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Staphylococcus aureus is a highly successful Gram-positive pathogen capable of

causing both superficial and invasive, life-threatening diseases. Of the invasive disease

manifestations, osteomyelitis or infection of bone, is one of the most prevalent, with

S. aureus serving as the most common etiologic agent. Treatment of osteomyelitis

is arduous, and is made more difficult by the widespread emergence of antimicrobial

resistant strains, the capacity of staphylococci to exhibit tolerance to antibiotics

despite originating from a genetically susceptible background, and the significant bone

remodeling and destruction that accompanies infection. As a result, there is a need

for a better understanding of the factors that lead to antibiotic failure in invasive

staphylococcal infections such as osteomyelitis. In this review article, we discuss

the different non-resistance mechanisms of antibiotic failure in S. aureus. We focus

on how bacterial niche and destructive tissue remodeling impact antibiotic efficacy,

the significance of biofilm formation in promoting antibiotic tolerance and persister

cell formation, metabolically quiescent small colony variants (SCVs), and potential

antibiotic-protected reservoirs within the substructure of bone.

Keywords: Staphylococcus aureus, osteomyelitis, antibiotic failure, biofilm, SCVs, persisters, intracellular survival,

antibiotic tolerance

INTRODUCTION

Staphylococcus aureus is the leading cause of osteomyelitis, which is defined as inflammation
of bone but is most commonly encountered in the setting of bacterial infection. Osteomyelitis
can result in significant morbidity such as progressive bone damage, pathologic fractures, and
septicemia (1, 2). Bone infections typically develop via three clinical mechanisms, including
hematogenous seeding of bone, invasion of bone from a contiguous source (e.g., following trauma
or via spread from soft tissues), or infection occurring secondary to vascular insufficiency or
neuropathy (e.g., diabetic foot infection) (1). Osteomyelitis can be isolated to a single part of the
bone or it can impact multiple regions including the bone marrow, cortical and trabecular bone,
the periosteum, and surrounding soft tissues (1, 2).

The treatment of acute osteomyelitis using antibiotic therapy is associated with a high success
rate (3); however, many cases require surgical debridement in addition to antibiotic therapy and
despite thesemeasures, treatments fail in∼20% of cases (4). Osteomyelitis treatment is complicated
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by a number of factors, including: (1) widespread antimicrobial
resistance, (2) antibiotic tolerance as a result of metabolic
changes and/or biofilm formation, (3) the inability of antibiotics
to penetrate infected and damaged bone, and (4) the colonization
of potentially antibiotic-protected reservoirs within the
substructure of bone. Accordingly, S. aureus has multiple
mechanisms outside of traditionally defined antibiotic resistance
that can contribute to treatment failure of osteomyelitis
infections, and as such, these mechanisms (Figure 1) will be the
focus of this review.

THE DEVELOPMENT OF CHRONIC
OSTEOMYELITIS

Key characteristics of osteomyelitis are severe inflammation,
vascular impairment, and localized bone loss and destruction
(2). The host responds to the presence of bacteria such as
S. aureus by releasing inflammatory factors and degradative
enzymes from immune cells, which contribute to the destruction
of bone matrix and bone trabeculae (1, 5–10). Many of the innate
immune responses involved in antibacterial host defense also
have significant impacts on bone homeostasis, and the release
of inflammatory mediators at the infection site can result in
decreased osteoblast-mediated bone formation and increased
osteoclast activation and bone resorption, thereby promoting
bone loss. To counteract the host immune response, S. aureus
releases specific immunoevasive virulence factors, including
those that have been linked to osteomyelitis pathogenesis such
as protein A (Spa) and the major histocompatibility complex
(MHC) class II analog protein (Map) (10). In addition to the
primary role of protein A in immune evasion, Spa has also been
documented to contribute to staphylococcal osteomyelitis by
altering bone homeostasis via direct interactions with osteoclasts
and osteoblasts, resulting in bone loss (11, 12). Map contributes
to osteomyelitis by altering T-cell function (13).

