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Abstract: Byrsonima crassa Niedenzu (Malpighiaceae) is used in Brazilian folk medicine 

for the treatment of diseases related mainly to gastric ulcers. In a previous study, our  

group described the gastric protective effect of the methanolic extract from the leaves of  

B. crassa. The present study was carried out to investigate the effects of methanolic extract 

and its phenolic compounds on the respiratory burst of neutrophils stimulated by H. pylori 

using a luminol-based chemiluminescence assay as well as their anti-H. pylori activity. The 

suppressive activity on oxidative burst of H. pylori-stimulated neutrophils was in the order 

of methyl gallate > (+)-catechin > methanol extract > quercetin 3-O-α-L-

arabinopyranoside > quercetin 3-O-β-D-galactopyranoside > amentoflavone. Methyl gallate, 

compound that induced the highest suppressive activity with IC50 value of 3.4 µg/mL, did 

not show anti-H. pylori activity. B. crassa could be considered as a potential source of 

natural antioxidant in gastric ulcers by attenuating the effects on the damage to gastric 

mucosa caused by neutrophil generated reactive oxygen species, even when H. pylori 

displays its evasion mechanisms. 
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1. Introduction 

The discovery of Helicobacter pylori (H. pylori) in 1982 was the starting point of a conceptual 

revolution concerning of gastroduodenal diseases and their management [1]. H. pylori infection has 

been implicated in the pathogenesis of chronic gastritis, peptic ulcers and, more rarely, gastric cancer 

and gastric lymphoma of mucosa-associated lymphoid tissue [2]. The mechanisms by which bacterial 

infection leads to gastric mucosal damage include the direct effects of virulent factors produced by  

H. pylori, the propagation and perpetuation of inflammation, oxidative stress, and the induction of 

apoptosis in infected gastric epithelial cells [3]. 

Under inflammatory conditions, phagocytosing cells generate multiple well-defined reactive oxygen 

species (ROS). Stimulated polymorphonuclear neutrophils (PMNs) undergo an oxidative burst, and 

release large quantities of superoxide anion as a result of the activation of the PMN NADPH oxidase. 

Superoxide anion radicals are known to dismutate to form hydrogen peroxide (H2O2) and oxygen [4]. 

Myeloperoxidase (MPO), an enzyme released from the azurophilic granules in neutrophils, uses H2O2 

and chloride ions (Cl−) as substrates to produce hypochlorous acid (HOCl), an important antibacterial 

compound, but an extremely strong oxidant that can also attacks host biomolecules [5]. Oxidative 

stress plays a critical role in the augmented mucosal damage caused by H. pylori infection, and an 

antioxidant could ameliorate the aggravation caused by stress-associated gastric mucosal damage. 

Despite years of experience with H. pylori treatment, an ideal regimen to treat the infection has not 

yet been identified. The most effective treatment is a combination of a proton pump inhibitor and 

antibiotics, but this fails to eradicate the infection in 10–20% of patients [6]. Non-antibiotic treatments, 

including phytomedicines, probiotics and antioxidants, have been increasingly investigated as potential 

alternatives for the treatment of H. pylori infection [7,8]. 

Byrsonima crassa (Malpighiaceae) is a plant found in the Cerrado of the central region of Brazil  

and is used in folk medicine for the treatment of gastroduodenal diseases, including gastric ulcers. 

Pharmacological studies have revealed that Byrsonima species have an antiulcerogenic effect and that the 

methanolic extract of leaves from B. crassa has a gastroprotective effect against HCl/ethanol-induced 

gastric mucosal injuries in mice. Amentoflavone, catechin and quercetin derivatives have been suggested 

to be the active components of the extract [9].  

Considering that B. crassa is commonly used as a phytomedicine to treat ulcers and gastritis, the 

objective of the present study was to evaluate the effect of the extract and its purified major phenolic 

constituents (amentoflavone, (+)-catechin, methyl gallate, quercetin 3-O-α-L-arabinopyranoside, and 

quercetin 3-O-β-D-galactopyranoside) on the oxidative burst of PMNs stimulated by H. pylori, using a 

luminol-dependent chemiluminescence assay, and the anti-H. pylori activity of each compound. 
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2. Results and Discussion 

There is considerable interest in alternative approaches to the treatment of H. pylori, such as the use 

of biologically active compounds, including antimicrobials compounds and antioxidants from plants. 

