly expressed in brain tissue as compared
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to other body sites (see Supplemental Methods, Appendix S1 for

these alternative selections). In our example, using a stricter null-brain

model based on brain-over-expressed genes confirms that HSE genes

and connectome metrics are stronger associated than expected for

randomly selected brain genes (NOS: z = 4.311, p < .001; SD:

z = 4.151, p < .001; FC: z = 2.997, p = .003; Figure 3d).

Null-brain-coexpression model

As a further step, one can merge the null-coexpressed-gene model

and null-brain-gene model, investigating a more integrated null model

that tests whether the observed effect size is larger than the null dis-

tribution of effect sizes based on brain-expressed genes with similar

coexpression level conserved (referred to as “null-brain-coexpression
model”). Using this stringent null model still shows significant associa-

tions between HSE gene expression and connectivity strength (NOS:

z = 4.304, p < .001; SD: z = 4.184, p < .001; FC:

z = 2.8934, p = .004).

In summary, testing the expression pattern of HSE genes against

brain connectivity confirms a potentially interesting association

between these two modalities, in support of an important multi-

scale hypothesis of the expression of genes related to neuronal pro-

cesses to potentially play an important role in shaping not only local

(i.e., synapses), but also more global patterns of brain connectivity

and brain network organization (Krienen et al., 2016; Vertes

et al., 2016). This association (1) survived correction for spatial

effects (i.e., null-spatial) and (2) tends to represent a rather unique

and specific pattern compared to general patterns of expression of

random genes (i.e., null-random-gene and null-coexpressed-gene),

as well as (providing even more specificity) compared with other

sets of brain genes (null-brain-gene). Findings on HSE genes and

brain connectivity thus would be of more interest to the community

and potential follow up examination in for example, disease condi-

tions (Hoftman et al., 2020).

2.3 | Example 2: Alzheimer's disease risk
gene APOE

Our HSE example includes a case in which our hypothesized effect

survived all different statistical evaluations, from single linear regres-

sion to null-spatial (i.e., correcting for spatial bias) to null-

coexpressed-gene and null-brain-gene models (i.e., providing gene

specificity). In a second example, we show that this is however not

always the case, and that the use of a (too) liberal evaluation not test-

ing for gene specificity potentially may lead to the report of a relative

nonspecific finding. Here, we zoom in on transcriptomic brain patterns

of disease-related pathology, another major topic of combined

transcriptomic-neuroimaging studies (Freeze, Pandya, Zeighami, &

Raj, 2019; McColgan et al., 2018; Romme et al., 2017). As an example,

we examine the expression of the gene APOE, of which variant E4 is

widely indicated as a risk variant for Alzheimer's disease (AD) (Liu, Liu,

Kanekiyo, Xu, & Bu, 2013). We hypothesize that the cortical gene

expression of APOE (as presented in the AHBA dataset) is related to

the cortical alterations revealed in patients with AD and other types

of dementia.

We again start by testing for a significant correlation between

the transcriptional profile of our GOI, here gene APOE (Figure 4a),

and our neuroimaging phenotype of interest, here cortical gray mat-

ter atrophy patterns of 22 brain diseases, including AD, dementia,

and others as reported by meta-analyses of the BrainMap voxel-

based morphometry (VBM) studies (see Methods). Linear regression

analysis reveals that the pattern of APOE gene expression is signifi-

cantly associated with results of VBM studies reporting on atrophy

of brain regions in (i) AD (β = 0.631, p < .001), (ii) dementia

(β = 0.653, p < .001), (iii) semantic dementia (β = 0.620, p < .001),

and (iv) frontotemporal dementia (β = 0.505, p = .001; FDR

corrected q < 0.05 for multiple testing across 22 diseases;

Figure 4b,c). These findings seem to confirm our hypothesis, bring-

ing promising evidence of a significant association between APOE

gene expression and the pattern of cortical atrophy across multiple

forms of dementia. Further analysis seems to reveal additional asso-

ciations between APOE expression and the atrophy pattern of

(v) attention deficit hyperactivity disorder (ADHD), which has been

mentioned as a risk factor of dementia pathology (Callahan,

Bierstone, Stuss, & Black, 2017) (β = 0.349, p = .008), and

(vi) bipolar disorder (β = 0.335, p = .010; FDR corrected;

Figure 4b).

Motivated by these positive results, we use the null-spatial model

to make sure our effects survive when we take into account spatial

relationships across brain regions and correct for spatial autocorrela-

tion in the transcriptomic and neuroimaging data. Null-spatial reveals

significant associations of APOE's expression with brain atrophy in

four out of the six diseases listed above, including dementia

(z = 3.391, p < .001), AD (z = 3.161, p = .002), frontotemporal

dementia (z = 2.933, p = .003) and semantic dementia (z = 2.535,

p = .011; FDR corrected across six tests; Figure 4d). These findings

show encouraging effects that favor a relationship between the tran-

scriptional profile of APOE and patterns of cortical atrophy related to

dementia.

