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Abstract
The human papillomavirus type 16 E5 protein (HPV16 E5) down-regulates surface expression of
HLA-I molecules. The molecular mechanisms underlying this effect are so far unknown. Here we
show that HPV16 E5 down-regulates HLA-I surface expression in calnexin-containing but not in
calnexin-deficient cells. Immunoprecipitation experiments reveal that calnexin and HPV16E5 can be
co-precipitated and that this association depends on the presence of a wild-type first hydrophobic
region of E5. When an E5 mutant (M1) in which the first putative transmembrane helix had been
disrupted was used for the transfections calnexin-E5 co-precipitation was strongly impaired. In
addition, we show that the M1 mutant is only able to marginally down-regulate HLA-I surface
expression compared to the wild-type protein. Besides, we demonstrate that E5 forms a ternary
complex with calnexin and the heavy chain of HLA-I, which is mediated by the first hydrophobic
region of the E5 protein. On the basis of our results we conclude that formation of this complex
is responsible for retention of HLA-I molecules in the ER of the cells.

Introduction
Epidemiological analyses have demonstrated a close asso-
ciation between infection of certain human papillomavi-
rus (HPV) species within the Alphapapillomavirus genus
and malignant growth of the human cervix epithelium [1-
3], as HPV sequences have been found in virtually all cer-
vical cancers [4]. HPV types associated to cervical cancer
are phenomenologically named as "high-risk HPVes", and
about 70 % of the HPV sequences isolated from cervical
lesions have been identified as being HPV type 16 or 18

[5,6]. High-risk HPV infection of the stratified epithelium
occurs first in the basal cell layer, where transcription of
the early genes E5, E6 and E7 takes place [7,8]. Upon
upwards migration towards more superficial layers and
concomitant differentiation of the infected keratinocyte,
the late genes of the virus are expressed leading to the for-
mation of viral particles and their release upon cell death.

During evolution the arms race between papillomaviruses
(PVes) and their hosts has resulted in parallel selection of
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cellular mechanisms aiming to clear viral infection, such
as inhibition of cellular apoptosis or uncoupling of the
normal proliferation/differentiation program of the epi-
thelium on the one hand, and in selection of viral mech-
anisms aiming to hamper cellular reaction directed to
clear infection on the other. In this context, several molec-
ular interactions between the oncogenes HPV16 E5, E6
and E7 and different apoptotic pathways have already
been identified [9]. E6 and E7 modulate apoptosis by
binding and inactivating p53 and the product of tumour
suppressor gene Rb1 respectively [10,11], thereby deregu-
lating the cell cycle. E5 impairs ligand-mediated apoptosis
by reducing the amount of surface CD95 proteins or
inhibiting the formation of the DISC complex [12], and
affects the normal functioning of a number of membrane
associated proteins, probably by modifying the composi-
tion and the interactions in the cell membranes [13].
Another mechanism evolved in certain PVes proceeds
through down-modulation of the host adaptive immu-
noresponse. In this context it should be mentioned that
whereas antibodies against E6 and against E7 have been
found in blood of infected patients [14,15], no antibodies
against E5 have been so far detected [16-18].

Using cellular systems it has been shown that HPV16 E5
expression results in down-regulation of cell surface
expression of HLA-I and HLA-II molecules [19-22]. This
down-regulation might result in diminished antigen-pres-
entation and decreased adaptive immunoresponse of the
host. Interestingly, a reduced expression of HLA-I mole-
cules has also been detected in squamous cell carcinomas
of the cervix compared to uninfected epithelium [23]. The
decrease in HLA-I surface expression seems to be medi-
ated by a failure in the HLA-complex transport systems to
the cell membrane, which accumulate instead in the
endoplasmic reticulum [22,24]. The molecular mecha-
nisms that lead to this impaired intracellular trafficking
are unknown. Recently it has been shown that HPV16 E5
may co-precipitate with the heavy chain of HLA-I in cells
over-expressing the E5 protein [21]. Nevertheless, no bio-
logical evidence has been presented demonstrating that
this association is responsible for the down-regulation of
HLA-I surface expression. Thus, the intimate mechanisms
responsible for the reduced amount of HLA-I molecules at
the cell surface remain still elusive.

Calnexin is a chaperone that plays a major role in HLA-I
maturation and surface transport [25-27]. Based on the
observation that in cervical cancer lesions the expression
of calnexin is deregulated [28], we hypothesyse that this
chaperone is involved in the E5-mediated down-regula-
tion of HLA-I surface expression. In this communication
we present experimental evidence showing that HPV16 E5
down-regulates cell surface expression of HLA-I in cal-
nexin-expressing but not in calnexin-deficient cells. We

further show that E5 associates and co-localizes with cal-
nexin and forms a ternary complex with the heavy chain
of HLA-I molecules. Further, we show that E5 mutants
unable to bind calnexin fail to down-regulate cell surface
expression of HLA-I molecules.