In a previous study, the anti-ulcerogenic activity profile of B. crassa leaves was investigated in detail, 

in various in vivo experimental ulcer models [9]. In this study the effects of the whole extract and 

purified phenolic compounds on the intra- and extracellular production of ROS was assessed in  

H. pylori-stimulated PMNs using luminol-enhanced chemiluminescence. Luminol can be oxidized by 

several ROS, but it is generally accepted that chemiluminescence in neutrophils results from intra- and 

extracellular events and depends mainly on the reactions of the MPO-H2O2-Cl system [10].  

The suppressive activity on oxidative burst of H. pylori-stimulated PMNs was in the order of methyl 

gallate > (+)-catechin > methanol extract > quercetin 3-O-α-L-arabinopyranoside > quercetin  

3-O-β-D-galactopyranoside > amentoflavone. All compounds showed a dose-dependent effect (Table 1). 

Table 1. Effect of the methanolic extract and phenolic compounds from Byrsomina crassa 

on neutrophil oxidative burst stimulated by Helicobacter pylori strain ATCC 43504.  
a Integrated area of chemiluminescence curve: mean of triplicate readings ± SD (n = 3);  
b compared to the control; * statistically significant difference (p < 0.05).  

Compound 
Concentration

(µg/mL) 
IA a 

% reduction 
in IA b 

IC50 
(µg/mL)

Methanolic extract 

0 (control) 
5 
50 
100 

3.15 × 105 ± 22,334
2.19 × 105 ± 20,163
0.22 × 105 ± 1982 
0.10 × 105 ± 956 

- 
30.5 * 
93.0 * 

96.8 * 

27.0 

Amentoflavone 

0 (control) 
1 
5 
50 
100 

2.58 × 105 ± 5482 
2.44 × 105 ± 5173 
2.15 × 105 ± 4355 
1.76 × 105 ± 3760 
1.13 × 105 ± 2407 

- 
5.4 

16.7 * 

31.8 * 

56.2 * 

92.9 

(+)-Catechin 

0 (control) 
1 
5 
50 
100 

2.23 × 105 ± 3363 
2.37 × 105 ± 5173 
1.6 × 105 ± 2297 
0.10 × 105 ± 146 
0.05 × 105 ± 70 

- 
0 

28.3 * 

95.5 * 

97.8 * 

25.8 

Methyl gallate 

0 (control) 
1 
5 
50 
100 

2.75 × 105 ± 7764 
2.62 × 105 ± 7404 
0.74 × 105 ± 2094 
0.15 × 105 ± 423 
0.16 × 105 ± 455 

- 
4.7 

73.1 * 

94.5 * 
94.2 * 

3.4 

Quercetin-3-O-α-L-
arabinopyranoside 

0 (control) 
1 
5 
50 
100 

2.35 × 105 ± 4984 
2.43 × 105 ± 5173 
2.14 × 105 ± 4355 
1.36 × 105 ± 2893 
0.87 × 105 ± 1852 

- 
0 

8.9 * 
42.1 * 
63.0 * 

75.3 
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Table 1. Cont. 

Compound 
Concentration 

(µg/mL) 
IA a 

% reduction 
in IA b 

IC50 
(µg/mL)

Quercetin-3-O-β-D-
galactopyranoside 

0 (control) 
1 
5 
50 
100 

2.35 × 105 ± 4984 
2.47 × 105 ± 5173 
2.18 × 105 ± 4355 
1.50 × 105 ± 2893 
0.95 × 105 ± 1852 

- 
0 

7.2 
36.2 * 
59.6 * 

80.6 

Quercetin 

0 (control) 
1 
5 
50 
100 

2.48 × 105 ± 5987 
1.11 × 105 ± 3211 
0.18 × 105 ± 1101 
0.15 × 105 ± 578 
0.13 × 105 ± 499 

