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A low noise cascaded amplifier 
for the ultra‑wide band receiver 
in the biosensor
Maissa Daoud1*, Mohamed Ghorbel2 & Hassene Mnif1

This paper presents the design of an Ultra‑Wide Band (UWB) Low Noise cascaded Amplifier (LNA) 
used for biomedical applications. The designed structure uses a technique which is based on the 
inductances minimization to reduce the LNA surface while maintaining low power consumption, 
low noise and high stability, linearity and gain. To prove its robustness, this technique was studied 
theoretically, optimized and validated through simulation using the CMOS 0.18 µm process. The 
LNA achieves a maximum band voltage gain of about 17.5 dB at [1‑5] GHz frequency band, a 
minimum noise figure of 2 dB, IIP3 of + 1dBm and consumes only 13mW under a 2 V power supply. It is 
distinguished by its prominent figure of merit of 0.68.

Today, the passive monitoring of vital signs using biomedical sensors requires the use of wireless communica-
tion relying on the technological evolution of these  devices1–5. Over the last decade, the scientific research in the 
nanotechnology field has focused on the challenges of low power requirements for medical devices to ensure a 
long battery pack life  time6–8. This has become critical for surgically implanted devices where size and battery 
life are essential as they are implemented in highly sensitive parts of the human body such as eyes for retinal 
prosthesis and brain for embedded applications  neurons9,10. In this case, the use of energy harvesting is an 
appropriate choice to meet the stringent power  budgets11–14.

Several biomedical applications using Ultra Wide Band (UWB) has become essential. The "camera pills", for 
instance, are used as a UWB transmitter to send good quality videos outside the human  body15–17. Other biomedi-
cal applications for the UWB can be found  in18. The primary advantages of the UWB are the wide bandwidth 
and the transmitter simplicity for a UWB based Impulse Radio (IR)19.

Typically, the biosensor consists of a power supply unit, two transmission and reception chains, and a data 
processing unit. In a receiver front-end, the low noise amplifier (LNA) is a critical block since it should amplify 
the weak signal received from the antenna with sufficient gain and little additional  noise20. The low noise ampli-
fier (LNA) has very stringent requirements such as gain, noise, power consumption, inearity and a well-matched 
input impedance (to be able to interface with the preselected filter that precedes the LNA)21.

Several basic structures of LNA are available in the literature and improved in several recent researches such 
as: Resistive terminated LNA, Inductive degenerate LNA, Resistive feedback LNA and Cascaded  LNA22–26. The 
work presented in this paper is an improved architecture of the cascaded LNA.

The remainder of this paper was organized as follows. In Sect. 2, the design of the UWB cascaded LNA was 
presented and the theoretical study of the used technique was explained. We validated the employed technique 
through simulation in Sect. 3. Finally, Sect. 4 was devoted to draw some conclusions.

THE CMOS cascaded lna design
The high-power consumption and large area are the two main drawbacks that have limited the cascaded amplifier 
application space. The resolution of these problems has become a big challenge in order to take full advantage of 
the intrinsic feature broadband that goes all the way down to consumed current, and the good input and output 
matching of the amplifier.  In27, as shown in Fig. 1, an example of LNA is designed using several inductances, 
which increases the amplifier surface.

In the proposed architecture, we have minimized the surface area of this architecture by reducing the number 
of inductances and involving the strategy of the cascaded stages without affecting the other performances. The 
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proposed LNA architecture is presented in Fig. 2. It consists of matching the LNA at the input in a first step then 
at the output in a second step to guarantee a desired signal along the circuit and at the output.

The amplification is provided by 4 inductorless cells. The transistor level implementation of the LNA is 
presented by Fig. 3. It shows that the input matching circuit contains only two inductances, two capacitances 
and one resistance. The four amplification stages have almost the same architecture: an NMOS transistor driver 
with its load impedance in the form of a PMOS device. The use of both of resistors and capacitors plays a key 
role to get a good impedance matching and to achieve the desired bandwidth. The values of the resistors and 
the capacitors are respectively 0.76 kΩ and 2.2 pF. In order to further boost the performance of the amplifier, a 
symmetrical power supply was used. Various research studies are taking place to enable the use of symmetrical 
power supply in microelectronic  systems11.

LNA gain analysis
The LNA design requires a detailed study of its  parameters28. The primary characteristic to be analyzed is the 
gain. The gain simplified equation of a one stage is given by:

with  RMP is the impedance of PMOS transistor and presented by Eq. (2):

According to Eq. (1) and Eq. (2) the one stage voltage gain and the total voltage gain are given respectively 
by Eq. (3) and Eq. (4).
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where β is the transistor constant, N is the number of stages, µn and µp are the mobility in doped semiconductor 
of NMOS and PMOS transistors, respectively, (W/L)n, (W/L)p, (Vgs − Vth)n and (Vgs − Vth)p are respectively the 
transistors dimensions and the saturation voltages of NMOS and PMOS devices.

The Fig. 4 confirms that the gain (S(2,1)) is directly dependent on the number of stages; the more the number 
increases, the greater the gain will be. In addition, we note that each block offers an additional gain of 4 dB.

