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ABSTRACT

Differential expression analysis of RNA sequenc-
ing (RNA-seq) data typically relies on reconstruct-
ing transcripts or counting reads that overlap known
gene structures. We previously introduced an inter-
mediate statistical approach called differentially ex-
pressed region (DER) finder that seeks to identify
contiguous regions of the genome showing differen-
tial expression signal at single base resolution with-
out relying on existing annotation or potentially in-
accurate transcript assembly.

We present the derfinder software that improves
our annotation-agnostic approach to RNA-seq anal-
ysis by: (i) implementing a computationally efficient
bump-hunting approach to identify DERs that per-
mits genome-scale analyses in a large number of
samples, (ii) introducing a flexible statistical mod-
eling framework, including multi-group and time-
course analyses and (iii) introducing a new set of
data visualizations for expressed region analysis.
We apply this approach to public RNA-seq data from
the Genotype-Tissue Expression (GTEx) project and
BrainSpan project to show that derfinder permits
the analysis of hundreds of samples at base reso-
lution in R, identifies expression outside of known
gene boundaries and can be used to visualize ex-
pressed regions at base-resolution. In simulations,
our base resolution approaches enable discovery in
the presence of incomplete annotation and is nearly

as powerful as feature-level methods when the anno-
tation is complete.
derfinder analysis using expressed region-level

and single base-level approaches provides a com-
promise between full transcript reconstruction and
feature-level analysis. The package is available from
Bioconductor at www.bioconductor.org/packages/
derfinder.

INTRODUCTION

The increased flexibility of RNA sequencing (RNA-seq) has
made it possible to characterize the transcriptomes of a di-
verse range of experimental systems, including human tis-
sues (1–3), cell lines (4,5) and model organisms (6,7). The
goal of many experiments involves identifying differential
expression with respect to disease, development or treat-
ment. In experiments using RNA-seq, RNA is sequenced
to generate short ‘reads’ (36–200+ base pairs). These reads
are aligned to a reference genome, and this alignment in-
formation is used to quantify the transcriptional activity
of both annotated (present in databases like Ensembl) and
novel transcripts and genes.

The ability to quantitatively measure expression levels in
regions not previously annotated in gene databases, partic-
ularly in tissues or cell types that are difficult to ascertain,
is one key advantage of RNA-seq over hybridization-based
assays like microarray technologies. As complicated tran-
script structures are difficult to completely characterize us-
ing short read sequencing technologies (8), the most mature
statistical methods used for RNA-seq analysis rely on ex-
isting annotation for defining regions of interest––such as
genes or exons––and counting reads that overlap those re-
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gions (9). These counts are then used as measures of gene ex-
pression abundance for downstream differential expression
analysis (10–18). Unfortunately, the gene annotation may
be incorrect or incomplete, which can affect downstream
modeling of the number of reads that cross these defined
features.

We previously proposed an alternative statistical model
for finding differentially expressed regions (DERs) that first
identifies regions that show differential expression signal
and then annotates these regions using previously anno-
tated genomic features (19). This analysis framework first
proposed using coverage tracks (i.e. the number of reads
aligned to each base in the genome) to identify differential
expression signal at each individual base and merges adja-
cent bases with similar signal into candidate regions. How-
ever, the software for our first version was limited to small
sample sizes, the ability to interrogate targeted genomic loci
and comparisons between only two groups.

Here, we expand the DER finder framework to permit the
analysis of larger sample sizes with more flexible statistical
models across the genome. This paper introduces a com-
prehensive software package called derfinder built upon
base-resolution analysis, which performs coverage calcu-
lation, preprocessing, statistical modeling, region annota-
tion and data visualization. This software permits differen-
tial expression analysis at both the single base level, result-
ing in direct calculation of DERs (20), and a feature sum-
marization we introduce here call ‘expressed region’ (ER)-
level analysis. We show that ER analysis allows us to per-
form base resolution analysis on larger scale RNA-seq data
sets using the BrainSpan project (21) and Genotype-Tissue
Expression (GTEx) project data (3) to demonstrate that
derfinder can identify differential expression signal in
regions outside of known annotation without assembly. We
use these DERs to illustrate the post-discovery annotation
capabilities of derfinder and label each DER as exonic,
intronic, intergenic or some combination of those labels. We
show that some of these DERs we identify are outside of
annotated protein coding regions and would not have been
identified using gene or exon counting approaches.

In the GTEx data, we identify DERs that differentiate
heart (left ventricle), testis and liver tissues for eight sub-
jects. There are many potential reasons for this observed
intronic expression including intron retention, background
levels of mis-transcription or incomplete protein-coding an-
notation. A subset of these strictly intronic ERs are associ-
ated with tissue differences, even conditional on the expres-
sion of the nearest annotated protein-coding region. How-
ever, we point out that intronic expression may be artifac-
tual and our package permits visualization and discovery of
potential expression artifacts not possible with other pack-
ages.

Finally, using simulated differentially expressed tran-
scripts, we demonstrate that when transcript annotation
is correct, derfinder is nearly as powerful as exon-
count based approaches with statistical tests performed
by limma (16) (or DESeq2 (14), edgeR-robust (13)) and
ballgown (22) after summarizing the information using
Rsubread (13) and StringTie (23), respectively. Finally,
we also demonstrate that when annotation is incomplete,

Figure 1. An overview of the derfinder suite. The derfinder soft-
ware package includes functions for processing and normalizing coverage
per sample, performing statistical tests to identify differentially expressed
regions (DERs), labeling those regions with known annotation and visu-
alizing the results across groups.

derfinder can be substantially more powerful than meth-
ods that rely on a complete annotation.