Methods
Cells and recombinants
HaCaT, Hela and HEK-293T cells were grown in DMEM
(Gibco) supplemented with 10% heat-inactivated fetal
calf serum (FCS) and 1% penicillin/streptomycin. The
two subclones of a human T cell leukaemia cell line CEM-
C7 [29] and the calnexin-deficient CEM-NKR [30,31]
were grown in RPMI 1640 (Gibco) with 10% heat-inacti-
vated FCS and supplements. The coding region of HPV16
E5, an E5 alpha type protein [32], containing a HA-tag at
the 5-end terminus and was cloned into the pCI vector
(Promega) devoid of the starting methionine. Further, an
AU1-tagged version of the E5 gene with codon usage
adapted to the human relative synonymous codon usage
preferences (Accession Number EF463082) was cloned
into the pCDNA 3.1(+) vector (Invitrogen). A GFP-E5
fusion recombinant was synthesized by ligating the E5
wild-type coding region to the C-terminal end of the green
fluorescence protein gene of the pEGFP vector [33].

Mutant recombinants were prepared by changing amino
acids (QuickChange® Site-Directed Mutagenesis Kit of
Stratagene) in order to disrupt the putative transmem-
brane helix of each of the three domains of the E5 protein
[34-36] without altering the length of the protein. All
PCR-generated recombinants were confirmed by sequenc-
ing. Putative transmembrane domains of the E5 protein
and the mutants were analysed using the TMHMM server
version 2.0 [37,38].

Transfections and confocal microscopy
Cells were transfected with Lipofectamine (HaCaT cells)
or using the calcium phosphate method (Hela, HEK-
293T). CEM-C7 and CEM-NKR cell lines were electropo-
rated using 1×107 cells in 200 µl PBS, 10 µg DNA and set-
ting the pulser to 220 Volt and 960 µFarad (Bio-Rad Gene-
Pulser). Transfected CEM-C7 and CEM-NKR clones were
selected with 0.8 mg/ml G418. For microscopy, trans-
fected HaCaT cells were grown for 24 hours after transfec-
tion and then fixed with 4 % paraformaldehyde.
Permeabilized, fixed cells were incubated with anti-AU1
(1:1000, Covance) or anti-calnexin (1:100, Santa Cruz),
thoroughly washed and incubated with a secondary anti-
body labelled either with AlexaFluor® 488 or AlexaFluor®

594 (Molecular Probes). A LEICA laser scanning micro-
scope (LEICA TCS SP) was used in all experiments.
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Immunoprecipitation
CEM-NKR and CEM-C7 transfectants were lysed with a
modified RIPA buffer (150 mM NaCl, 1% NP-40, 0,5%
sodium deoxycholate, 0,1% SDS, 1 mM EDTA, 1 mM
EGTA, 50 mM Tris-HCl pH 8.0) supplemented with pro-
tease inhibitors. HEK-293T and Hela cells were trans-
fected with the corresponding recombinants or with the
empty vector. At 20–24 hours post transfection, the cells
were lysed with a CHAPS buffer (0.2 M NaCl, 50 mM
HEPES pH 7.5, 2% CHAPS) containing phosphatase- and
proteinase-inhibitors for 20 min at 4°C. From the cell
extracts 0.5 up to 1.5 mg proteins were immunoprecipi-
tated with 2 µg of anti-AU1, anti-HA, anti-GFP or anti-cal-
nexin. Immunoprecipitates were collected with protein G-
sepharose, separated on acrylamide gels, blotted onto
PVDF membranes and incubated with the appropriate
antibodies. Reacting bands were revealed with the West-
ern Lightning™ Chemiluminescence Reagent Plus (Perkin
Elmer).

Peptide translocation-assay
This assay was performed essentially as described [39]
using the glycosylable peptide TNKTRIDGQY labeled
with 125I by chloramine-T-catalyzed iodination. Cells
were permeabilized with Streptolysin-O (Murex Diagnos-
tics, Dartford, UK). 2 × 106 CEM-C7 or CEM-NKR cells
were incubated with peptide and 10 mM ATP in 0.1 ml
translocation buffer (130 mM KCl, 10 mM NaCl, 1 mM
CaCl2, 2 mM EGTA 2 mM MgCl2, 5 mM HEPES pH 7.3)
for 20 min at 37°C. Following lysis in 1% NP-40 (Sigma-
Aldrich, Taufkirchen, Germany) the glycosylated peptide
fraction was isolated with 30 µl concanavalin A-Sepharose
slurry (Amersham-Pharmacia, Freiburg, Germany) and
quantified by γ-counting. For control 5.0 mM EDTA was
added instead of ATP.

Flow cytometry and antibodies
HEK-293T cells were trypsinised 20 h post-transfection
and incubated for 1 h in 37°C CO2-incubator to recover
molecules expressed on the surface. CEM-NKR and CEM-
C7 transfectants were stained with the HLA-A, B, C-reac-
tive mAbs B9.12 [40]. Secondary antibodies were FITC-
conjugated goat anti-mouse IgG (Dianova, 1:100) or PE-
conjugated donkey anti-mouse IgG (Jackson ImmunoRe-
search Laboratories, 1:200). Incubations were performed
in Eppendorf tubes for 45 min on ice in the dark, followed
by two washes with ice-cold PBS/BSA. Cells were resus-
pended in 300 µl PBS/BSA and filtered in round-bottom
polystyrene tubes (Greiner bio-one). Flow cytometry was
performed with a FACSsort (Becton Dickinson).