S. aureus immunoevasive factors also contribute to the
formation of abscesses, which are the characteristic tissue lesions
of invasive staphylococcal infection and consist of a three-
dimensional community of bacteria surrounded by immune cells.
This physical segregation of bacterial cells from the surrounding
host tissue is predicted to protect pathogens from both the host
response and antibiotic treatment (14–16). The bacteria within
the core of abscesses are referred to as staphylococcal abscess
communities (SACs), which are surrounded by a pseudocapsule
made of fibrin and other host extracellular matrix proteins (14,
16). In addition, this dense community of bacteria is surrounded
by immune cells, including both viable and necrotic neutrophils.
For a more detailed description of the mechanisms underlying
staphylococcal abscess formation, readers are directed to the
outstanding review by Cheng et al. (14). During osteomyelitis,
abscesses commonly form within the bone marrow space as
well as in the surrounding soft tissues (15, 17, 18). Abscess
formation and exuberant inflammation during osteomyelitis also
compromise the blood supply to the bone leading to further
bone necrosis. Necrotic bone fragments result in the formation
of lesions known as sequestra, which are characteristic of chronic

osteomyelitis and serve as a nidus for persistent infection (1).
In response to the sequestrum, new bone formation occurs
resulting in the formation of a pathologic lesion known as
an involucrum (10). With regards to treatment failure, it is
hypothesized that the SACs play an important role given that
the bacteria have an increased tolerance to antibiotic treatment
(16). Further, Hofstee et al. revealed that the upon mechanically
dispersing SACs, bacteria were efficiently killed, suggesting the
pseudocapsule provides protection from antibiotic treatment.
Two staphylococcal coagulases, staphylocoagulase (Coa) and von
Willebrand factor-binding protein (vWbp), are important for the
formation of the pseudocapsule (14) and therefore could play an
important role in the treatment failure of S. aureus. Additionally,
as a result of the vascular impairment in infected bone, systemic
antibiotics are thought to be significantly less effective (1).

THE ROLE OF BIOFILM FORMATION

S. aureus biofilm formation on necrotic bone and implanted
material greatly contributes to bacterial persistence during
bone infection, and is presumed to be a leading cause of
treatment recalcitrance during chronic osteomyelitis (19, 20).
Biofilms are multicellular microbial communities encased within
a self-produced matrix that are formed on either organic or
inorganic surfaces and exhibit increased tolerance to antibiotics
(21–25). Vascular impairment and decreased oxygen tension
within sequestra provide ideal conditions which promote
the attachment of planktonic bacteria and ultimately biofilm
formation (2). Regardless of how the bacteria reach bone or
implant surfaces, the bacteria attach to the surfaces using
microbial surface components recognizing adhesive matrix
molecules (MSCRAMMs). Specifically, the colonization of bone
occurs through the attachment of planktonic bacteria to
extracellular matrix proteins, bone cells, or plasma proteins
(26–28). For example, two staphylococcal adhesins that play
an important role in bone adhesion during osteomyelitis are
collagen adhesion protein (Cna) and bone sialoprotein (Bbp)
(29–31). Following attachment, bacteria produce an extracellular
matrix (ECM) composed of proteins, polysaccharides, and/or
extracellular DNA (eDNA), leading to the formation of a
mature biofilm (32). The extracellular matrix is important for
binding bacterial cells to each other and to the substrate,
as well as for maintaining the biofilms structural integrity.
In addition, protection is provided to bacteria within the
biofilm given the decreased susceptibility of the biofilm
to the host immune response, environmental stresses, and
antibiotics (33).

Bacteria within biofilms have been found to be 10 to 1,000
times more tolerant to antibiotic treatment in comparison
to the genetically identical planktonic bacteria (34). Biofilms
may act as diffusion barriers for antibiotics thereby reducing
the penetrance of antibiotics toward the deeper layers of
the biofilm (34). However, the biofilm diffusion barrier
function cannot solely account for the dramatic reduction in
antibiotic susceptibility observed, as antimicrobials that do not
interact with components of the ECM are able to diffuse
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FIGURE 1 | Mechanisms of Antibiotic Failure in S. aureus Infection. (A) Abscesses are the characteristic tissue lesions of invasive staphylococcal infection. The

bacteria within the core of abscesses are referred to as staphylococcal abscess communities (SACs), which are surrounded by a pseudocapsule made of fibrin and

other host extracellular matrix proteins. The SAC is surrounded by immune cells, including both viable and non-viable neutrophils. Bacteria within a SAC exhibit

increased tolerance to antibiotic treatment. (B) Abscess formation and exuberant inflammation during osteomyelitis compromise the blood supply to the bone leading

to bone necrosis. Necrotic bone fragments result in the formation of tissue lesions known as sequestra, which are characteristic of chronic osteomyelitis and serve as

a nidus for persistent infection. In response to the sequestrum, new bone formation occurs resulting in the formation of a pathologic lesion known as an involucrum.