MATERIALS AND METHODS

Overview of R implementation

We chose to implement derfinder entirely in the R sta-
tistical environment www.R-project.org/. Our software in-
cludes upstream pre-processing of BAM and/or BigWig
files into base-resolution coverage. At this stage the user
can choose to summarize the base resolution coverage into
feature-level counts and apply popular feature-level RNA-
seq differential expression analysis tools like DESeq2 (14),
edgeR-robust (13), limma (15,16) and voom (17).
derfinder can be used to identify regions of differen-

tial expression agnostic to existing annotation (Figure 1).
This can be done with either the expressed regions (ER)-
level or single base-level approaches, described in detail in
the following subsection and Supplementary Section 2.1.

http://www.R-project.org/
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The resulting regions can then be visualized to identify
novel regions and filter out potential artifacts.

After differential expression analysis, derfinder can
plot DERs using base-resolution coverage data by access-
ing the raw reads within DERs for posthoc analysis like
clustering and sensitivity analyses. We have also created
a lightweight annotation function for quickly annotating
DERs based on existing transcriptome annotation, includ-
ing the UCSC knownGene hg19, Ensembl p12 and Gen-
code v19 databases as well as newer versions.

Vignettes with detailed instructions and examples are
available through the Bioconductor pages for derfinder
and derfinderPlot. The main functions for the ex-
pressed region and single base-level approaches are further
described in Supplementary Section 1.1.

Expressed region level analysis

In the expressed region approach, we compute the mean
coverage for all base pairs from all the samples and filter
out those below a user specified cutoff. Contiguous bases
passing this filtering step are then considered a candidate
region (Figure 2A). Then for each sample, we sum the base-
level coverage for each such region in order to create an ex-
pression matrix with one row per region and one column
per sample. This matrix can then be used with feature-level
RNA-seq differential expression analysis tools. The statis-
tical model used for the differential expression is a general
F-statistic model as shown in Figure 1, Step 4 and Equa-
tion (1). In Equation (1), yij is the scaled log2 mean base-
level coverage for the expressed region i and sample j. The
model is completed by an intercept term �i, n group effects
�i, m adjustment variable effects � i and measurement error
ε. The F-statistic is derived from comparing this alternative
model against a null model without the �i terms as in Sup-
plementary Methods 2.1. The model can allow time-course
analyses, two group comparisons or multi-group compar-
isons, thus making derfinder flexible. Examples of the
latter case are shown in Methods Sections 2.4.1 and 2.4.2.

yij = αi +
n∑

p=1

βip Xjp +
m∑

q=1

γiq Zjq + εij (1)

Annotation and ‘genomic state’ objects

We have implemented a ‘genomic state’ framework to effi-
ciently annotate and summarize resulting regions, which as-
signs each base in the genome to exactly one state: exonic,
intronic or intergenic, based on any existing or user-defined
annotation (e.g. UCSC, Ensembl, Gencode). At each base,
we prioritize exon > intron > unannotated across all anno-
tated transcripts.

Overlapping exons of different lengths belonging to dif-
ferent transcripts are reduced into a single ‘exonic’ region,
while retaining merged transcript annotations. We have a
second implementation that further defines promoters and
divides exonic regions into coding and untranslated regions
(UTRs) that may be useful for the user to more specifically
annotate regions – this implementation prioritizes coding
exon > UTR > promoter > intron > unannotated.

Data processing for results in main manuscript

BrainSpan data. BigWig files for all 487 samples across 16
brain regions were downloaded from the BrainSpan web-
site (21). The samples for HSB169.A1C, HSB168.V1C and
HSB168.DFC were dropped due to quality issues. Based on
exploratory analyses the coverage was assumed to be reads-
per-million mapped reads in this data set. We set the cov-
erage filter to 0.25 for both the single base-level and ER-
level derfinder approaches. Since the coverage is already
adjusted to reads per million mapped reads, we did not in-
clude a library size adjustment term in the single base-level
derfinder analysis (see Supplementary Section 2.1 for
details on this adjustment term). The details for the sin-
gle base-level derfinder analysis are described further in
Supplementary Section 2.2. For the ER-level approach we
only considered regions longer than 5 base-pairs.

We sought to identify differences in expression across
brain region (neocortical regions: DFC, VFC, MFC, OFC,
M1C, S1C, IPC, A1C, STC, ITC, V1C and non-neocortical
regions: HIP, AMY, STR, MD and CBC) and developmen-
tal stage (fetal versus postnatal). We therefore fit the follow-
ing region-by-stage interaction alternative model, which in-
cluded main effects for fetal versus postnatal (binary) and
categorical brain region variable (15 region indicators, rel-
ative to A1C), and interaction terms for each brain re-
gion and developmental stage. This resulted in a total of 32
terms in the model (intercept; 16 main effects, 15 interaction
terms). In Equation (2), yij is the scaled log2 mean base-level
coverage for the expressed region i and sample j as in Equa-
tion (1); that is yij = log2(meancoverageij + 1). The model is
completed by an intercept term �i, a indicator variable for
fetal status �i, m indicators variables � for the brain region
and m interaction variables � between fetal status and brain
region. The term εij represents residual error.

yij = αi + βi Fetalj +
m∑

q=1

γiq Regionjq +

m∑

q=1

ζiq Fetalj ∗ Regionjq + εij (2)

We compared the above model to an intercept-only model
where using the lmFit function from limma (15,16). The
P-values for the ER-level DERs were adjusted via the Bon-
ferroni method and those with adjusted P-values less than
0.05 were determined to be significant. We then calculated
the mean coverage for each significant expressed region
DERs in each sample, resulting in a mean coverage ma-
trix (DERs by samples) and we performed principal compo-
nent analysis (PCA) on this log2-transformed matrix (after
adding an offset of 1).