Statistical analysis
Analysis of FACS data and Kolmogorov-Smirnov statistics
were performed with CellQuest™ software (BD Bio-
science). Paired data were analysed with both the Wil-

coxon Matched-Pairs Signed-Ranks Test -more
conservative- and with the paired Student's t-test -less con-
servative. Inter-group comparisons were performed with
both a Kruskal-Wallis test -more conservative- and with a
one-way Analysis Of Variance (ANOVA) -less conserva-
tive. Differences below p value of 0.05 were considered
significant.

Results
HPV16 E5 decreases surface expression of HLA-I molecules
Experimental results have shown that BPV E5 as well as
HPV16 E5 and HPV2 E5 proteins down-regulate surface
expression of HLA-I molecules [22,24,41,42]. To evaluate
this effect under our experimental conditions, we trans-
fected pEGFP-HPV16-E5 or pCI-HPV16-E5-HA into HEK-
293T cells and analysed cell surface expression of HLA-I
by flow cytometry. Both constructs lead to a significant
down-regulation of HLA-I surface expression (p ≤ 0.001,
Kolmogorov-Smirnov test, Fig. 1). For the pEGFP-HPV16-
E5 and pEGFP constructs, the intracellular GFP-depend-
ent fluorescence allowed us to gate GFP-expressing trans-
fected cells making it possible to compare GFP-E5 with
GFP positive populations in respect to their HLA-I signals
(Fig. 1A). Further, in our hands the anti-HA antibody did
not render sharp results differentiating transfected from
untransfected cells. For this reason, the effects for the pCI-
HPV16-E5-HA and pCI constructs were assessed by com-
paring total living cell populations (Fig. 1B). Since trans-
fection efficiency never reached 100 %, reduction in
relative values of the HLA-I surface expression tended to
be more discrete in HPV16E5-HA than in pEGFP-HPV16-
E5 transfected cells, leading to clearly significant though
smaller values in the statistical analyses (Fig. 1A and 1B).
These results therefore demonstrate that HPV16 E5 can
down-regulate cell surface expression under our experi-
mental conditions. Further, they also show that neither
the small HA (10 amino acids) nor the large EGFP (239
amino acids) used for tagging the viral protein impairs the
ability of HPV16 E5 to down-regulate HLA-I cell surface
expression.

HPV16 E5 expression reduces cell surface expression of 
HLA-I molecules in calnexin-expressing but not in 
calnexin-deficient cells
Since calnexin plays an important role in maturation of
the HLA-I complex, we decided to analyze whether E5
affects HLA-I surface expression by a mechanism involv-
ing calnexin. We transfected CEM-NKR and CEM-C7 cells
with pCI-HPV16-E5HA or empty pCI vector and selected
clones stably expressing E5. CEM-NKR [31] is a variant of
the leukaemia cell line CEM [43] known to be deficient in
calnexin expression (Fig. 2A) [30]. First, we checked
whether the permanent transfectants expressed E5 at sim-
ilar amounts. Pooled clones of both CEM-NKR and CEM-
C7 cells were analysed by immunoblotting for E5 expres-
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sion. As shown in Fig. 2B no major difference in the
expression level was found between both cells types. We
then analysed surface expression of HLA-I molecules by
flow cytometry, using two different anti-HLA-I antibodies.
Whereas calnexin-expressing CEM-C7 transfected with the
E5 protein contained clearly reduced amounts of surface
HLA-I molecules (Fig. 2C, left panels, KS-test p ≤ 0.001),
the calnexin-defficient CEM-NKR transfectants showed no
differences in HLA-I surface expression between E5-
expressing cells and controls (Fig. 2C, right panels, KS-test
p ≥ 0.100).

To test whether this effect simply reflected the presence of
different total amounts of HLA-I proteins in the cells, we
analysed the total amount of HLA-I molecules in CEM-
NKR and CEM-C7 cells by immunoblotting. As shown in

Fig. 2D, no major differences in the HLA-I content
between CEM-NKR and CEM-C7 cells were found when
using total cellular protein extracts from both cell lines (N
= 5, pKW = 0.87, Kruskal-Wallis test, pA = 0.77, ANOVA).
The E5-mediated reduction in the HLA-I amount at the
cell surface was thus not mediated by a lower total cellular
content of HLA-I proteins in the CEM-C7 transfectants.
These results therefore strongly suggest that E5 affects sur-
face HLA-I expression by a mechanism that involves cal-
nexin.