Vascular impairment resulting from infection significantly diminishes the effectiveness of systemic antibiotics. (C) Biofilm formation on bone greatly contributes to

bacterial persistence during bone infection, and biofilm-associated bacteria exhibit increased tolerance to antibiotics. Biofilms may act as diffusion barriers for

antibiotics, thereby reducing the penetrance of antibiotics toward the deeper layers of the biofilm. The biofilm environment, which is characterized by significant

nutrient and oxygen gradients, is thought to promote the production of antibiotic tolerant bacterial cells (e.g., small colony variants [SCVs] and persisters) (SCVs are

illustrated as pink cocci; persisters are illustrated as orange cocci). (D) S. aureus has been shown to invade and survive within professional phagocytes (e.g.,

macrophages) and resident bone cells (e.g., osteoclasts and osteoblasts). Intracellular survival contributes to antibiotic tolerance given that most antibiotics act

extracellularly, and the intracellular host environment is thought to enrich the formation of SCVs and persisters. (E) Osteocytes, the major cell type embedded within

the bone matrix, reside in structures known as lacunae, and connect to one another via a three-dimensional network of channels known as canaliculi. Colonization of

the osteocyte lacuno-canalicular network (OLCN) is believed to promote chronicity of S. aureus osteomyelitis as the antibiotic concentrations needed for bacterial

eradication may not be possible to achieve within the infected OLCN. Bacteria within the OLCN might also be protected from the host response.

at a rate comparable to diffusion through water (35). As
such, the contribution of the diffusion barrier to the overall
increased tolerance of biofilms is likely less important for

some antibiotics, and in these cases altered metabolic activity
of biofilm bacteria is hypothesized to be a major driver of
antibiotic tolerance.
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Small Colony Variants and Persisters
Small colony variants (SCVs) and persisters are two phenomena
reflective of the altered metabolic activity of bacteria within
biofilms (36). Persisters are dormant phenotypic variants
with increased antibiotic tolerance, found within a susceptible
bacterial population (37). These antibiotic-tolerant cells are
transient variants which revert to a drug susceptible state
upon subculturing in fresh growth media (38). The biofilm
environment, which is characterized by a paucity of nutrients and
oxygen, is thought to promote the production of persisters given
that these conditions support a reduction in metabolic activity
and a low energy state—traits of antibiotic tolerant persisters
(39). SCVs are characterized by their pinpoint colony size, altered
pigmentation, slow growth, activation of the stringent response,
downregulation of virulence genes via a reduction of the agr
quorum sensing system, and upregulation of genes associated
with adhesion and biofilm formation through the activation
of the alternative sigma factor B (sigB) (40–42). A variety of
different stressors have been shown to trigger SCVs, including
antibiotic pressure, low pH, limited nutrients, cationic peptides,
reactive oxygen species, and intracellular localization (43, 44).
Specific environmental stressors can result in the production
of phenotypically distinct SCVs which can be transient variants
that will revert back to wild-type under favorable conditions, or
irreversible SCVs that result from permanent genetic changes
(45–50). In the context of osteomyelitis, SCVs have been isolated
from chronic bone infections and are believed to support
persistent and relapsing infections (51, 52).

The increased antibiotic tolerance observed with persisters
and SCVs is suggested to be a result of their altered
metabolic activity (15, 47, 53, 54). With regard to SCVs,
mutations associated with the production of these variants
most commonly occur in menadione and hemin biosynthesis
genes (55). Importantly, menadione and hemin are essential in
the biosynthesis of menaquinone and cytochromes which are
components of the electron transport chain. Consequently, ATP
production decreases as a result of a reduction in membrane
potential, resulting in the slowing of bacterial growth. Given
that bactericidal antibiotics target active cellular processes, a
decrease in growth rate can result in increased tolerance to
these antibiotics (41, 47). In addition, the decreased membrane
potential can reduce the influx of aminoglycoside antibiotics,
resulting in decreased susceptibility to these antibiotics (55).

While persisters are similar to SCVs in that they tolerate
antibiotic treatment by entering into a more metabolically
quiescent state, the specific mechanism of persister formation in
S. aureus remained relatively unclear until recently. In Escherichia
coli, persister formation is linked to toxin-antitoxin modules;
however, when this was investigated in S. aureus it was found
that the deletion of these modules did not influence the levels
of persisters (56). However, the same study revealed that the
formation of persisters is associated with a stochastic entrance
into stationary phase and the depletion of intracellular ATP. As
such, the decrease in ATP results in a reduction in growth rate,
and therefore a reduction in the targets of many antibiotics,
resulting in an increase in antibiotic tolerance. Most recently,

in an effort to identify specific metabolic pathways resulting in
persister formation, Zalis et al. found that, within a growing
population, there are cells which stochastically express enzymes
of the tricarboxylic acid (TCA) cycle at low levels, resulting
in decreased ATP production and ultimately an increase in
antibiotic tolerance (57).