- 
55.2 * 
92.7 * 

94.0 * 
94.8 * 

<1.0 

In general, the free-radical scavenging and antioxidant activities of phenolics depend primarily on 

the number and positions of the hydrogen-donating hydroxyl groups on the aromatic ring of these 

molecules, but is also affected by other factors, such as glycosylation of aglycones and other H-donating 

groups [11]. The experimental results of this study showed that the flavonoid quercetin (standard 

antioxidant) had a better antioxidant activity than its 3-O-glycoside derivatives (quercetin  

3-O-α-L-arabinopyranoside and quercetin 3-O-β-D-galactopyranoside) on ROS production induced by 

H. pylori. These agree with reports that flavonoid aglycones are more potent antioxidants than their 

corresponding glycosides [12]. 

Methyl gallate has been shown to be an effective antioxidant in a variety of acellular  

experiments [13]. In this study, this gallic acid derivative showed a strong inhibitory activity on the 

induced oxidative stress of PMNs using H. pylori as activator. The molecular mechanism for ROS 

production by H. pylori remains unclear. Analysis of intracellular ROS shows that methyl gallate is 

effective in attenuating H2O2-derived ROS [14]. The antioxidant-like properties of polyphenols are 

largely dependent on the type of stimulus for the production of ROS and the structure plays a critical 

role in the success as an antioxidant. The results of ROS inhibitory activity of different phenolic 

compounds are indicative of different action mechanisms and further researches are required to 

understanding their action on ROS induced by H. pylori in neutrophils. One of the initial components 

of the innate immune response to be encountered by H. pylori in the stomach is the gastric epithelial 

cell [3]. As B. crassa and phenolic constituents have impact on ROS induced by PMNs is expect that 

this benefits can also be extent to the gastric mucosal cells. 

In this study the anti-H. pylori activity of the phenolic compounds isolated from the methanolic 

extract of B. crassa was also examined (Table 2). All purified compounds tested showed lower  

anti-H. pylori activity than did the whole extract as cited by Bonacorsi et al. [15]. Studies have 

demonstrated the anti-H. pylori effect of natural compounds [16,17]. These compounds interact with 

multiple molecular targets and inhibit the growth of H. pylori by various mechanisms such, as 

membrane destabilization, inhibition of ion channels and inhibition of bacterial metabolism [14]. 

Phenolic compounds isolated from B. crassa weakly inhibited H. pylori growth. Shin et al. [18] have 

previously reported that some flavonoids, such catechins, quercetin, and naringenin, exhibit poor 

inhibition on H. pylori growth. 
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Table 2. Effect of phenolic compounds isolated from the methanolic extract of Byrsonima 

crassa on growth of Helicobacter pylori strain ATCC 43504. Results were expressed as 

means ± SD for three independent determinations. 

Phenolic compound 
Inhibition of bacterial growth (%) 

Concentration (µg/mL) 
64 128 256 512 1024 

Amentoflavone 1.5 ± 0.3 4.3 ± 0.4 15.5 ± 0.6 15.9 ± 0.4 43.5 ± 0.6 
(+)-Catechin 1.5 ± 0.2 8.8 ± 0.6 8.8 ± 0.4 10.3 ± 0.4 10.4 ± 0.5 
Methyl gallate 5.8 ± 0.2 5.8 ± 0.4 7.3 ± 0.5 7.3 ± 0.3 7.4 ± 0.8 
Quercetin-3-O-α-L-
arabinopyranoside 

8.2 ± 0.3 16.4 ± 0.4 17.4 ± 0.3 17.4 ± 0.6 17.8 ± 0.4 

Quercetin-3-O-β-D-
galactopyranoside 

3.0 ± 0.6 3.5 ± 0.5 6.0 ± 0.6 9.7 ± 0.7 9.8 ± 0.7 

Quercetin 7.9 ± 0.6 15.0 ± 0.8 17.4 ± 0.5 21.6 ± 0.8 47.4 ± 0.5 

Synergistic antimicrobial activity has been demonstrated in some naturally occurring flavonoids. 