However, when we evaluate whether the observed associations

between APOE transcriptional profile and disease-related atrophy pat-

terns exceed effects that one could also observe by chance for any

other set of genes, these effects diminish: The four significant associa-

tions observed in the linear regression analysis that further survived

the null-spatial model, show only trend-level effects with respect to

the null-random-gene model that constitutes the expression of ran-

domly selected genes as null model, not surviving any correction for

multiple testing (semantic dementia: z = 2.053, p = .040; dementia:

z = 2.014, p = .044; AD: z = 1.943, p = .052; frontotemporal demen-

tia: z = 1.955, p = .051, ns after FDR correction; Figure 4d). Testing

against the more appropriate null-brain-gene model (i.e., zooming in

on genes over-expressed in brain tissue) shows that none of the

effects are significant (semantic dementia: z = 1.715, p = .086;

dementia: z = 1.716, p = .086; AD: z = 1.637, p = .102;

frontotemporal dementia: z = 1.618, p = .106, ns; Figure 4d). These

statistical evaluations point toward the notion of the originally
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observed correlation between APOE and cortical atrophy to be an

effect that holds for many other genes that are expressed in brain tis-

sue, suggesting that the association is not “unique” or “specific”; we

would have found the same effect if we would have selected other

brain genes as our GOI at the start of our experiment.

While we thus initially found encouraging evidence of an associa-

tion between our gene of interest APOE and the pattern of cortical

atrophy in dementia/AD patients, this effect appears to be present

among many other genes. In fact, the expression profile of 61 other

genes (out of the total set of 2,711 brain-over-expressed genes)

shows an equal or stronger correlation with AD cortical atrophy than

gene APOE. In defense of a hypothesized association of APOE, it could

be argued that the 61 other genes are also all associated with the AD

cortical atrophy pattern and that testing for gene-specificity is too

strict. Posthoc analysis however does not show evidence in that direc-

tion: Examining the involvement of these 61 genes in one of the most

recent GWAS studies on AD (Wightman et al., 2021) indicates that

only one of these genes (only gene COCH from the reported 602 AD-

associated genes; hypergeometric testing: p = .674) has a discovered

role in AD. Alternatively examining their potential involvement in dif-

ferential gene expression in AD (Horesh, Katsel, Haroutunian, &

Domany, 2011) reveals that only 2 of the 61 genes (only GRIN2B,

OPHN1 from the reported 276 genes; hypergeometric testing:

p = .071) show differentiated expression levels in AD patients.

F IGURE 4 Example 2: APOE gene expression and atrophy in brain diseases. (a) Brain plots of normalized gene expression levels of APOE.
(b) Overview of linear regression results, showing the top 10 associations between APOE gene expression profile and the imaging-derived

phenotypes (IDPs) that correspond to disease atrophy patterns derived from the BrainMap voxel-based morphometry (VBM) studies. Dark blue
indicates significant (q < 0.05, FDR corrected across 22 brain diseases included in GAMBA). (c) Top 3 significant correlations between APOE gene
expression and VBM changes in dementia (β = 0.653), Alzheimer's (β = 0.631), semantic dementia (β = 0.620). (d) Permutation testing results
showing whether the observed effect size (β in panel c) is significantly beyond three distinct null distributions of effect sizes for null-spatial, null-
random-gene, and null-brain-gene models. Dark blue indicates uncorrected p < .05 (two-tailed z-test); “*” indicates FDR corrected p < .05
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2.4 | Example 3: Application to autism spectrum
disorder risk genes

We further demonstrate the importance of proper null-model selec-

tion in avoiding over-interpretation of observed associations in a

third example testing a gene-set of interest. We examine gene

expressions of 25 risk genes of ASD (24 of which are present in

AHBA) obtained from a recent meta-analysis of genome-wide asso-

ciation studies on a total of 18,381 ASD cases and 27,969 controls

(Grove et al., 2019). Again, we start with computing the correlation

between the expression pattern of ASD genes (Figure 5a) and func-

tional alterations in brain diseases, here derived from the extensive

BrainMap database (Fox et al., 2005; Fox & Lancaster, 2002; Laird,

Lancaster, & Fox, 2005), which reveals an interesting association

between the expression of ASD genes and regions involved in

Asperger's syndrome (β = 0.284, p = .032, not corrected)

(Figure 5b)—a major diagnosis of ASD with difficulties in social

interaction and nonverbal communication. In a subsequent analysis

we correct for spatial relationships, with the effect positively sur-

viving the null-spatial model (z = 2.006, p = .045). However, using

null models to examine gene specificity does not show any signifi-

cant result (null-random-gene: z = 1.223, p = .222; null-

coexpressed-gene: z = 1.148, p = .251; null-brain-gene: z = 1.153,

p = .249; null-coexpressed-brain-gene: z = 1.235, p = .217)

(Figure 5c).