HPV16 E5 does not influence the transport activity of TAP
Experimental evidence has been published showing that
certain viruses target the TAP peptide transport as an effec-
tive strategy to reduce the availability of HLA-I-peptide
complexes at the cell surface, thereby reducing the cellular

HPV16 E5 expression down-regulates HLA-I surface moleculesFigure 1
HPV16 E5 expression down-regulates HLA-I surface molecules. HEK-293T cells were transfected either with (A) pEGFP-
HPV16-E5 or empty pEGFP vector, (B) pCI-HPV16-E5-HA or empty pCI vector. HLA-I molecules were then detected by 
immunostaining and flow cytometry using mouse monoclonal anti-HLA-A, B, C (mAb B9.12). Differences between the HLA-I 
surface expression levels were assessed by Kolmogorov-Smirnov test. This statistic defines the maximum vertical deviation 
between the two curves (pEGFP-E5 and GFP, pCI-E5-HA and pCI) as the statistic D. The p value of each single experiment was 
in all cases ≤ 0.001.
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HPV16 E5 decreases HLA-I surface expression in calnexin-containing but not in calnexin-deficient cellsFigure 2
HPV16 E5 decreases HLA-I surface expression in calnexin-containing but not in calnexin-deficient cells. CEM-C7 (calnexin) and 
CEM-NKR (no calnexin) cells were stably transfected with pCI-HPV16-E5-HA or pCI empty vector. A) Calnexin is only 
expressed in CEM-C7 cells but not in CEM-NKR cells. B) E5-HA expression was analysed in each stable polyclone by immuno-
precipitation and -blot using mouse monoclonal anti-HA Ab and 500 µg RIPA cell lysate. C) FACS analysis of CEM-NKR and 
CEM-C7 cells transfected with either the empty vector pCI or with pCI-E5-HA were stained with anti-HLA-A, B, C mAbs 
B9.12. E5 expression results in diminished HLA-I surface staining in cells expressing calnexin, but not in calnexin deficient cells. 
D) The upper part of the blot shown in A was incubated with anti-HC-10 antibodies (anti HLA-B, C). Incubation with anti-actin 
antibodies was performed as loading control. Columns represent average values (N = 5) and the error bars comprise the cor-
responding standard deviations. There were no differences between the total amounts of cellular HLA (N = 5; pKW = 0.87, 
Kruskal-Wallis test, and pA = 0.77, ANOVA). Molecular-mass markers (in kDa) are indicated in the left of the blots.
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susceptibility to CTL control and eventual lysis [44,45]. To
determine whether HPV16 E5 interferes with the peptide
transport activity of TAP in CEM cells, leading to the
observed decrease in HLA-I surface expression, we applied
a peptide translocation/glycosylation assay previously
described [39]. As shown in Fig. 3, no differences in trans-
port rates between E5 expressing and control cells were
found, demonstrating that the transporter activity of TAP
is not affected by HPV16 E5 expression in CEM-C7 and
CEM-CEM-NKR transfectants.

HPV16 E5 and calnexin can be co-immunoprecipitated 
from cellular extracts
To examine whether there is a physical interaction
between E5 and calnexin, we transfected cells with HPV16
E5 and analysed whether calnexin and E5 could be co-
immunoprecipitated. Since protein expression of the viral
E5 gene is very weak in transfected cells, we prepared a
codon-adapted version of the E5 sequence fitting to the
codon usage preferences in humans, a procedure known
to allow for increased protein expression of the protein in
eukaryotic cells [46-48]. HEK-293T cells were transfected
with the codon-adapted E5-coding DNA and protein
expression levels were tested by Western blot. As shown in
Fig. 4A (left) the codon-optimised E5 gene is well
expressed in HEK-293T cells, some orders of magnitude

above the expression achieved for the wild-type E5 gene
(Fig. 4A, right). Cellular proteins were immunoprecipi-
tated with antibodies against the AU1-tagged E5 protein,
separated on SDS-PAGE, blotted, and the membrane was
subsequently incubated with antibodies against calnexin.
A band of 90 kDa apparent molecular mass correspond-
ing to calnexin was identified in the immunoprecipitates,
demonstrating that HPV16 E5 and calnexin could be co-
immunoprecipitated in extracts of transfected cells (Fig.
4B). To further substantiate these results we performed
the reverse experiment immunoprecipitating the extracts
from transfected cells first with calnexin antibodies and
then incubating the separated immunoprecipitates on the
membrane with anti-E5-tag antibodies (anti-AU1). As
shown in Fig. 4C, a reacting band of about 10 kDa was
observed. This is the molecular mass found for HPV16 E5
when total cellular protein extracts were used for the
immunoblots. These results demonstrate that HPV16 E5
and calnexin either directly interact in vitro. This interac-
tion could also be reproduced when non-optimised viral
E5-coding DNA (pCI-HPV16-E5-HA) was used for trans-
fection (Fig. 4D and 4E), indicating that the effects did not
arise from the higher amount of protein expressed from
the codon-adapted version (Fig. 4A).

To further corroborate this finding at the intracellular
level we next sought to demonstrate co-localization of
both proteins in human keratinocytes expressing the E5
protein. HaCaT cells were transiently transfected with
AU1-tagged codon-adapted E5 and co-localization with
calnexin was analysed by laser confocal double immun-
ofluorescence microscopy. As shown in Fig. 5A we
observed a sharp colocalization of both proteins, confirm-
ing already published results for retroviral transduced
keratinocytes [48]. Similar results were obtained when the
GFP fusion protein was expressed instead of the AU1-
tagged codon-optimised E5 protein (Fig. 5B), indicating
that the subcellular localization of the E5 protein does not
depend on the nature of the tag used to label E5.