Once the DERs were identified, we identified which
of them overlap ENCODE blacklisted regions of the
genome (4) using the file at http://hgdownload.cse.ucsc.
edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
wgEncodeDacMapabilityConsensusExcludable.bed.gz.
For identifying which DERs overlap lincRNAs, we used
EnsDb.Hsapiens.v75 (24), which can also be used for
a variety of transcript types. We then performed the gene
ontology (GO) analysis for the DERs using GOstats (25)

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz
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Figure 2. Finding regions via expressed region-level approach on chromosome 5 with BrainSpan data set. (A) Mean coverage with segments passing the
mean cutoff (0.25) marked as regions. (B) Raw coverage curves superimposed with the candidate regions. Coverage curves are colored by brain region and
developmental stage (NCX: Neocortex: Non-NCX: Non-neocortex, CBC: cerebellum, F: fetal, P: postnatal). (C) Known exons (dark blue) and introns
(light blue) by strand for genes and subsequent transcripts in the locus. The DERs best support the GABRA6 transcript with a red star, indicating the
presence of a differentially expressed transcript.

using as background all genes that are within 5 kb of an
ER.

GTEx data. We selected samples from individuals that
had data from heart (left ventricle), liver and testis tissues
with RNA Integrity Number (RIN) values greater than 7.
Eight subjects matched this criteria and we selected only 1
sample if their tissue was analyzed more than once, leaving
us with 24 samples. The data were aligned using Rail-RNA
(26) version 0.2.1 with the code as described at www.github.
com/nellore/runs. We created a normalized mean BigWig
file for these 4 samples adjusted for library sizes of 40 mil-
lion reads. We then identified the ERs using a cutoff of 5
using the function railMatrix from derfinder version
1.5.19.

For each expressed region greater than 9 bp, we assigned
its annotation status by using a genomic state object created
with the Ensembl GRCh38.p5 database. We then performed
PCA on the log2-transformed matrix (after adding an offset
of 1) separately for strictly exonic and strictly intronic ERs.
Using limma (15,16) functions lmFit, ebayes we fit an
intercept-only null model and an alternative model with co-
efficients for tissue differences. For each ER we calculated a
F-statistic and determined whether it was differentially ex-
pressed by tissue using a Bonferroni adjusted P-value cutoff
of 0.05.

For the conditional expression analysis, we found the
nearest exonic ER for each intronic ER using the dis-
tanceToNearest function from GenomicRanges (27).
For each intronic ER we fitted two linear regression models
for the log2-transformed coverage matrix (after adding an
offset of 1). For the alternative model we used as covariates
two tissue indicator variables (Heart as the reference) and
the coverage from the nearest strictly exonic ER as shown
in Equation (3) for ER i and sample j. For the null model
we only used the coverage from the nearest exonic ER. We
calculated an F-statistic using the anova function that tests
whether �1i or �2i are equal to 0 and used a Bonferroni ad-
justed P-value cutoff of 0.05 to identify which intronic ERs
had differential expression adjusting for the coverage at the
nearest exonic ER.

yij = αi + β1iTestisj + β2i Liverj +
γi ExonicCoveragej + εij (3)

Simulated data. We simulated 100 bp paired-end reads
(250 bp fragments, sd = 25) with polyester (28) for two
groups with five samples per group from human chromo-
some 17 with uniform error rate of 0.005 and replicated this
process three times. One-sixth of the transcripts were set to
have higher expression (2x) in group 2, a sixth to have lower
expression in group 2 (1/2x) and the remaining two-thirds

http://www.github.com/nellore/runs
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to be equally expressed in both groups. Given a RNA-seq
experiment with 40 million paired-end reads, assuming that
all transcripts are equally expressed we would expect 1 989
247 of them to be from chromosome 17 based on the length
of all exons using the known transcripts UCSC knownGene
hg19 annotation. We used this information and the tran-
script length to assign the number of reads per transcript in
chromosome 17 and generated the number of reads with the
NB function from polyester with mean � and size (see
the rnbinom function from the stats package) equal to 1

3μ.
This resulted in an average of 2 073 682 paired-end reads
per sample. For each simulation replicate, paired-end reads
were aligned to the hg19 reference genome using HISAT
version 0.1.6-beta (29) and Rail-RNA version 0.2.2b (26).
We created a GTF file using all known transcripts from
chromosome 17 as well as one with 20% of the transcripts
missing (8.28% of exons missing). Using these two GTF files
we performed transcript quantification with StringTie
version 1.2.1 (23) as well as exon counting allowing mul-
tiple overlaps with the featureCounts function from
Rsubread version 1.21.4 (13). ERs were determined with
derfinder version 1.5.19 functions regionMatrix and
railMatrix, respectively, from the HISAT BAM and
Rail-RNA BigWig output using a mean cutoff of 5 for li-
braries adjusted to 80 million single-end reads. Count matri-
ces resulting fromfeatureCounts andderfinderwere
analyzed with limma (16), DESeq2 (14) and edgeR-robust
(18) controlling the false discovery rate (FDR) at 5% and
testing for differences between the two groups of samples.
We used ballgown version 2.2.0 (22) to perform differ-
ential expression tests using coverage at the transcript and
exon levels, controlling the FDR at 5%.