This third simple example shows that even when an expected

association is observed that fits with current theories of brain (dis)

organization and (dis)connectivity, these effects may be easily over-

estimated, with other sets of genes (in this case, random subsets of

genes generally expressed in brain tissue) showing highly similar

expression patterns. The selection of a proper null model matching

one's research question is of importance in providing specificity to an

observed relationship between brain expression data and neuroimag-

ing phenotypes (Table 1).

2.5 | Quantitative simulations of null models

2.5.1 | Brain phenotypes

We continue by simulating the outcome of the discussed statistical

evaluation approaches for a wide range of real brain phenotypes and

for a number of artificial gradients to get a deeper insight into the

comparison of the different null-model strategies and their effect on

reporting potential false-positive and/or nonspecific results. We

examined the full outcome-space of all associations between single-

F IGURE 5 Example 3: ASD gene expressions and functional alterations in brain diseases. (a) Brain plots of normalized gene expression levels
of 24 ASD genes. (b) Overview of linear regression results, showing the top 10 associations between ASD gene expression profile and the
patterns of brain functional alterations derived from the BrainMap fMRI studies, with Asperger's syndrome showing the highest correlation
(β = 0.284, p = .032, not corrected). (c) Permutation testing results showing whether the observed effect size (β in panel c) is significantly beyond
four distinct null distributions of effect sizes for null-spatial, null-random-gene, null-coexpressed-gene, and null-brain-gene models. Dark blue
indicates uncorrected p < .05 (two-tailed z-test)
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gene expression profiles in AHBA (20,949 in total) and 384 imaging-

derived brain phenotypes taken from multiple sources such as

NeuroSynth (Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011),

BrainMap (Fox et al., 2005; Fox & Lancaster, 2002; Laird et al., 2005),

and Cognitive Ontology (Yeo et al., 2016) (see Methods). Among

these gene � brain phenotype (20,949 � 384) associations, the linear

model indicates 960,963 (11.85%) of these associations as significant

(p < .05, uncorrected), with 208,190 (2.57%) reaching FDR and

56,259 (0.69%) reaching Bonferroni correction with α level < 0.05

(corrected for 384 tests of all brain phenotypes per gene). We then

implemented the null models to examine the spatial/gene specificity

for the potential significant associations. Only FDR-corrected results

are reported in the following paragraphs for simplicity. Uncorrected

and Bonferroni-corrected results are tabulated in Table 2.

Applying the null-spatial model shows that only 26,273 out of the

208,190 associations reported in linear regression remain significant

(p < .05; Table 2; Figure S1). This suggests that a large proportion of

transcriptomic-neuroimaging associations as revealed by linear regres-

sion (87%) are overestimated due to dependencies of expression

levels among neighboring brain regions and thus likely involve false-

positive findings. This is in line with what was recently reported in

studies evaluating null spatial models (see Burt et al., 2020; Fulcher

et al., 2021; Markello & Misic, 2021).

When we then further implement the null-random-gene and null-

brain-gene models (null-coexpressed-gene is not applicable in the situ-

ation of examining the spatial pattern of a single gene) to examine

gene specificity of the reported transcriptomic-neuroimaging associa-

tions of our gene of interest and all neuroimaging patterns, we can

find that only 15,297 out of these 26,273 reported associations that

survived the null-spatial model remain further significant using the

null-random-gene (p < .05, null-random-gene and null-spatial com-

bined; Table 2). This suggests that even among spatially specific asso-

ciations, there is still a considerable proportion of associations (42%)

that can be commonly found for a wide range of (random) genes and

TABLE 1 Summary of examples statistically testing associations between spatial patterns of gene expression and imaging-derived brain
phenotypic patterns

Statistical

approach

HSE genes

and NOS

APOE and VBM

changes in dementia

ASD genes and fMRI

changes in

Asperger's syndrome

Research question

(X = expression

of GOI, Y = brain-derived

phenotype)

Weakness

Linear

regression

(standardized

β)

0.678** 0.653** 0.284* Is the brain pattern of X and

Y correlated?