Arima et al. [19] reported that the use of combinations of quercetin and quercitrin, quercetin and morin, 

and quercetin and rutin were more effective against S. enteritidis than the use of each flavonoid alone. In 

a study of the effects of cranberry fruit on H. pylori, Vattem et al. [20] report the low efficacy of purified 

phenolics in inhibiting the bacteria compared to the whole fruit extract at a similar dose, suggesting  

the ability of phenolics to function synergistically in the whole food. The purified phenolic compounds 

tested showed a lower antimicrobial activity compared to the extract (MIC 1024 μg/mL) [15]. This 

result might reflect the synergistic interaction of constituent phytochemicals. 

3. Experimental Section 

3.1. Plant Material 

B. crassa leaves were collected at Porto Nacional, TO, Brazil. Authentication was achieved by 

comparison with a specimen at the herbarium of Tocantins University. A voucher specimen (Nr. 3377) 

was deposited at the herbarium. 

3.2. Extract Preparation and Isolation of Purified Phenolic Compounds 

The air-dried and powdered leaves (2.0 kg) of B. crassa were extracted with methanol (MeOH) at 

room temperature (48 h). The solvent was evaporated at 60ºC under reduced pressure to produce 

themethanolic extract. The yield (w/w) of the extract from the dried powdered B. crassa leaves was 

7.91% (158.3 g). An aliquot of the extract (4.0 g) was permeated on a Sephadex LH-20 column  

(100 cm × 5 cm), and then eluted with MeOH. Fractions (8 mL) were collected and analyzed by  

thin-layer chromatography on silica gel eluted with CHCl3/MeOH (80:20) and revealed by spraying 

with either (diphenylaminoborate/polyethyleneglycol) or an anisaldehyde/sulfuric acid solution. 

Fractions 129–141 (95.0 mg) were purified by repeated column chromatography (CC) on 

microcrystalline cellulose using with CHCl3/MeOH (80:20) as the eluent, yielding the biflavonoid 

amentoflavone (6.0 mg). Fractions 88–95 (69.0 mg) were further purified by high-performance liquid 
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chromatograpy (HPLC), with MeOH/H2O (1:1) as the eluent, to yield quercetin-3-O-β-D-

galactopyranoside (15.0 mg). Fractions 82–87 (122.0 mg) were purified by silica CC using EtOAc/n-

PrOH/H2O 140:8:80 (upper phase) as the eluent, yielding quercetin-3-O-α-L-arabinopyranoside  

(14.0 mg) and a mixture of (−)-epicatechin and (+)-catechin (30.0 mg). Epicatechin and (+)-catechin 

were separated by HPLC with MeOH/H2O (20:80) as the eluent to yield 10 mg of each purified 

compound. Fractions 55–60 (112.0 mg) were purified by silica gel CC with CHCl3/MeOH (75:25) as 

the eluent, yielding methyl gallate (8.0 mg), which was confirmed by NMR and TLC [21]. The extract 

and the purified major constituents were solubilized in dimethyl sulfoxide (DMSO).  

3.3. Anti-Helicobacter pylori Activity  

H. pylori type strain ATCC 43504, which is metronidazole resistant (MtzR) and amoxicillin 

susceptible (AmxS), was obtained from the American Type Culture Collection (Manassas, VA, USA). 