 LNA noise analysis
The second characteristic is the intrinsic circuit noise. To calculate the LNA noise figure (NF), two noise types 
namely thermal and flicker noises are generated by MOS transistors. The noise generated by one stage is pre-
sented by Eq. (5).

with k is the Boltzman constant, T is the temperature in kelvin, K is the flicker constant, Id is the bias current, f is 
the bandwidth, gm is the MOS transconductance (gmp for PMOS transistor and gmn for NMOS transistor) and R 
is the resistance connected to the NMOS transistor source. We calculated the LNA total noise by relying on the 
Friis formula (Eq. (6)) which is used to calculate the total noise figure of the cascade stages.
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Since the cascaded LNA 4 stages are similar, they generate the same noise and gain. Therefore, taking Fig. 5 
into consideration, the total LNA noise is primarily established by the noise figure of its first amplifying stage. 
The total noise figure is provided by Eq. (7).

Power consumption analysis. The consumed power is one of the LNA important characteristics. It 
should be taken into account especially for transistor sizing. The total power consumption of the cascaded LNA 
is equal to:

where I, N × I and  Vdd are respectively the stage one current, the total current budget for the LNA and the volt-
age supply.

Cascaded amplifier sizing. The LNA design optimization is a very important step to get a distributed 
amplifier with good performances. The LNA sizing including the four amplification stages is achieved as follows:

 (i) First, we set the circuit specification presented by Table 1.
 (ii) We established the current consumed by one stage (I) according to the above-mentioned specifications 

which allows calculating the PMOS transistor width. Then, we varied the NMOS transistor width for a 
single value of  (Vgs-Vth)n as shown in Fig. 6.

 (iii) In order to satisfy the specification requirements introduced in Table 1 and obtain the optimal sizing, 
we spotted the second step (ii) for several values of  (Vgs-Vth)n.

According to Fig. 6, we observed that the input reflection coefficient (S(1,1)) reaches its minimum value for 
the NMOS transistor width  (Wnmos) equal to 80 µm. Hence, if we further increase the  Wnmos value, the S(1,1) 
becomes greater than -10 dB. Therefore, the  Wnmos optimum value is 80 µm.

Simulation results
The cascaded amplifier was simulated using CMOS 0.18 µm process. In this section, we validated the proposed 
techniques and the LNA specifications through simulation. The Fig. 7 shows the simulated LNA voltage gain 
(S(2,1)), the input reflection coefficient (S(1,1)), the output reflection coefficient (S(2,2)) and the reverse trans-
mission coefficient (S(1,2)). As seen from this Figure, the LNA has a maximum gain of 17.5 dB and an S(1,2) 
parameter inferior to -80 dB which presents a good isolation between the input and the output of the distributed 
amplifier. The S(1,1) parameter is less than -10 dB and the S(2,2) parameter is lower than -8 dB. This confirms a 
good adaptation at the input and output of the proposed amplifier.

The LNA linearity measurement is important because it might be saturated, and this saturation leads to 
output power spectrum harmonics. To measure the proposed LNA linearity, we calculated the third intercept 
point IIP3 presented in Fig. 8 which is equal to + 1dBm. Therefore, the designed LNA provides a good linearity.

The real part of the input impedance matching varies between 30Ω and 70Ω. The best adaptation (50 Ω) is 
performed at 2.4 GHz and 4.4 GHz frequencies as indicated in Fig. 9.

The system stability was checked by testing whether its factor K is greater than 1, and B is greater  than22–24. 
These coefficients are expressed by:

(6)NFtot = NF1 +
NF2 − 1

G1

+
NF3 − 1

G1G2

+
NF4 − 1

G1G2G3

(7)NFtot = NF +
(NF − 1)

G3

(

G3 + G2 + 1
)

(8)Pdc = N × I × Vdd

4 stages

2 stages
3 stages

N
Fm

in

Freq.   GHz

Figure 5.  Noise comparison for different number of stages.
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Table 1.  The proposed LNA Specifications.

Parameters Values

S(2,1) (dB)  > 15

NF(dB)  < 5

S(1,1)/S(2,2) (dB)  < -10

Pdc (mW)  < 15

IIP3 (dBm)  > 0

dB(S(1,1))

dB(S(2,1))

dB(S(1,2))

dB(S(2,2))

Figure 7.  S-parameters of the proposed LNA.
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where Δs is expressed as:

The stability coefficients (K and B) presented in Fig. 10 confirm that K is greater than 1 and B is greater than 
0. Consequently, the LNA is perfectly stable.

To evaluate the performance of the designed LNA, the following Figure of Merit (FOM) (Eq. (12)) has been 
used. It combines gain (G), linearity (IIP3), noise figure (NF) and power consumption (Pdc)29.

The Table 2 lists the characteristics of the proposed LNA which are compared to recently published works. It is 
seen that the cascaded LNA has the highest FOM amongst comparable existing designs. This indicates that this 
circuit topology has compatibility among its features.
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Conclusion
In this paper, an UWB LNA using the cascaded technique was designed. A four-stage optimized LNA was devised 
in the TSMC 0.18 µm CMOS process, while using only two inductances in the input matching impedance circuit. 
In comparison with the current works, this amplifier shows a good performances such as good gain, stability, 
linearity, noise and power consumption. This responds to the The trend towards miniaturization and low power 
consumption in the biomedical field.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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