Overestimation of effect due

to spatial auto-correlation

in X and Y

Null-spatial (z-

score)

3.057** 3.391** 2.006* Is the observed correlation

between X and Y

statistically valid?

Does not yet test for gene

specificity to our GOI

Null-random-

gene (z-score)

5.742** 2.014* 1.223 Is the association between X

and Y specific to our a-

priori chosen GOI?

Does not correct for spatial

autocorrelation; over-

estimated if high

coexpression among the

genes of interest

Null-

coexpressed-

gene (z-score)

6.002** NA 1.148 Is the association between X

and Y specific to our a-

priori chosen GOI?

Does not correct for spatial

autocorrelation; does not

test for specificity among

brain-related processes

Null-brain-gene

(z-score)

4.311** 1.716 1.153 Is the association between X

and Y relative specific to

our GOI beyond what we

can commonly expect

from any other gene over-

expressed in brain tissue?

Does not correct for spatial

autocorrelation;

coexpression not

automatically conserved

Null-brain-

coexpression

(z-score)

4.304** NA 1.235 Is the association between X

and Y relative specific to

our GOI beyond what we

can commonly expect

from any other set of

genes over-expressed in

brain tissue taking into

account the coexpression

structure in X?

Does not correct for spatial

autocorrelation;

*Uncorrected p < .05 (two-sided);
**q < .05, FDR corrected; IDP, imaging-derived phenotype; GOI, gene(s)-of-interest.
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therefore are hard to call an effect that is specific to our gene of inter-

est; instead, they likely reflect a nonspecific finding.

Examining effects under the more stringent null-brain-gene model

(providing specificity of findings regarding genes particularly

expressed in brain tissue; most often our main topic of investigation)

shows that an even smaller proportion of only 9,802 associations out

of the 26,273 associations surviving the null-spatial model remain sig-

nificant (just 37%, p < .05, null-brain-gene and null-spatial combined;

Figure S1).

We note that similar types of results are found when we apply

the null models the other way around, namely, first applying the null-

brain-gene model and then the null-spatial model. Doing so, we can

identify 67,181 significant transcriptomic-neuroimaging associations

(p < .05, null-brain-gene), of which only 15% (9,802) are spatially spe-

cific (p < .05, null-spatial and null-brain-gene combined; Figure S1),

indicating that gene specificity and correcting for spatial autocorrela-

tion are not mutually inclusive.

Similar findings can also be observed for gene sets of more than

one gene by examining transcriptomic-neuroimaging associations for

gene sets curated in the Gene Ontology (GO) database (http://

geneontology.org) (results for GO terms are presented in the Supple-

mentary Results, Appendix S1).

2.5.2 | Simulated phenotypes

In the previous paragraphs, we demonstrate the need of examining

gene specificity of observed transcriptomic-neuroimaging associa-

tions. We argue that this is particularly important when testing pheno-

types with spatial patterns similar to global posterior–anterior or

inferior–superior gradients (McColgan et al., 2018; Vogel et al., 2020).

To show this point, we simulated spatial maps of seven phenotypes

that follow global spatial gradients across the brain, from (i) posterior

to anterior, (ii) from inferior to superior, (iii) from medial to lateral,

together with the (iv)–(vii) four combinations of these gradients

(Figure S2). We then examined all associations between single-gene

expression profiles in AHBA and the simulated phenotypes. Among all

these possible associations (20,949 � 7), we can find 23,723 (16%)

significant associations between single-gene transcriptional profiles

and simulated phenotypic profiles (linear regression: q < 0.05, FDR

corrected; corrected for seven tests of all simulated phenotypes per

gene; Table 3). These correlations suggest that a large set of genes

have expression profiles that follow general and very global spatial

gradients of the brain, and show a nonspecific spatial pattern that is

shared with a wide range of other genes (i.e., lack gene specificity).

Application of the null-spatial model to these associations shows that

only 3,305 out of the observed 23,723 associations (14%) remain sig-

nificant (Table 3), suggesting that most of the common effects found

significant using linear regression are inflated due to the strong spatial

dependency of neighboring brain regions and can be filtered out by

the null-spatial model. Among those 3,305 spatial-specific associa-

tions however, only 974 (29%) further remain significant when we

additionally apply the null-random-gene model and examine whether

effects are also gene-specific. An even smaller number of significant

associations remain (only 626; 19%) when we use a stricter null-brain-

gene model (Table 3; Figure S1).