An intact hydrophobic region of HPV16 E5 is necessary for 
binding to calnexin
To analyze the characteristics of the E5-calnexin binding
in more detail, we prepared a series of point mutants -M1,
M2 and M3- in which we modified the E5 protein
sequence, altering the hydrophobic profile and the local
propensity to form helical structures. Leucine and/or iso-
leucine residues were mutated to proline, aspartate or
arginines and then the resulting hydrophobic profile, pro-
pensity to helical structure and potential for stably span-
ning the cellular membrane were analysed and compared
with those of the wild-type E5 protein (Fig. 6A, 6B). The
point mutations were chosen so that they resulted respe-
tively in the disruption of each of the three putative trans-
membrane helix within each of the three hydrophobic

Transporter activity of TAP is not influenced by HPV16 E5Figure 3
Transporter activity of TAP is not influenced by HPV16 E5. 
Streptolysin Opermeabilized calnexin-proficient CEM-C7 and 
calnexin-deficient CEM-NKR cells (38) were analysed in a 
peptide translocation/glyosylation assay using the indicated 
input quantities of the radioiodinated reporter peptide TNK-
TRIDGQY (glycosylation consensus site underlined) in the 
presence or absence of ATP. The glycosylated fraction, indic-
ative of TAP-mediated ER transport, is isolated by concanav-
alin A Sepharose and quantitated by γ-counting. No 
significant differences could be detected between HPV16 E5-
expressing cells and the control cells irrespective from the 
presence (CEM-C7) or absence (CEM-NKR) of calnexin.
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domains of the E5 protein, without changing the total
protein length. All three mutants were based on the
codon-optimised version of E5.

To test whether the mutants M1, M2 and M3 were
expressed at similar levels, HEK-293T cells were trans-
fected with the original codon-optimised E5 sequences or
with each of the mutants, and the protein content was
analysed by immunoblotting. As shown in Fig. 7A, all
recombinants showed similar levels of expression, being
differences in SDS-PAGE migration attributable to the dif-
ferent hydrophobicity of the proteins.

To analyze the differential involvement of the each of the
three E5 transmembrane domains in the interaction

between E5 and calnexin, we performed immunoprecipi-
tation experiments with the three mutants M1, M2 and
M3 as described above. Protein extracts from transfected
cells were immunoprecipitated with antibodies against
the AU1 epitope, and the precipitates were analysed for
calnexin content by immunoblotting. As shown in Fig.
7B, the original codon-optimized E5 protein and the
mutants M2 and M3 co-precipitated calnexin to similar
extents, whereas mutant M1 precipitated clearly reduced
amounts of calnexin. To discard artefacts due to different
inputs of antibody, protein G-sepharose or protein, the
experiments were repeated six times. As shown in Fig. 7C
mutant M1 co-precipitated calnexin to only 50 % of the
levels precipitated by the wild-type and mutants M2 and
M3. These results could be reproduced when non-opti-

Calnexin interacts with the HPV16 E5 protein in cellular extractsFigure 4
Calnexin interacts with the HPV16 E5 protein in cellular extracts. HEK-293T cells were transfected with AU1-tagged codon-
optimised HPV16 E5, pCI-HPV16-E5-HA or corresponding empty vectors and lysed at 24 h posttransfection with CHAPS lysis 
buffer. A) Immunoblot showing the expression levels of the codon-optimised E5 gene (left panel) and of the viral E5 gene (right 
panel). Note the differences in the immunoreactivity signals despite the higher amount of total protein loaded in the non-opti-
mised gene (100 µg vs 30 µg). B) Immunoprecipitations were performed using monoclonal anti-E5-tag (AU1) antibodies and 
proteins in the immune complexes were probed using anti-AU1 and anti-calnexin antibodies. C) Immunoprecipitations were 
performed using monoclonal anti-calnexin antibodies and proteins in the immune complexes were probed using anti-calnexin 
and anti-E5-tag (AU1) anti-bodies. D) Immunoprecipitations were performed using monoclonal anti-E5-tag (HA) antibodies and 
proteins in the immune complexes were probed using anti-HA and anti-calnexin antibodies. E) 2 Immunoprecipitations were 
performed using monoclonal anti-calnexin antibodies and proteins in the immune complexes were probed using anti-calnexin 
and anti-E5-tag (HA) antibodies. Molecular-mass markers in kDa are indicated at the left of the blots.
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mised viral E5-coding DNA (pEGFP-HPV16-E5 and
pEGFP-M1) was used for transfection instead of the
codon-adapted E5-coding DNA (Fig. 7D and 7E). Taken
together, these results strongly suggest that the first hydro-
phobic region of E5, i.e. the first putative transmembrane
domain of the protein, is involved in the interaction with
calnexin.

Co-localization of HPV16 E5 and calnexin is dependent on 
the presence of the first hydrophobic domain of E5
The experiments described above indicate that the intera-
cion between E5 and calnexin relies on the presence of an
intact first hydrophobic region, and that this binding may
be responsible for down-regulation of HLA-I expression.
Should this be true, a reduction in co-localization
between calnexin and mutant M1 would be expected in
immunofluorescence experiments. In order to address
this point, HaCaT cells were transfected with the three
mutants M1, M2, and M3 and double immunofluores-
cence with anti-calnexin and anti tag antibodies was per-
formed.