The 3 900 transcripts from chromosome 17 are composed
in total by 39 338 exons (15 033 unique). To avoid ambigu-
ous truth assignments, we used only the 3 868 that over-
lap only 1 transcript and assigned the truth status based
on whether that transcript was set to have a high or low
expression on group 2 for the replication replicate under
evaluation. We assessed the different pipelines by checking
if these 3 868 exons overlapped at least one differentially
expressed unit: exons (featureCounts and ballgown),
transcripts (ballgown) and ERs (derfinder), respec-
tively. We then calculated the empirical power, false discov-
ery rate and false positive rate.

RESULTS

Overview of the derfinder package

The derfinder package includes functions for several
stages in the analysis of data from an RNA-sequencing ex-
periment (Figure 1).

First, derfinder includes functions for pre-processing
coverage data from BAM files or bigWig coverage files. The
base-level coverage data for multiple samples can be loaded
and filtered since most bases will show zero or very low cov-
erage across most samples. Then, the software allows for
definition of contiguous regions that show average cover-
age levels above a certain threshold. These ERs are non-
overlapping subsets of the genome that can then be counted
to arrive at a matrix with an expression value for each region

in each sample. Alternatively, the software provides options
for counting exons or genes for use in more standard anal-
ysis pipelines.

Next,derfinder can be used to perform statistical tests
on the region level expression matrix. These tests can be
carried out using any standard package for differential ex-
pression of RNA-seq data including edgeR (10,12), DESeq
(11), DESeq2 (14) or limma-voom (17).
derfinder can then be used to annotate the DERs. We

have developed functions that label each region according
to whether it falls entirely in a previously annotated protein
coding exon (exonic), entirely inside a previously annotated
intronic region (intronic) or outside of any previously an-
notated gene (intragenic). The software also will report any
region that overlaps any combination of those types of re-
gions.

Finally, data from an expressed region analysis can be
visualized using different visualization approaches. While
region-level summaries can be plotted versus known pheno-
types, derfinder also provides functions to plot base res-
olution coverage tracks for multiple samples, labeled with
color according to phenotype.

We now provide more detail on each of these steps.

Finding ERs

The first step in a derfinder analysis is to identify ERs.
Reads should be aligned using any splicing aware alignment
tool such as TopHat2 (30), HISAT (29) or Rail-RNA (26).

Base resolution coverage information can be read directly
from the BAM files that are produced by most alignment
software (26,29,30). This process can be parallelized across
multiple cores to reduce computational time. An alterna-
tive is to read bigWig (31) coverage files. Recent alignment
software such as Rail-RNA (26) produces these files di-
rectly, or they can be created using samtools (32) or pro-
duced using thederfinder package. Reading BigWig files
can produce significant computational and memory advan-
tages over reading from BAM files.

The coverage information represents the number of reads
that covers each genomic base in each sample. derfinder
first filters out bases that show low levels of expression
across all samples. Since most genomic bases are not ex-
pressed, this filtering step can reduce the number of bases
that must be analyzed by up to 90%, reducing both CPU
and memory usage. We originally proposed performing a
statistical test for every base in the genome (19) and this ap-
proach is still supported by the derfinder package for
backwards compatibility (Supplementary Section 1.3).

Here, we focus on a new approach based on the bump-
hunting methodology for region level genomic analysis (33)
(Figure 2). This approach first calculates ERs across the
set of observed samples. For each base, the average, poten-
tially library size-adjusted, coverage is calculated across all
samples in the data set. This generates a vector of (nor-
malized) mean level expression measurements across the
genome. Then an average-coverage cutoff is applied to this
mean coverage vector to identify bases that show minimum
levels of expression. An expressed region is any contiguous
set of bases that has expression above the mean expression
cutoff.
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The next step is to count the number of reads (including
fractions of reads) that overlap each expressed region. As we
have pointed out previously (19) that counting expression in
genes and exons is complicated by overlapping annotation.
ERs are non-overlapping, so this means that each read can
be unambiguously assigned to the appropriate region.

ER level statistical tests

The result of the ER step is a coverage matrix with each
row corresponding to one ER and each column correspond-
ing to one sample. This count matrix can then be analyzed
using statistical models that have been developed for gene
or exon counts such as limma (15,16), voom (17), edgeR-
robust (18) and DESeq2 (14). We emphasize that unlike
other feature-level counting approaches, our approach is
annotation-agnostic: ERs are defined empirically using the
observed sample data and coverage threshold. So if there
is sufficient expression in a region outside of previously an-
notated genes, it will be quantified and analyzed with our
approach.

Visualizing DERs

After statistical modeling, derfinder produces a set of
DERs with summary statistics per region. They are stored
as a GRanges object (27) and can be visualized with a
range of packages from the Bioconductor suite. We have
also developed several visualization tools specific to the
derfinder approach.

These plots can be made at different levels of summariza-
tion. First, the derfinder and derfinderPlot pack-
ages provide a range of visualizations of coverage tracks at
single base resolution. These plots can be used to identify
coverage patterns that may diverge from annotated protein-
coding regions. For example, using the GTEx example we
can visualize genes that have consistently high intronic ex-
pression as shown in Figure 3. We show several examples of
genes known to be functionally important in heart––LBD3
and MYOZ2 (Figure 3A and B) (34,35) and liver––HGD
and UPB1 (Figure 3C and D) (36,37). The coverage pro-
files can provide additional insight into transcription, and
well as potential technical artifacts, beyond the level of an-
notated genes, exons and transcripts, which we include in
our base-resolution plots.