In conclusion, our simulations on real-world brain phenotypes

(previous section) and on simulated phenotypes (this section) together

show that only as much as 3% (626 out of 23,723) of the associations

between single-gene transcriptional profiles and 8 simple spatial gradi-

ents revealed in ordinary linear regression can be labeled as both sur-

viving correction for spatial effects (null-spatial) and to be gene-

specific (i.e., reflect a pattern that is quite unique to the GOI); 97% of

the initially found FDR-corrected effects do not survive a statistical

evaluation that corrects for spatial effects and represents a pattern

that is unique or specific enough to support a main hypothesis of “the
expression pattern of gene X to be associated to brain phenotype Y.”

2.6 | Toolbox

We made a simple web-based application and a MATLAB toolbox to

facilitate quick examinations of transcriptomic-neuroimaging associa-

tions and to test observed correlations against different null models,

tailored to the hypothesis that is examined and the level of specificity

that the researcher desires. Within GAMBA (short for Gene Annota-

tion using Macroscale Brain-imaging Association) website, expression

profiles of input GOIs (i.e., a single gene or a set of genes) can be asso-

ciated with imaging-derived brain traits from nine categories

(Figure S3) and tested using the different null models as discussed in

this article (including null-spatial, null-random-gene, null-coexpressed-

gene, null-brain-gene). Imaging-derived phenotypes included in the

tool cover the spatial patterns of (i) resting-state functional networks

(Yeo et al., 2011), (ii) brain cognitive components (Yeo et al., 2016),

TABLE 2 Summary of all potential
associations between spatial patterns of
single-gene expression and 384 imaging-
derived brain phenotypic patterns

Methods

Number of significant associations (α < 0.05)

Uncorrected FDR-corrected Bonferroni-corrected

LR 960,963 208,190 56,259

LR and N-spin 84,149 26,273 8,142

LR and N-spin and N-rand 26,786 15,297 7,610

LR and N-spin and N-brain 19,551 9,802 6,294

Abbreviations: LR, linear regression; N-spin, null-spatial model; N-rand, null-random-gene model; N-brain,

null-brain-gene model.
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(iii) regional metrics of the brain structural and functional connectome,

(iv) measurements of the cortical oxygen and glucose metabolism

(Vaishnavi et al., 2010), (v) human surface area expansion compared

to the chimpanzee (Wei et al., 2019), (vi) brain volume alterations

across twenty-two disorders (Fox et al., 2005; Fox & Lancaster, 2002;

Laird et al., 2005), (vii) brain functional changes in sixteen disorders

(Fox et al., 2005; Fox & Lancaster, 2002; Laird et al., 2005),

(viii) cortical patterns of brain (dis)connectivity across nine psychiatric

and neurological disorders (de Lange et al., 2019), and (ix) brain func-

tional correlates of 292 terms in relation to cognitive states and brain

disorders, as described in the NeuroSynth database (Yarkoni

et al., 2011). Details on the included datasets and statistical analyses

are described in the Supplementary Methods, Appendix S1. The web-

tool is available online at http://dutchconnectomelab.nl/GAMBA. The

MATLAB toolbox is available at https://github.com/

dutchconnectomelab/GAMBA-MATLAB.

3 | DISCUSSION

We evaluated the importance of selecting the right null model when

examining, testing, and discussing a hypothesized gene-brain associa-

tion in a transcriptomic-neuroimaging study. We examined the usabil-

ity of commonly applied statistical methods, such as simple single

linear regression to assess the statistical validity of observed

transcriptomic-neuroimaging relationships and once again confirm

that the use of proper null models that constrain spatial effects (using

the null-spatial model) is highly needed. We show that preserving spa-

tial effects and controlling for spatial autocorrelation is not enough to

provide information on whether an observed effect of our gene(s) of

interest is unique and stands out from effects that can be widely

observed across many other random genes in the dataset. Depending

on the research question asked (e.g., “does the expression pattern of

gene(s)-of-interest X show overlap with brain phenotype-of-interest

Y”) and the level of specificity that we aim for in our study (e.g., “We

hypothesize this relationship for gene(s) X and we want to rule out

that this effect is not also commonly present for many other gene(s)-

of-no-interest”), we recommend the use of multiple null models to

provide information on the desired level of gene specificity of the

observed associations (Figure 2).

The three examples we present do of course not cover all types

of examinations one can perform by combining transcriptomic and

neuroimaging data. They do however illustrate the potential and some

of the caveats and limitations of cross-linking large numbers of corti-

cal patterns of transcription and neuroimaging features. Our first

example illustrates that transcriptomic-neuroimaging associations can

include effects that survive correction for spatial autocorrelation and

include a rather unique or specific pattern. We show that the cortical

transcriptional profile of HSE genes runs parallel to spatial patterns of

macroscale brain traits and that this association goes beyond both

general spatial and random-gene-set effects that could be expected

based on chance level alone. They thus highlight an interesting rela-

tionship between expression patterns of genes related to patterns of

macroscale connectivity (Krienen et al., 2016; Romero-Garcia

et al., 2018; Zeng et al., 2012).