INTRACELLULAR SURVIVAL OF S. aureus

An additional mechanism potentially contributing to antibiotic
tolerance in the setting of invasive infection is the intracellular
survival of S. aureus. Previous studies have demonstrated the
capacity of S. aureus to invade and survive within professional
phagocytes including macrophages and neutrophils, as well
as non-phagocytic cells such as epithelial cells, keratinocytes,
endothelial cells, fibroblasts, and bone cells (58–62). Following
internalization, bacteria are able to escape cell death by evading
lysosomal compartments, preventing phagolysosomal fusion, or
persisting within vacuoles (63, 64). It has been shown that S.
aureus is able to not only survive within the phagolysosome but
also initiate intracellular replication (65). S. aureus is also thought
to persist intracellularly by adopting a metabolically inactive state
similar to SCVs (48). Intracellular persisters in macrophages have
also been identified following antibiotic exposure, suggesting
that the intracellular environment could contribute to S. aureus
persistence and relapsing infections (66). A more recent study
found that macrophages are unable to efficiently kill S. aureus
and that tolerance is induced to multiple antibiotics in response
to exposure to reactive oxygen species, thus highlighting a
more direct contribution of intracellular survival to antibiotic
tolerance (67).

With regards to osteomyelitis, S. aureus has been shown
in vitro to infect skeletal cells, including osteoblasts (68–
70) and osteocytes (71). Additionally, S. aureus has been
observed residing within osteoclasts in vitro and in vivo
(72). Notably, using TRAP-tdTomato reporter mice with a
green fluorescent protein (GFP)-expressing S. aureus strain,
Krauss et al. were able to image calvarial histological sections
using confocal microscopy, and GFP-expressing S. aureus were
localized within TRAP-tdTomato osteoclasts (72). However, the
contribution of intracellular survival in the context of human
osteomyelitis remains unclear, as thus far it has been difficult
to rigorously document intracellular communities of bacteria in
histologic specimens.

Although the contribution of intracellular survival in
osteomyelitis is not entirely understood, the effects of antibiotics
on intracellular survival remain of significant interest to the
research community. A study by Ellington et al. found that
following long-term S. aureus survival within osteoblasts,
bacterial sensitivity to antibiotic treatment decreases (73). S.
aureus survival in osteoblasts is believed to occur partly as a result
of SCV formation, and SCVs increase following the treatment
with select antibiotics (74–76). In addition to osteoblasts, SCVs
have also been shown to form upon internalization by terminally
differentiated osteocytes (71). Given the increased antibiotic
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tolerance observed with SCVs, their intracellular presence would
further complicate treatment. Furthermore, if the intracellular
survival of S. aureus contributes to the establishment of chronic
infections, antibiotic treatment could inadvertently promote
infection persistence by promoting SCV formation.

COLONIZATION OF THE OSTEOCYTE
LACUNO-CANALICULAR NETWORK
(OLCN)

Colonization of the osteocyte lacuno-canalicular network is
an additional mechanism considered to promote persistence
during S. aureus osteomyelitis. Osteocytes, the major cell
type embedded within the bone matrix (77), create a three-
dimensional network in which osteocytes directly connect
individual lacunae via canaliculi (78). Lacunae are the spaces
containing the individual osteocytes, whereas the canaliculi are
the channels containing the osteocyte cytoplasmic processes
(79). Recently, S. aureus was found to invade the OLCN in a
murine model of osteomyelitis (80). When imaging live cortical
bone using transmission electron microscopy (TEM), chains
of individual cocci were present within canaliculi. Given the
non-motile nature of S. aureus, it is hypothesized that the
bacteria are accessing the network and moving throughout
via asymmetric binary fission. Colonization of the OLCN was
further confirmed with a human S. aureus diabetic foot infection
where the use of TEM identified cocci within the osteocyte
lacunar and canalicular space (81). This discovery suggests a
novel mechanism of persistence in chronic osteomyelitis as
the bacteria within the OLCN might be protected from the
host response and the bone matrix could serve as a nutrient
source further supporting long-term survival. Importantly,
the minimal inhibitory concentrations needed for antibiotic
therapies may not be possible to achieve within an infected
OLCN (81).