DERs can be grouped into larger regions by distance,
which can be useful to identify potentially systematic arti-
facts such as coverage dips (Figure 4), perhaps due to se-
quence composition. Visualizing the base-level coverage for
a set of nearby candidate DERs can reveal patterns that ex-
plain why one DER is sometimes fragmented into two or
more shorter DERs. Coverage dips (Figure 4), spikes and
data quality in general can affect the borders of the can-
didate DERs. Some artifacts can be discarded, like candi-
date DERs inside repetitive regions. Base-pairs inside repet-
itive regions available in repeat masker tracks can be flagged
and filtered out from the analysis. Other known potentially
problematic regions of the genome, like those with extreme
GC content or mappability issues can also be filtered out,
either before identifying candidate DERs or post-hoc.

Annotating DERs

The DERs can be annotated to their nearest gene or
known feature using bumphunter (33). The basic ap-
proach is to overlap DERs genomic coordinates with the
genomic coordinates of known genomic features. By de-
fault, derfinder labels each identified region as exonic,
intronic, intragenic or some combination of those three la-
bels.

A region may overlap multiple genomic features (say an
exon and the adjacent intron). Using this information, can-
didate DERs can further be compared to known gene anno-
tation tables (Methods Section 2.3) to identify potentially
novel transcription events. Using this information, visual-
izations of specific loci for overlap with annotation can be
made with derfinderPlot. The regions can be exported
to CSV files or other file formats for follow-up and down-
stream analyses. We have also developed a complementary
R package for creating reproducible reports incorporating
the annotation and visualization steps of the derfinder
pipeline called regionReport (38).

Application: large-scale expression analysis at base resolu-
tion

We used derfinder to detect regions that were differen-
tially expressed across the lifespan in the human brain. We
applied derfinder to the BrainSpan RNA-seq coverage
data (Methods Section 2.4.1), a publicly available data set
consisting of 484 postmortem samples across 16 brain re-
gions from 40 unique individuals that collectively span the
full course of human brain development (21). We used the
expressed region approach described above for this analysis.
For comparison we applied the single-based resolution ap-
proach previously utilized on independent dorsolateral pre-
frontal cortex RNA-seq data (20) (Supplementary Section
1.4).

We identified 174 610 ERs across the 484 samples with
mean across-sample normalized coverage > 0.25, which
constituted 34.57 megabases of expressed sequence. The
majority (81.7%) of these ERs were labeled as strictly exonic
while only a small subset (5.4%) were strictly non-exonic by
Ensembl annotation. These ERs largely distinguished the
fetal and postnatal samples using PCA – the first principal
component explained 40.6% of the variance of the mean
coverage levels and separated these developmental stages
across all brain regions. This separation was consistent re-
gardless of the annotation status of the DERs including in
the strictly intronic regions (Figure 5 and Supplementary
Figure S1). The separation between brain regions in intronic
regions may be due to noisy or incorrect splicing (39) or may
be due to missing annotation (19) or mistaken sequencing of
pre-mRNA. The base resolution visualizations available as
part of derfinder and derfinderPlot make it possi-
ble to explore to determine if it is biology or artifacts driving
these expression differences.

The PCA plots also appear to show patterns consistent
with potential artifacts such as batch effects (40) (Figure 5).
Regardless, the new ER approach we present here provides
options for analysts who wish to discover patterns of expres-
sion outside of known annotation on hundreds of samples
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Figure 3. Coverage plots for the average coverage levels for the GTEx example. Average coverage profile for heart (blue), liver (red) and testis (green) from
the GTEx example near genes: (A) LDB3, (B) MYOZ2, (C) HGD and (D) UPB1.

Figure 4. Example of a coverage dip. Mean coverage per group for the
BrainSpan data set for a region that results in two DERs for a single exon
due to a coverage dip. The genome segment shown corresponds to the
DERs cluster ranked 15th in terms of overall signal by the single base-level
approach applied to the BrainSpan data set.

– an analysis of this scope and scale was unfeasible with ear-
lier versions of our single base resolution software (19).

Using statistical models where expression levels were as-
sociated with developmental stage (fetal versus postnatal)
and/or brain region (Methods Section 2.4.1), we found that

129 278 ERs (74%) were differentially expressed by brain
region and/or developmental stage at the ER-level control-
ling the family-wise error rate (FWER) at < 5% via Bon-
ferroni correction. We controlled the FWER instead of the
FDR due to the expected large effects between the devel-
opmental stages and/or brain regions. The 129 278 ER-
level DERs overlapped a total of 17 525 Ensembl genes (13
016 with gene symbols), representing a large portion of the
known transcriptome. Of the significant ER-level DERs, 93
355 (72.2%) overlapped at least 1 significant single base-
level DER (Supplementary Section 1.4). Lack of overlap
results from almost half (45.2%) of single base-level DERs
having an average coverage lower than the expression cut-
off determining ERs (0.25). For example, there was high ex-
pression only in the samples from a few brain regions, or
only one development period.