As shown in Fig. 8, calnexin colocalized with the E5 pro-
tein expressed from the codonoptimized gene (Fig. 8A), as

well as with the M2 and M3 mutants (Fig. 8C and 8D). In
contrast, the disruption of the first helix in mutant M1
results in a change in the subcellular localisation of the
protein, yielding a disperse and punctuate subcellular dis-
tribution, where only a partial co-localization with cal-
nexin (Fig. 8B). These results are consistent with those
found in the immunoprecipitation experiments and fur-
ther confirm that the interaction of HPV16 E5 and cal-
nexin requires a native, non-modified first
transmembrane domain of the viral protein.

Calnexin, HPV16 E5 and HLA form a trimeric complex
Recent results have shown that HPV16 E5 may co-precip-
itate with the heavy chain of HLA-I [21]. In the light of our
results presented above, and together with the fact that
HLA-I and calnexin associate during HLA maturation, we
hypothesized that the formation of a trimeric complex
between HLA-I heavy chain, calnexin and E5 might be
involved in the retention of HLA-I in the ER/Golgi appa-
ratus of the cells expressing E5. To address this question,
HeLa cells were transfected with AU1-tagged codon-opti-
mised E5 or with mutant M1, and protein extracts were
immunoprecipitated with anti-AU1. Immunoprecipitates
separated in SDS-PAGE, were blotted onto PVDF mem-

Co-localization of HPV16 E5 with calnexinFigure 5
Co-localization of HPV16 E5 with calnexin. HaCaT cells were transfected with AU1- tagged codon-optimised E5 or pEGFP-E5 
and analysed after 24 h by confocal laser scanning microscopy using a monoclonal anti-AU1 and/or polyclonal anti-calnexin Abs.
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brane and probed either with anti-HC10, recognizing
HLA-B, C heavy chains [49], or with anti-calnexin anti-
bodies. As shown in Fig. 9, both HLA-I heavy chain and
calnexin could be co-immunoprecipitated with anti-AU1
antibodies, which target E5. More important, the E5
mutant M1 previously shown to be deficient in immuno-
precipitation of calnexin, also failed to co-precipitate the
HLA-I heavy chain. These results demonstrate that HPV16
E5 forms a complex with calnexin and HLA-I heavy chain
and that this complex depends on the interaction of the
first hydrophobic region of E5 with calnexin.

Mutant M1 is not able to down-regulate HLA-I cell surface 
expression in the same extent that wild type HPV16 E5 
does
Since the experiments shown above demonstrate that
mutation of the first putative transmembrane helix of E5
results in the loss of binding to calnexin, we addressed the
question whether this loss correlates with the failure to
down-regulate HLA-I surface expression. HEK-293T cells
were transfected with the wild-type pEGFP-E5, mutant
pEGFP-M1 or pEGFP empty vector and the amount of
HLA-I expression at the cell surface was determined by

Transmembrane Hidden Markov Model posterior probabilities for the sequences of E5 and the mutants M1, M2 and M3Figure 6
Transmembrane Hidden Markov Model posterior probabilities for the sequences of E5 and the mutants M1, M2 and M3. A) 
Amino acid sequence of the wild-type E5 protein and corresponding mutants. Aminoacids of the AU1-tag are underlined. 
Arrows show the position of exchanged amino acids. B) Analysis of the wild-type E5 and mutants using the TMHMM 2.0 algo-
rithm (36, 37), showing the three hydrophobic regions predicted to be transmembrane domains, and the corresponding dis-
ruptions in the three mutants.
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FACS analysis. While wild-type E5 expression resulted in
HLA-I down-regulation at the plasma membrane (Figs. 1
and 2C, Fig. 10), this effect was not observed when the
cells expressed the E5 mutant M1 (Fig. 10). To substanti-
ate this result, we did the experiment six times and ana-
lysed the median values of HLA-I surface expression in the
transfected cells (for statistical analysis, see Table 1).

Whereas the wild type E5 protein was able to down-regu-
late HLA-I surface expression down to 65% (median of six
experiments), the median HLA-I staining of HEK-293T
transfected with the E5 mutant M1 was 82% (median of
six experiments) as compared with HEK-293T control
transfectants (N = 6, pW = 0.0313, Wilcoxon matched-