A different conclusion should however be made when examining

APOE and the set of ASD genes, with the two examples underscoring

the importance of proper statistical testing. Our starting hypothesis

was that “the cortical pattern of normative gene expression of APOE

is related to the cortical atrophy pattern of AD,” potentially indicating

regions that show higher vulnerability to the disease process. Findings

in literature are in support of such associations, arguing in favor of a

“true positive” effect. For example, AD patients are known to show

elevated APOE expression in the medial temporal regions that are in

turn known to be involved in the pathology of the disease (Akram,

Schmeidler, Katsel, Hof, & Haroutunian, 2012; Linnertz et al., 2014;

Ranlund et al., 2018). However, evaluation using the null models that

test gene specificity reveals that the observed association is not par-

ticularly specific to APOE, and can be observed for nearly 60 other

brain-expressed, AD-irrelevant genes in AHBA (corresponding to

z = 1.716 for AD, null-brain-gene model). This indicates that while

potentially an interesting effect, it is quite hard to conclude that “the
cortical pattern of normative gene expression of APOE is related to

the cortical atrophy pattern of AD.” A conclusion that would better fit

our results would be “the cortical pattern of normative gene expres-

sion of many brain-expressed genes is related to the cortical atrophy

pattern of AD.” This is however a somewhat nonspecific conclusion

and its implication to advancing our understanding of the disease

remains unclear.

Simulations correlating single-gene expression profiles to brain

phenotypes show that correcting for spatial autocorrelation (i.e., null-

spatial) cannot be regarded as a substitute for testing gene specificity

(e.g., null-brain), nor vice versa, pointing to the necessity of testing

both the spatial and gene specificity in transcriptomic-neuroimaging

TABLE 3 Summary of all potential
associations between spatial patterns of
single-gene expression and seven
simulated brain phenotypes that
represent global spatial gradients

Methods

Number of significant associations (α < 0.05)

Uncorrected FDR-corrected Bonferroni-corrected

LR 33,335 23,723 18,336

LR and N-spin 3,880 3,305 3,175

LR and N-spin and N-rand 1,003 974 967

LR and N-spin and N-brain 647 626 620

Abbreviations: LR, linear regression; N-spin, null-spatial model; N-rand, null-random-gene model; N-brain,

null-brain-gene model.
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studies. Our simulations show that only 13.6% of all observed linear

associations that survive FDR also survive the null-spatial model. Such

a small proportion is likely attributable to a high auto-correlation

between adjacent brain regions in transcriptomic and phenotypic data,

leading to a degree of freedom much smaller than the one applied,

such that the effects are inflated (Arnatkevi�ci�utė et al., 2019; Burt

et al., 2020; Fulcher et al., 2021; Markello & Misic, 2021). This

stresses the importance of using null models (e.g., the spin-based null-

spatial model here (Alexander-Bloch et al., 2018) or other equivalents

(Arnatkevi�ci�utė et al., 2019; Burt et al., 2020; Fulcher et al., 2021;

Markello & Misic, 2021)) to reduce false-positive rate introduced by

the spatial auto-correlation effects. Extending the important null-

spatial model, our simulations further show that implementing the

null-spatial model only is, however, not enough, and that 37.3% of the

transcriptomic-neuroimaging associations that survived the null-

spatial model do not show gene specificity. This proportion appears to

be even lower (18.9%) in the simulations that take brain geographic

gradients as the phenotypic of interest. This is because the transcrip-

tional profiles of a considerable number of genes (16% of all genes)

bear high similarity to the geographic gradients.

The discussed null models are presented in a simple web-tool

GAMBA and a MATLAB toolbox, which can be used to probe the associ-

ation between transcriptomics and common brain structure/function

phenotypes derived from a wide range of neuroimaging data. GAMBA

complements other tools that link genetics and brain functions, tools

such as NeuroSynth (Yarkoni et al., 2011), Brain Annotation Toolbox (Liu

et al., 2019), and for example, the ENIGMA toolbox (Larivière

et al., 2021) that provide similar platforms to visualize and examine brain

maps of gene expression patterns and brain maps, but do not directly

provide means to test these effects against multiple null models. We

note that the presented null models in the GAMBA MATLAB toolbox

could be adapted and applied to other transcriptomic datasets of brain

material (e.g., other than the now used default dataset of AHBA, such as

PsychENCODE (Wang et al., 2018) and BrainSpan (Johnson et al., 2009))

and/or for the use in other types of datasets. For instance, as a potential

application, similar null models could be used to examine gene specificity

for associations between expression profiles of genes in single-cell

RNAseq data of cell types (Tasic et al., 2018).