Decreasing the cutoff that defines the ERs from 0.25 to
0.1 results in a larger number of regions (217 085) that have a
higher proportion of non-exonic sequence (12.1%), suggest-
ing that the choice of this expression cutoff requires some
initial exploratory data analysis as shown in Supplemen-
tary Section 1.5. Increasing the cutoff reduces the number
of ERs (Supplementary Figure S4A) and their lengths (Sup-
plementary Figure S4B). With increasing cutoffs, the frac-
tion of known exons present in the ERs is reduced (Supple-
mentary Figure S4C) while increasing the percent of ERs
that overlap known exons (Supplementary Figure S4D). We
recommend using a cutoff that balances these factors (Sup-
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Figure 5. Principal components analysis reveals clusters of samples in the BrainSpan data set. (Left) First two principal components (PCs) with samples
colored by sample type (F: Fetal or P: Postnatal) and shape given by brain region using only the strictly intronic ERs. Analysis of other subsets of ERs
produce similar results (Supplementary Figure S1). (Right) Boxplots for PCs 1 and 2 by brain region (NCX: neocortex, HIP: hippocampus, AMY: amyg-
dala, STR: striatum, MD: thalamus, CBC: cerebellum) and sample type with non-neocortex brain decomposed into its specific regions. Using the single
base-level approach (Supplementary Figure S2) produces similar results as shown in Supplementary Figure S3.

plementary Figure S4), such as 0.25 in this particular data
set.

We highlight the utility of the ER-level analysis (using
the original 0.25 cutoff) to identify regions differentially
expressed within subsets of the data by analyzing brain
regions within a single developmental period. We identi-
fied 1170 ERs that were differentially expressed comparing
striatum versus hippocampus samples in the fetal develop-
mental stage. These DERs mapped to 293 unique genes.
Genes more highly expressed in the striatum include ARPP-
21, previously shown to localize in the basal ganglia (41),
and dopamine receptor genes DRD1 and DRD2 (42). Genes
more highly expressed in the hippocampus in fetal life were
strongly enriched for neurodevelopmental genes including
FZD7 (43), ZBTB18 (44) and NEUROD1 (45). The ER-
level analysis therefore permits subgroup analysis without
the need to rerun the full derfinder single base-level
pipeline – another improvement over previous versions of
single base resolution analysis software (19).

DERs are non-standard in the sense that they don’t nec-
essarily match with known exons. Depending on the ap-
plication, you might be interested in filtering out DERs
that overlap problematic regions of the genome. This can
be done prior to defining the ERs or once the candidate
DERs have been identified. In the BrainSpan application,
only 0.086% of the 129 278 DERs overlap ENCODE black-
listed regions (4) and 1.58% overlap lincRNAs. Similarly
one can check if the DERs overlap other known features of
interest. The genes overlapped by the DERs are enriched for
GO terms such as neuron differentiation (GO:0030182, P-
value 4.13e-15), neurogenesis (GO:0022008, P-value 4.62e-
14) and neuron projection development (GO:0031175, P-

value 1.4e-12) among other terms associated to neuronal
development.

Identification of ERs that differentiate tissues using a subset
of the GTEx data

We selected a subset of subjects from the GTEx project (3)
that had RNA-seq data from heart (left ventricle), liver and
testis, specifically the eight subjects with samples that had
RINs greater 7, given RIN’s impact on transcript quantifi-
cation (46). Using only one sequencing library from each
subject aligned with Rail-RNA (26), we applied the ER-
level derfinder approach with a cutoff of 5 normalized
reads (after normalizing coverage to libraries of 40 million
reads). We found a total of 163 674 ERs with lengths greater
than 9 base-pairs. Figure 6A shows that 118 795 (72.6%)
of the ERs only overlapped known exonic regions of the
genome using the Ensembl GRCh38.p5 database (47).

We performed PCA on the log2 adjusted coverage matrix
using just the 118 795 strictly exonic ERs (Figure 6B). Here,
the first two PCs explain 56.8% and 21.6% of the variance,
respectively, and show three distinct clusters of samples that
correspond to the tissue of the sample. We found that the 16
985 (10.4%) ERs (Figure 6A) that only overlap annotated
introns can also differentiate tissues using PCA, as shown
in Figure 6C. The total percent of variance explained by
the first two principal components is slightly lower (44.4
+ 26.6% = 71% versus 56.8 + 21.6% = 78.4%) when us-
ing only the strictly intronic ERs versus the strictly exonic
ERs. This may represent a different biological signal and/or
potentially noisy splicing (as in Figure 3B), but we use this
example to illustrate the potential to use derfinder to ex-
plore regions outside of known annotation.
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Figure 6. GTEx ERs analysis using 24 samples from the heart (left ventricle), liver and testis for 8 subjects. (A) ERs (longer than 9 bp) overlapping known
annotation based on GRGh38.p5 (hg38). 72.6% of the ERs only overlap known exons (strictly exonic) while 10.4% only overlap known introns (strictly
intronic). (B) First two PCs with samples colored by sample type (red: liver, blue: heart, green: testis) using only the strictly exonic ERs. (C) First two PCs
with samples colored by sample type using only the strictly intronic ERs. The sign change of the second principal component is simply a rotation and the
results are consistent between the strictly exonic and strictly intronic ERs.

Using limma (15,16) to test for differential expression
between tissues (Supplementary Methods Section 2.4.2) we
found that 42 880 (36.1%) of the strictly exonic ERs and 4
401 (25.9%) of the strictly intronic ERs were differentially
expressed (FWER of 5% via Bonferroni correction). Over-
all 59 776 (36.5%) of the ERs were differentially expressed
between tissues. Given the similar global patterns of expres-
sion between annotated and unannotated ERs, we consid-
ered the scenario that the strictly intronic ERs were differ-
entially expressed between tissues in the same pattern as
the nearest exonic ERs due to possible run-off transcription
events. To assess this scenario we fitted a conditional regres-
sion for each strictly intronic ER adjusting for the coverage
of the nearest strictly exonic ER. A total of 749 (4.4%) of the
strictly intronic ERs differentiate tissues while adjusting for
the coverage at the nearest exonic ER at a FWER of 5%.
Figure 7A and B shows an example where the expression is
similar between tissues in the nearest exonic ER but there is
a clear tissue difference in the intronic ER with testis having
higher expression than the other two tissues. Figure 7C and
D shows different patterns between the intronic and exonic
ERs where in the exonic ER the expression is lowest in the
heart, higher in liver and slightly higher at the testis. How-
ever, in the intronic ER, liver is the tissue that has the lowest
expression. These results suggest that expression at unanno-
tated sequence could have biological relevance beyond local
annotated exonic sequence.