Mutant M1 binds less calnexin than wild-type E5 proteinFigure 7
Mutant M1 binds less calnexin than wild-type E5 protein. HEK-293T cells were transfected with either (A-C) AU1-tagged 
codon-optimised HPV16 E5, the mutants M1, M2 and M3 or pcDNA 3.1 empty vector as control, (D and E) pEGFP-tagged 
HPV16 E5, mutant pEGFPM1, mock-control or pEGFP empty vector and lysed at 24 h posttransfection with CHAPS lysis 
buffer. A) Similar expression levels of all HPV16 E5 and the mutants M1, M2 and M3. B) Immunoprecipitations were performed 
using monoclonal anti-AU1, and proteins in the immune complex were detected using anti-AU1 and anti-calnexin. C) Quantifi-
cation of co-precipitated calnexin for wild-type HPV16E5 protein, the mutants M1, M2, M3 and the vector control. The wild-
type expression level was set to 100%. Data shown represent six independent experiments 2 plus standard errors of the mean. 
P values were calculated with paired two-tailed Student's t-test. D) Similar expression levels of pEGFP-HPV16-E5 and the 
mutant pEGFP-M1. E) Immunoprecipitations were performed using monoclonal anti-GFP, and proteins in the immune complex 
were detected using anti-GFP and anti-calnexin. Molecular-mass markers in kDa are indicated at the left of the blots.
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HPV16 E5, M2 and M3 mutants but not M1 mutant strongly co-localize with calnexinFigure 8
HPV16 E5, M2 and M3 mutants but not M1 mutant strongly co-localize with calnexin. HaCaT cells were transfected with A) 
AU1-tagged codon-optimised E5 or AU1- tagged codonoptimised E5 mutants M1 B), M2 C), and M3 D) and analysed after 24 h 
by confocal laser scanning microscopy using a monoclonal anti-AU1 and polyclonal anticalnexin antibodies.
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pairs signed ranks test, pST = 0.009, paired Student's t-
test).

Taken together, our results strongly indicate i) that E5-
mediated down-regulation of HLA-I surface expression
proceeds through the formation of a ternary complex

between E5, calnexin and the heavy chain of HLA-I; ii)
that the disruption of the first transmembrane domain of
HPV16 E5 modifies the subcellular distribution of the
protein; and iii) that the disruption of the first transmem-
brane domain of HPV16 E5 prevents the interaction, colo-
calisation and immunoprecipitation of the viral protein
with calnexin, and also of that with the heavy chain of
HLA-I.

Discussion
Eukaryotic cells respond to viral infection by activating
mechanisms aiming to abortion of the infection through
hindering of viral protein expression, virus maturation or
virus release, while viruses have developed during evolu-
tion molecular countermeasures to escape from these cel-
lular controls. One of these viral strategies leads to a
reduction in the adaptive immunoresponses of the host
by reducing the exposure of the infected cells to immune
surveillance. Reduced surface expression of HLA-I has
been described upon expression of HPV16 E5 or HPV2 E5
proteins [22,42], but the molecular mechanisms respon-
sible for the decrease of HLA-I on the cell surface have not
yet been elucidated. In this report we present experimen-
tal evidence demonstrating that HPV16 E5 down-regu-
lates HLA-I surface expression by a calnexin-mediated
mechanism. Using transient and stably transfected cells,
we have shown that HPV16 E5 is able to reduce HLA-I sur-
face expression in calnexin-containing cells, but not in a
calnexin-deficient cell line. Published reports have
described that the heavy chain of HLA-I molecules and
HPV16 E5 could be co-precipitated [21], suggesting that
this binding might be involved in HLA-I down-regulation.
Nevertheless, our results point to the binding of E5 to cal-
nexin as the critical molecular event directly involved in
HLA down-regulation. Expression of E5 in CEM-C7 cells,
which constitutively express calnexin, results in a
decreased amount of HLA-I at the cell surface, but no
down-regulation was observed in CEM-NKR cells devoid
of calnexin (see Fig. 2C). Since both cell types CEM-C7
and CEM-NKR contain similar amounts of HLA-I mole-
cules (Fig. 2D and see [30]) it seems unlikely that a puta-
tive binding of HPV16 E5 to the HLA-I heavy chain alone
could be solely responsible for the decreased surface
expression of HLA-I proteins in CEM-C7 cells.

Regarding other viruses, such as herpes simplex virus and
cytomegalovirus, it has been shown that they target the
transporter associated with antigen processing (TAP) in
order to down-regulate HLA-I surface expression [50,51].
In PVes it has been demonstrated that purified HPV11 E7
protein is able to inhibit ATP-dependent peptide transport
into the lumen of the ER in vitro [52]. In this context, our
peptide translocation-assay results show that HPV16 E5
does not influence the transport of antigen peptides from
the cytosol to the ER. Thus, the data here presented sug-

E5 mutant M1 down-regulates surface expression of HLA-I to a lesser extent than the E5 protein doesFigure 10
E5 mutant M1 down-regulates surface expression of HLA-I 
to a lesser extent than the E5 protein does. HEK-293T cells 
were transfected either with pEGFP-HPV16- E5, -M1, or 
empty pEGFP vector. HLA-I molecules were detected by 
immunostaining and flow cytometry using mouse monoclonal 
anti-B9.12 Ab. Results for one representative experiment out 
of six are shown. Statistic analysis is shown in Table 1.
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HPV16 E5 forms a ternary complex with calnexin and the HLA-I heavy chainFigure 9
HPV16 E5 forms a ternary complex with calnexin and the 
HLA-I heavy chain. HeLa cells were transiently transfected 
with AU1-tagged codon-optimised HPV16 E5, M1, or empty 
vector. 24 h later CHAPS lysates were immunoprecipitated 
with antibodies against the E5-tag (anti-AU1). Precipitated 
immune complexes were separated by SDS-PAGE and West-
ern blotted using anti-calnexin and anti-HLA-B, -C mAb 
(HC10), respectively (band marked with *). Molecular-mass 
markers in kDa are indicated at the left of the blots.
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gest that HPV16 E5 does not target the TAP transporter
activity to control surface expression of HLA-I molecules.