TARGETING ANTIBIOTIC TOLERANCE
MECHANISMS TO IMPROVE S. aureus

TREATMENT

A greater understanding of the aforementioned tolerance
mechanisms and their contribution to antibiotic failure is
facilitating the development of more effective treatment
strategies. In the context of osteomyelitis, one approach is the
improved targeting of S. aureus within host cells given that
most antibiotics do not freely diffuse across the cell membrane.
To assist in improving osteomyelitis treatment, Valour et al.
determined the effectiveness of frontline antimicrobials by
assessing their impact on intraosteoblastic S. aureus and the
emergence of SCVs (75). This group found that some antibiotics
(i.e., vancomycin and daptomycin) have no significant impact
on intracellular bacterial growth whilst only ofloxacin had
both strong intracellular activity and a limiting effect on
SCV emergence. This study emphasizes that in refining the
antimicrobial therapy for osteomyelitis, the intraosteoblastic

activity of antibiotics should be considered. A combinatorial
treatment approach consisting of an anti-biofilm compound
(i.e., rifampin) with an effective intracellular-acting compound
may be more effective. Two additional studies working toward
targeting intracellular bacteria both leveraged engineering
approaches to enhance the effectiveness of peptidoglycan
hydrolases, which are highly specific bactericidal enzymes, as
a treatment for S. aureus infections (82, 83). These enzymes
were modified to contain either protein transduction domains
or cell-penetrating peptides, both of which facilitate entry
into mammalian cells and ultimately resulted in the enhanced
eradication of intracellular staphylococci in osteoblasts. Multiple
studies have also focused on the use of nanoparticles to
improve the treatment of intracellular bacteria in osteoblasts
and osteoclasts (84–86). One study in particular investigated
the use of hybrid nanoparticles to improve the delivery
of rifampicin to the intracellular environment (86). Using
rifampicin-loaded nanoparticles, Guo et al. increased the
delivery of rifampicin within osteoblasts as well as decreased
the number of surviving bacteria following treatment. Two
additional studies have reported the use of silver nanoparticles
to reduce bacterial survival within osteoclasts and osteoblasts
(84, 85). Specifically, Aurore et al. determined that with the
use of silver nanoparticles, the decrease in bacterial recovery
from osteoclasts correlated with an increase in reactive oxygen
responses (84).

Another approach to improve S. aureus treatment is
the targeting of persisters and SCVs by restoring uptake
of aminoglycosides, which is normally prevented by the
reduced membrane potential of these cells. A study by
Radlinski et al. found that rhamnolipids, a biosurfactant
produced by Pseudomonas aeruginosa, were able to improve
the effectiveness of the aminoglycoside tobramycin against
S. aureus (87). Ultimately, it was shown that the increased
uptake of tobramycin was PMF-independent, and this resulted
in inhibition of otherwise tolerant bacterial populations such
as persisters, SCVs, biofilm, and anaerobic populations of S.
aureus (88).

Lastly, efforts are now being focused on identifying novel
drug targets that are critical for S. aureus invasion into
the OLCN network. Using a microfluidic silicon membrane
canalicular array (µSiM-CA) developed to model S. aureus
invasion of the OLCN, Masters et al. screened select transposon
mutants and were able to identify penicillin binding protein
4 (PBP4) as critical to OLCN invasion (89). In a murine
model of implant-associated osteomyelitis, a strain lacking
PBP4 displayed a decreased tolerance to vancomycin treatment,
a reduction in pathogenic bone-loss at the implant site,
and an inability to invade and colonize OLCN. As such,
given the significant contribution of PBP4 to deep bone
invasion, the development of a PBP4-specific inhibitor could
improve osteomyelitis antimicrobial therapies. Taken together,
these studies highlight opportunities to increase the efficacy
of traditional antibiotics by leveraging adjunctive treatments
that target intracellular pathogens, persisters, and niche-
protected bacteria.
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CONCLUSION

Staphylococcus aureus osteomyelitis remains a serious health
threat given the significant morbidity and treatment recalcitrance
of these infections. S. aureus not only is able to adapt to changing
host environments and evade the host immune response, but
it also has multiple mechanisms to promote tolerance to
antibiotic treatment. As a result, treatment of osteomyelitis
requires long term antibiotic therapy, often in combination with
surgical debridement which can further increase osteomyelitis
morbidity. In order to improve the outcome of osteomyelitis
treatment and reduce the risk of relapse, a greater understanding
of the tolerance mechanisms used by S. aureus to survive

antibiotic treatment is essential. Furthermore, when developing
novel treatment strategies, it should be considered that the

effectiveness of treatments in vitro in a clinical microbiology
setting may not be an appropriate representation of effectiveness
in vivo.
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