Simulation results

We lastly performed a simulation study to evaluate the sta-
tistical properties of derfinder with and without com-
plete annotation. To compare derfinder against feature-
level alternatives, we simulated reads for 2 groups, 10 sam-
ples in total (5 per group) with 1

6 of the transcripts hav-
ing higher and 1

6 lower expression in group 2 versus group

1 at fold changes of 2x and 1
2 x, respectively. Reads were

simulated from chromosome 17 using polyester (28)
with the total number of reads matching the expected num-
ber given paired-end library with 40 million reads (Supple-
mentary Methods Section 2.4.3). We used HISAT (29) to
align the simulated reads and summarized them using ei-
ther featureCounts from the Rsubread package (13)
or StringTie (23) and performed the statistical tests on
the resulting coverage matrices using limma and ball-
gown, (22) respectively. We performed the ballgown sta-
tistical test at the exon-level as well as the transcript-level.
We performed the feature-level analyses using the complete
annotation and with an annotation set missing 20% ran-
domly selected transcripts (8.28% unique exons missing).
We then used derfinder to find the ERs from the same
HISAT alignments as well as from Rail-RNA (26) output
and performed the statistical test with limma. For all sta-
tistical tests, we controlled the FDR at 5% and repeated the
simulation three times.

Table 1 shows the range of the empirical power, false posi-
tive rate (FPR) and FDR for all these methods based on the
three simulation replicates. derfinder’s expressed region
approach resulted in overlapping empirical power ranges
to the exon-level methods that are supplied the complete
annotation. The exon-level methods had a 18 to 27% loss
in power when using the incomplete annotation set com-
pared to the complete set even though only 8.28% of the
unique exons were missing. derfinder, being annotation-
agnostic, does not rely on having the complete annotation
but did show increased FPR and FDR compared to the
exon-level methods. We recommend performing sensitivity
analyses of the cutoff parameter used for defining ERs or
the FDR control in the statistical method used to deter-
mine which ERs are differentially expressed (i.e. DERs).
Transcript-level analyses had the lowest FPR and FDR but
also the lowest power. Note that we only performed tran-
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Figure 7. Differential expression on strictly intronic ERs adjusting for expression on the nearest strictly exonic ER. Boxplots (A and C) and region coverage
plots (B and D) for two strictly intronic ERs showing differential expression signal adjusting for the nearest exonic ER. Boxplots show the log2 adjusted
coverage for the strictly intronic ERs by tissue with the corresponding boxplot for the nearest strictly exonic ERs. The P-value shown is for the differential
expression between tissues on the intronic ERs conditional on the expression values for the nearest exonic ERs. The distance to the nearest strictly exonic
ER and the gene symbol are shown below. The region coverage plots are centered at the strictly intronic ER with the neighboring 2 kb and 5 kb for (C)
and (D), respectively. (A and B) Expression on the exonic ER is fairly similar between the groups but different on the intronic ER. (C and D) Expression
on the exonic ER has an increasing pattern from heart to liver to testis but has a different pattern on the intronic ER.

script expression quantification with StringTie and did
not use the data to determine new transcripts. Doing so re-
sulted in a much larger transcript set than originally present
in the data: 3 900 in the original set versus 15 920 (average
for the three replicates using the complete annotation).

Supplementary Section 1.6.1 shows the results when us-
ing DEseq2 or edgeR-robust for performing the statistical
tests. Figure 8 shows the mean empirical power against the
observed FDR for the different combinations of methods
when controlling the FDR at 1%, 5%, 10%, 15% and 20%.
Results with derfinder are among the set with the high-
est empirical power, at the cost of a higher observed FDR
than what was controlled for.

Identifying ERs uses computational resources and runs
in similar time to summarization steps required for the
exon-level pipelines used in this simulation (Supplementary
Section 1.6.2) and is the fastest when using BigWig files
such as those produced by Rail-RNA. These results sug-
gest that the derfinder approach performs well when
differentially expressed features overlap known annotation
and appear in unannotated regions of the genome. If you
are only interested in studying known regions, other meth-

ods have better FDR control than derfinder as shown in
Figure 8.

DISCUSSION

Here, we introduced the derfinder statistical software
for performing genome-scale annotation-agnostic RNA-
seq differential expression analysis. This approach utilizes
coverage-level information to identify DERs at the ex-
pressed region or single base-levels, and then generates use-
ful summary statistics, visualizations and reports to further
inspect and validate candidate regions. derfinder’s sta-
tistical model is flexible to allow answering any biological
question related to differential expression analysis, such as
multi-group comparisons and time-course analyses.