Several methodological points have to be considered. The null-

brain-gene model takes genes (N = 2,711) that are over-expressed in

the brain as the background set of genes. We believe that this selec-

tion of background genes covers the majority of research contexts

that are centered on brain-related processes and genes specifically

“active” in the brain, but it does not cover contexts where the GOI

plays a role in biological processes throughout the body or specific

hypotheses where one wants to study genes overexpressed in non-

brain tissues. We propose alternatives for the selection of the set of

background genes that are more specifically tailored to alternative

research questions in the Supplementary Methods, Appendix S1. Sec-

ond, we need to consider that AHBA gene expression data is

extracted from the postmortem brains of healthy individuals, that is,

ones with no psychiatric and neurologic conditions. Therefore, results

(when surviving null-spatial and/or null-brain models) should be

interpreted in the context of normative gene expression of risk genes

in brain regions to be a potential marker for a higher susceptibility of

these regions in relevant disorders (McColgan et al., 2018; Romme

et al., 2017). Third, our examples (and the presented null-models) test

between static gene expression data and brain phenotypes, data

mostly derived from a single point in time. The examined associations

and presented null-models thus overlook the important temporal

aspects of expression patterns, for example the temporal trajectory of

expression of genes during brain development (Kang et al., 2011) or

aging (Fraser, Khaitovich, Plotkin, Pääbo, & Eisen, 2005). Further

implementation of the discussed statistical approaches for the integra-

tion of neuroimaging data and, for example, datasets on human brain

transcriptomics across development such as Brainspan (Kang

et al., 2011) is of great interest. Fourth, our examples and approaches,

as the majority of studies examining similar topics, investigate the spa-

tial correspondence between patterns of human brain gene expres-

sion and neuroimaging findings obtained at the group-level. Follow-up

examinations using animal data where transcriptional data and imag-

ing data are collected from the same specimens are an important next

step to confirm and functionally annotate human transcriptomic-

neuroimaging findings.

4 | CONCLUSION

In summary, we highlight the need of using null models to provide

“gene specificity” when examining associations between the spatial

patterns of gene transcriptomic profiles and imaging-derived brain

traits.

5 | METHODS

5.1 | AHBA gene expression data

Microarray gene expression data were obtained from the extensive

Allen Human Brain Atlas database (http://human.brain-map.org),

including highly detailed data from six postmortem brains of donors

without any neuropathological or neuropsychiatric conditions. Micro-

array analyses are described in detail in http://help.brain-map.org/

display/humanbrain/documentation. Brain tissue samples of the left

hemisphere were obtained from four donors (466 ± 72.6 samples

from H0351.1009, H0351.1012, H0351.1015, and H0351.1016), and

946 and 893 samples covering both hemispheres from the remaining

two donors (H0351.2001 and H0351.2002). We included tissue sam-

ples of cortical and subcortical regions of the left hemisphere and

used the expression of 58,692 probes for each brain donor (Romme

et al., 2017; Wei et al., 2019).

We performed probe-to-gene re-annotation using the BioMart

data-mining tool (https://www.ensembl.org/biomart/) (Arnatkevi�ci�utė

et al., 2019). Outdated gene symbols were updated and alias gene

symbols were replaced by symbols obtained from the HUGO Gene

Nomenclature Committee (HGNC) database (http://biomart.
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genenames.org/), resulting in the inclusion of 20,949 genes. Expres-

sion levels that were not well-above background were set to NaN. Per

donor, and per tissue sample, expression levels of probes annotated

to the same gene symbol were averaged, followed by

log2-transformation with pseudocount 1. Tissue samples were spa-

tially mapped to FreeSurfer cortical and subcortical regions to obtain

region-wise gene expression profiles (French & Paus, 2015). A cortical

parcellation of 114 regions (57 per hemisphere) and subcortical seg-

mentation of 7 regions based on the Desikan-Killiany atlas (DK-114)

were obtained for the Montreal Neurological Institute (MNI) 152 tem-

plate using FreeSurfer (Cammoun et al., 2012; Desikan et al., 2006;

Fonov et al., 2011). Brain tissue samples were annotated to cortical

regions in the DK-114 atlas based on MNI coordinates, computing the

nearest gray matter voxel within the MNI ICBM152 template in the

FreeSurfer space. Tissue samples with a distance less than 2 mm to

the nearest gray matter voxel were included. Gene expression profiles

of tissue samples belonging to the same cortical region were aver-

aged, resulting in a 6 � 64 � 20,949 data matrix (i.e., donors � brain

regions � genes). Within each donor, gene expression per gene was

normalized to z-scores across all cortical and subcortical regions. Nor-

malized gene expression profiles were averaged across the six donors

obtaining a group-level gene expression matrix of size 64 � 20,949.