Our co-immunoprecipitation experiments using either
antibodies against different tagged versions of the E5 pro-
tein or against calnexin demonstrate that HPV16 E5 asso-
ciates with calnexin in vitro. The biological significance of
this interaction is further supported by the previously
described intracellular co-localization of calnexin and
HPV16 E5 [48], that we confirmed in this report.

Upon interaction between the first and the third hydro-
phobic segments [53], HPV16 E5 could be organized as a
transmembrane protein with three putative transmem-
brane helices [54]. In the present work we have intro-
duced specific point mutations in this E5 gene, selectively
targeting local hydrophobicity and propensity towards
helix conformation in each of the three predicted trans-
membrane helices of the HPV16 E5 protein [32]. These
point mutations result in the selective and individual dis-
ruption of each helix without altering the overall length of
the protein. Our results reveal that the first hydrophobic
helix is mainly responsible for HPV16 E5 subcellular
localisation and concomitantly for colocalisation
between HPV16 E5 and calnexin. Mutant M1 -with the
first putative transmembrane helix being disrupted- was
able to bind reduced amounts of calnexin in immunopre-
cipitation assays, while co-localizing only weakly with cal-
nexin in transfected cells. In addition, M1 transfectants
did not down-regulate surface expression of HLA-I in the
same extent than wild-type E5. Together both results sug-
gest that i) the first putative transmembrane domain of
HPV16 E5 is responsible for the HPV16 E5 localisation; ii)
the interaction of HPV16 E5 and calnexin depends on the
integrity of the first putative transmembrane domain; iii)
the effect of HPV16 E5 on HLA-I surface expression

strongly depends on the integrity of the first putative
transmembrane domain and on the subsequent interac-
tion between HPV16 E5 and calnexin.

The definitive finding presented here is the existence of a
ternary protein complex of HPV16 E5, calnexin, and the
heavy chain of HLA-I molecules. The formation of this
complex depends on the presence of the first predicted
transmembrane domain of HPV16 E5. Since the dimer
calnexin-HLA is a natural step in the antigen processing
route, it can be hypothesized that HPV16 E5 binds to the
calnexin-HLA-I complex and that this binding blocks fur-
ther trafficking of the HLA-I complex to the plasma mem-
brane, leading instead to its accumulation in the ER/Golgi
of the infected cell. A direct binding of E5 to the heavy
chain of HLA-I seems under the light of our results
improbable. This is further supported by our findings
using calnexin-deficient cells lines. Although both cell
types, calnexin-containing and calnexin-deficient, express
similar amounts of heavy chain HLA-I, the E5-mediated
reduction of surface HLA-I becomes evident exclusively in
calnexin-containing cells.

The interaction between E5 and calnexin could be demon-
strated in cells transfected with the codon-adapted version
of the gene, and also in cells transfected with the wild-type
gene. This association is therefore independent from the
effective amount of E5 protein expressed, and cannot be
due to a very large overexpression from the optimised ver-
sion of the gene. This is not a trivial result, as it has been
shown that codon usage optimization can lead to changes
in the phenotype associated with protein expression
[55,56].

Table 1: E5 mutant M1 down-regulates surface expression of HLA-I to a lesser extent than the E5 protein does.

E5-GFP p- valuec M1-GFP E5-GFP p- valuec M1-GFP

HLA- 57.77% t- test 69.78% KS-Db 0.29 t- test 0.20
surface 67.92% 0.009 75.67% 0.17 0.005 0.13

expressiona 75.67% 94.75% 0.15 0.04
69.16% Wilcoxon 82.04% 0.20 Wilcoxon 0.11
59.35% 0.0313 82.78% 0.25 0.0313 0.10
62.08% 100.90% 0.23 0.02

Median 65.00% 82.41% Median 0.215 0.105
Range 58%-76% 70%-100% Range 0.17–0.29 0.02–0.2

aValues of pEGFP-E5 and pEGFP-M1 were normalized to the values of the pEGFP-control (E5-GFP, M1-GFP), which was set as 100% expression of 
HLA-I surface expression.
bKolmogorov-Smirnov (KS) test was performed with CellQuest™ software (BD Bioscience). This statistic defines the maximum vertical deviation 
between the two curves (pEGFP-E5 and pEGFP-control or pEGFP-M1 and pEGFP-control) as the statistic D. The p value of each single experiment 
was ≤ 0.001.
cPaired two tailed paired student's t-test and Wilcoxon matched-pairs signed-ranks test values for the raw percentages of immunorreactive cells 
(left column) and for the D statistic (right column). The E5 mutant M1 does not affect HLA-I expression in the same extent than the original E5 
protein does (p < 0.05 in all cases).
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Conclusion
In summary, our results support a model for the E5-medi-
ated HLA-I surface downregulation in which the viral pro-
tein interacts with calnexin, finally leading to an E5-
calnexin-HLA-I heavy chain ternary complex unable to be
further transported to the cell surface.
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