The reduced dependence on the transcriptome annota-
tion permits the discovery of novel regulated transcriptional
activity, such as the expression of intronic or intergenic se-
quences, which we highlight in publicly available RNA-seq
data and our previous derfinder application (20). As
shown with a subset of GTEx, strictly intronic ERs can dif-
ferentiate tissues when adjusting for the expression from the
nearest exonic expressed region, suggesting that some in-
tronic DERs may represent signal beyond run-off transcrip-
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Table 1. Minimum and maximum empirical power, FPR and FDR observed from the three simulation replicates for each analysis pipeline. Ballgown
analyses were done at either the exon or transcript levels. Pipelines that rely on annotation were run with the full annotation or with 20% of the transcripts
missing (8.28% exons missing). Count matrices were analyzed withlimma,DESeq2 andedgeR-robust (Supplementary Table S2). FDR of 5% was targeted.

Power FPR FDR
Annotation
complete Aligner Summary method Statistical method

(93.6–94.2) (6.4–9.3) (12.8–16.5) HISAT derfinder limma
(93.7–94.2) (6.5–9.1) (12.5–16.1) Rail-RNA derfinder limma
(69–77.6) (2.5–3.3) (6–7.7) No HISAT featureCounts limma
(94.4–95.1) (3.1–4.5) (6.5–7.5) Yes HISAT featureCounts limma
(68.4–77) (2.8–3) (5.5–8.3) No HISAT StringTie ballgown-exon
(93.7–94.6) (3.6–4) (5.9–7.8) Yes HISAT StringTie ballgown-exon
(53.2–60) (0.6–2.2) (1.4–8.1) No HISAT StringTie ballgown-trans
(67.2–71.9) (0.6–1.1) (1.4–3.2) Yes HISAT StringTie ballgown-trans

Figure 8. Mean empirical power versus observed FDR across the three
simulation replicates for a combination of statistical and summary meth-
ods. For FDR cutoffs of 1, 5, 10, 15 and 20% the mean empirical power
and FDR across the 3 simulation replicates is displayed for the combina-
tion of statistical method (ballgown at exon or transcript level, limma,
DESeq2, edgeR-robust) the summary method (derfinder, feature-
Counts (fC), StringTie (sT)) and whether the annotation used was
complete or not (complete, incomplete).

tion. Furthermore, the structure of DERs across a given
gene can permit the direct identification of differentially
expressed transcripts (e.g. Figure 2C), providing useful in-
formation for biologists running validation experiments.
Lastly, this software and statistical approach may be use-
ful for RNA-seq studies on less well-studies species, where
transcript annotation is especially likely to be incomplete.

We hypothesize that many ERs, particularly in polyA+
data sets, likely belong to novel transcript isoforms, anti-
sense expression, retained introns or extended UTRs that
can relate to novel insights into particular biological ques-
tions. For example, identifying extensive differentially ex-
pressed intronic ERs might point to deficits in splicing or
a potential novel transcript isoform with extended exonic
boundaries related to the outcome of interest. Or, differen-
tially expressed intergenic ERs might point to previously
uncharacterized regulatory RNAs like polyadenylated lin-
cRNAs that might be related to the outcome of interest. As
described in the introduction, we have previously demon-
strated the utility of the DER finder approach in the human

brain, which suggested that previously unannotated ex-
pressed sequence was developmentally regulated, expressed
in other brain regions and cell types and associated with
clinical risk for schizophrenia (20).

The software pipeline, starting with BAM or BigWig
files, and ending with lists of DERs, reports and visual-
izations, runs at comparable speeds to existing RNA-seq
analysis software. Given the appropriate computing re-
sources, derfinder can scale to analyze studies with sev-
eral hundred samples. For such large studies, it will be
important to correct for batch effects and potentially ex-
pand derfinder’s statistical model for base-level covari-
ates. This approach provides a powerful intermediate analy-
sis approach that combines the benefits of feature counting
and transcript assembly to identify differential expression
without relying on existing gene annotation.

AVAILABILITY

The derfinder vignettes detail how to use the software
and its infrastructure. The latest versions are available at
www.bioconductor.org/packages/derfinder. The code and
log files detailing the versions of the software used for all
the analyses described in this paper is available at the Sup-
plementary Website: leekgroup.github.io/derSupplement.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The Genotype-Tissue Expression (GTEx) Project was sup-
ported by the Common Fund of the Office of the Director
of the National Institutes of Health. Additional funds were
provided by the NCI, NHGRI, NHLBI, NIDA, NIMH
and NINDS. Donors were enrolled at Biospecimen Source
Sites funded by NCI/SAIC-Frederick, Inc. (SAIC-F) sub-
contracts to the National Disease Research Interchange
(10XS170), Roswell Park Cancer Institute (10XS171) and
Science Care, Inc. (X10S172). The Laboratory, Data Analy-
sis and Coordinating Center (LDACC) was funded through
a contract (HHSN268201000029C) to The Broad Insti-
tute, Inc. Biorepository operations were funded through an
SAIC-F subcontract to Van Andel Institute (10ST1035).
Additional data repository and project management were
provided by SAIC-F (HHSN261200800001E). The raw

http://www.bioconductor.org/packages/derfinder
http://leekgroup.github.io/derSupplement
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkw852/-/DC1


e9 Nucleic Acids Research, 2017, Vol. 45, No. 2 PAGE 12 OF 13

data (sequencing reads and phenotype data) used for the
analyses described in this manuscript were obtained from
SRA accession number phs000424.v6.p1 on 10/07/2015.
Author’s contributions: A.E.J., J.T.L., R.A.I. conceived the
software. L.C.T. wrote the software under the supervision of
J.T.L. and A.E.J. L.C.T analyzed the data with the supervi-
sion of J.T.L. and A.E.J. A.N., C.W. and B.L. helped with
the GTEx data analysis. All authors contributed to writing
the paper.

FUNDING

NIH [1R01GM105705 to J.T.L.]; Consejo Nacional de
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