Considering that most neuroimaging data as described in the follow-

ing sections only include cortical regions, only the cortical expression

pattern of each gene (i.e., 57 � 20,949 gene expression matrix) was

correlated to the patterns of various neuroimaging findings.

5.2 | Neuroimaging phenotypic data

Connectome metrics used in Example 1 were obtained from a human

structural connectome map reconstructed using T1-weighted and

diffusion-weighted MRI (dMRI) data of 487 subjects (age (mean ± SD):

29.8 ± 3.4 years old) from the Human Connectome Project (Van

Essen et al., 2013). Disease maps used in Example 2 and Example 3

were computed based on coordinate-based results obtained from the

extensive BrainMap database (http://www.brainmap.org/) that con-

tains published functional and structural neuroimaging experiments of

psychiatric and neurological disorders (see Supplementary Methods,

Appendix S1 for a detailed description of the used procedures).

5.3 | Statistics and null models

Linear regression. Linear regression is used to test for an association

between the cortical expression profile of a gene (or the average

expression pattern across a set of genes) and the pattern of an

imaging-derived brain phenotype:

Yi ¼ β0þβ1Xjþε ð1Þ

where Yi indicates the standardized gene expression profile of gene

i or the standardized, averaged profile of a gene set i, and Xj the

standardized cortical profile of neuroimaging phenotype j. Standardi-

zation is performed by dividing each value X or Y by the SD. The stan-

dardized regression coefficient β1 and the corresponding correlation

coefficient and p-value are obtained.

5.3.1 | Null-spatial model

An important variant on the linear regression model was recently

introduced (Alexander-Bloch et al., 2018), now testing whether the

observed association is specific to spatial-anatomical relationships

between brain regions. To this end, in (1) the observed β1 is compared

to β1s generated by 1,000 permutations, in which the gene expression

data matrix is rebuilt using randomized brain parcellations by spinning

the reconstructed sphere of the real brain parcellation with random

angles (0–360�) conserving the spatial relationship of neighboring

regions.

5.3.2 | Null-random-gene model

The null-random-gene model tests whether the observed association

is specific to the given gene or set of genes of interest, that is, com-

paring against effects that can be observed when any other set of

genes would have been selected. To this end, it is tested whether the

observed β1 (i.e., the effect size) is different from null distributions of

β1 observed for randomly selected, same-sized, gene sets with the

null-random-gene distribution estimated from 10,000 permutations

and the mean (μ) and SD (σ) of effect sizes in the null distribution

obtained.

5.3.3 | Null-coexpressed-gene model

The null-coexpressed-gene model includes a stricter null model where

random genes with similar coexpression levels as the given GOI are

selected to generate null distributions of β1 (null-coexpressed-gene

model). Random genes are selected according to the following steps:

first, a set of random genes are initially selected. Then the mean

coexpression level of the random gene-set is compared to the mean

coexpression level of the given GOI. If the coexpression difference is

larger than the maximum difference allowed, the gene with the

highest/lowest coexpression level is excluded and a new random gene

is included in the set. This step repeats until the coexpression differ-

ence is smaller than the maximum difference allowed. A total number

of 1,000 sets of random genes were obtained due to the limitation of

computational capacity.

5.3.4 | Null-brain-gene model

The null-brain-gene model is generated using random genes selected

from a pool of 2,711 genes over-expressed in brain tissue, with brain-
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expressed genes identified by performing one-tail two-sample t-tests

on gene expression levels between brain tissues and other body sites

(q < 0.05, FDR corrected), using gene expression data from the GTEx

portal (https://www.gtexportal.org). Permutation is performed 10,000

times.

For all null models, the mean (μ) and SD (σ) of effect sizes (β1) in

the null distributions are estimated. A two-tailed z-test is performed

to examine whether the observed β1 (i.e., the effect size) is larger than

the mean effect size derived from null models:

z¼ β1�μ

σ

where μ, σ indicate the mean and SD of β1 over random permutations.

A two-tailed p-value is computed as follows:

p¼2Φ �zj jð Þ

where Φ is the standard normal cumulative distribution function. We

use z-tests to compute p-values in the GAMBA website as we aim to

develop a light and quick website for the exploration of

transcriptomic-imaging associations. Pseudo p-values may provide

more accurate estimates, in particular when the null distribution is not

normal, and are therefore implemented in the GAMBA MATLAB tool-

box. The reported results in the current study are not influenced by

the choice of these two p-value calculation approaches.
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