The bacterium was cultured in Columbia agar containing 5% sheep’s blood at 36–37 °C for 3 days under 

a microaerophilic atmosphere. The antimicrobial activity was determined by a broth microdilution 

method with brain heart infusion broth supplemented with 10% heat-inactivated fetal bovine serum, as 

described by Bonacorsi et al. [15]. Briefly, the wells of a 96-well microplate were filled with 100 μL of 

various concentrations of the phenolic compounds (final concentrations of 64 to 1024 μg/mL). Then, 

an equal volume of H. pylori suspension (1 × 106 cfu/mL) was added to each well. The absorbance  

was determined in an automatic ELISA microplate reader (Spectra & Rainbow Readers, Tecan) at 

wavelength of 620 nm. The microplate was incubated at 36–37 °C for 3 days under a microaerophilic 

atmosphere, after which time the plate was shaken and the absorbance was read again, at the same 

wavelength. Readings obtained before and after incubation were compared, to determine an increase in 

bacterial growth. Additionally, under the same conditions, wells without test substances were inoculated 

with H. pylori, as positive controls, and uninoculated media were used as negative controls. The 

percentage of growth inhibition was estimated with respect to a control that was incubated only with 

the solvent (DMSO). Quercetin (Sigma, USA) was used as a phenolic compound reference. All tests 

were performed in triplicate and repeated at least three times.  

3.4. Isolation of Polymorphonuclear Neutrophils  

Peritoneal polymorphonuclear neutrophils (PMNs) were obtained from male rats (Rattus norvegicus 

albinus) by intraperitoneal injection of 10 mL of a solution of sterile oyster glycogen 0.5% (w/v) in saline. 

Twelve hours later, the peritoneal exudate was collected with 20 mL Dulbecco’s phosphate-buffered 

saline (D-PBS) without calcium containing 10 IU heparin/mL. The cells were washed twice with sterile 

D-PBS and were carefully layered onto 5 mL of Ficoll-Paque™ (d = 1077) and centrifuged at 800 g 

for 30 min. Subsequently, the PMNs were washed again with D-PBS and adjusted to a concentration 

of 2.0 × 106 cells/mL. The proportion of neutrophils (over 95%) and cell viability in the peritoneal 

exudate were determined by cell staining with May-Grünwald-Giemsa. The Ethical Committee of the 

Pharmaceutical Sciences—UNESP approved the experimental procedure of this study (resol 05/2008). 



Int. J. Mol. Sci. 2012, 13             

 

 

139

3.5. Luminol Chemiluminescence Assay 

The effects of the extract and chemical compounds on the oxidative burst of PMNs were 

determined by using a luminol-dependent chemiluminescence assay as described by Galice et al. [22], 

with modifications. The chemiluminescence was measured with an automated luminometer (BioOrbit 

model 1251), using a final reaction volume of 1.0 mL. Briefly, 2.0 × 106 cells/mL and 2.0 × 10−5 M 

luminol were added to tubes containing D-PBS. The stimulus (H. pylori suspension at an optical 

density of 0.2 at 620 nm) was added to the tubes, and light release (in mV) was measured for 15 min. 

After this, D-PBS containing the extract or the phenolic compounds (non-cytotoxic concentrations) 

was added, and the oxidative burst was continuously monitored for another 75 min. The 

chemiluminescence response was quantified as the integrated area below the resulting 

chemiluminescence curve (AUC), over a period of 0 to 90 min. The background chemiluminescence 

from PMNs in the absence of stimulus (H. pylori) was also measured. Quercetin was used as the 

antioxidant standard. All tests were performed in triplicate and repeated at least three times. The 

percentage of chemiluminescence inhibition achieved with each sample was calculated by the formula: 

[1 − (AUC of the tested sample/AUC of the negative control)] × 100. This value was employed in the 

calculation of IC50, which measures the concentration of sample that inhibits 50% of the 

chemiluminescence produced by PMNs. 

3.6. Statistical Analysis 

The statistical significance of the differences between groups was assessed by analysis of variance 

(ANOVA), p-values < 0.05 were considered significant. 

4. Conclusions 

The present investigation constitutes the first quantitative screening for the effects phenolic 

compounds on the oxidative burst of PMNs induced by H. pylori. It becomes clear that B. crassa may 

exert a protective effect by inhibiting the mechanism by which H. pylori and neutrophils collaborate to 

cause gastric mucosal damage. These results confirm the antioxidant activity of B. crassa that justify 

its use in non-conventional medicine by the Brazilian population for the treatment of gastroduodenal 

ulcers, particularly when H. pylori displays its evasion mechanism. 
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