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Embryo-fetal exposure to maternal disorders during intrauterine life programs long-term

consequences for the health and illness of offspring. In this study, we evaluated

whether mild diabetic rats that were given high-fat/high-sugar (HF/HS) diet presented

maternal and fetal changes at term pregnancy. Female rats received citrate buffer

(non-diabetic-ND) or streptozotocin (diabetic-D) after birth. According to the oral

glucose tolerance test (OGTT), the experimental groups (n = 11 animals/group) were

composed of non-diabetic and diabetic receiving standard diet (S) or HF/HS diet.

High-fat/high-sugar diet (30% kcal of lard) in chow and water containing 5% sucrose and

given 1 month before mating and during pregnancy. During and at the end of pregnancy,

obesity and diabetes features were determined. After laparotomy, blood samples,

periovarian fat, and uterine content were collected. The diabetic rats presented a higher

glycemia and percentage of embryonic losses when compared with the NDS group.

Rats DHF/HS presented increased obesogenic index, caloric intake, and periovarian fat

weight and reduced gravid uterus weight in relation to the other groups. Besides, this

association might lead to the inflammatory process, confirmed by leukocytosis. Obese

rats (NDHF/HS and DHF/HS) showed higher triglyceride levels and their offspring with

lower fetal weight and ossification sites, indicating intrauterine growth restriction. This

finding may contribute to vascular alterations related to long-term hypertensive disorders

in adult offspring. The fetuses from diabetic dams showed higher percentages of skeletal

abnormalities, and DHF/HS dams still had a higher rate of anomalous fetuses. Thus,

maternal diabetes and/or obesity induces maternal metabolic disorders that contribute

to affect fetal development and growth.
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INTRODUCTION

Diabetes mellitus (DM) is a syndrome that is a growing health problem, accounting for 10.4% of
global mortality. In 2015, hyperglycemia during pregnancy was observed in 16.2% of women (Cho
et al., 2018). In the first few weeks of pregnancy, maternal diabetes is intensely linked to higher
number of spontaneous abortions and major congenital malformations (Kitzmiller et al., 1996; Ray
et al., 2001).
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Fetal programming is a theory that suggests that the
environment around the developing fetus plays an important role
in determining the risk of disease in childhood and adulthood
(Entringer et al., 2012). In this sense, factors such as overweight,
obesity, and maternal diabetes during pregnancy are known
to be effective agents leading to chronic-disease development
in offspring (Yessoufou and Moutairou, 2011), showing the
relevance of intrauterine environment for health of descendants
in the future.

To reproduce maternal hyperglycemia found in Type 2 DM in
animal models, streptozotocin (STZ) induction can be performed
in the neonatal period of rats (Tsuji et al., 1988; Jawerbaum
and White, 2010; Santos et al., 2015; Bequer et al., 2018; Bueno
et al., 2020). This type of experimental diabetes is termed as
“mild diabetes” (Hauschildt et al., 2018; Machado et al., 2020).
Besides diabetic status, a change in lifestyle, especially in dietary
patterns related with growing consumption of industrialized
foods (high in calories and fat), affects diabetic progress at
long term (Hu, 2011; Ley et al., 2014; Popkin, 2015; Krishan
et al., 2018). Animals that are fed high-fat (HF) and/or high-
sugar (HS) diets showed metabolic changes, such as increased
concentrations of glucose, triglycerides (TG), total cholesterol
(TC), and obesity (Matias et al., 2018; Zhao et al., 2019). The
offspring of mothers who consumed the HF/HS diet had greater
fat tissue, glycemia, TG, and TC levels (Martins Terra et al., 2020).
Despite the knowledge about the single effect of HF/HS diet and
diabetes on the metabolic response in animals, there are still few
studies exploring the association of these two variables during
pregnancy. Considering that pregnancy is a critical period, where
maternal conditions and habits can lead to persistent changes in
offspring (Fleming et al., 2015), it is important that the studies are
conducted in a manner where new care strategies can be taken.

Thus, the hypothesis of this study is that diabetic rats
submitted to the HF/HS diet before and during pregnancy will
present exacerbated damage on a biochemical profile, leading to
impaired maternal-fetal relationship. Therefore, the aim of this
study was to evaluate maternal and fetal repercussions of the
diabetes associated with an HF/HS diet offered before and during
pregnancy of rats.

MATERIALS AND METHODS

Animals
Female Wistar rats (230 ± 250 g) were obtained from the Center
for Maintenance of Experimental Animals of our Institution,
and were maintained under standard laboratory conditions (22
± 3◦C, 12-h light/dark cycle), with pelleted food (Purina rat
chow, Purina R©, São Paulo State, Brazil) and tap water ad libitum.
The local Ethical Committee for Animal Research authorized
and approved all the procedures and animal handling (Protocol
No. 23108.022251/2019-61).

After 1 week of acclimatization, the females were mated with
the male rats with similar age (ratio 3:1) to obtain offspring
for induction of diabetes. The experimental sequence of the
experiment is summarized in Figure 1.

Induction and Confirmation of Diabetes
For diabetes (D) induction, half of each female litter was injected
with Streptozotocin (100 mg/kg, sc., Sigma–Aldrich, St. Louis,
MO, USA) diluted in citrate buffer (.1 mol/L, pH 4.5) on the first
day of life (24 h after delivery) (Soares et al., 2021) to induce beta
cell necrosis, reproducing glycemic levels similar to Type 2 DM.
Non-diabetic (ND) animals were injected with only citrate buffer
to simulate the conditions of the STZ-induced group. At day 90
of life, oral glucose tolerance test (OGTT) was performed for
inclusion or exclusion of rats to ND and D groups. This test is a
marker routinely used in the clinic for diagnosing diabetic status.
Then, the rats were fasted for 6 h; after which, a drop of blood was
collected from the tail of the rats to determine glycemia (time 0),
using a conventional glucometer. The rats were intragastrically
given glucose solution (.2 g/m) at a dose of 2-g/kg body weight
and after 30, 60, and 120min later, the blood glucose levels were
determined (Neto et al., 2020).

In order to determine the inclusion and exclusion criteria,
the standards established by Gallego et al. (2018) were used,
and modified from diabetes classification parameters suggested
by the American Diabetes Association (2020). For the control
group, only the rats with glycemia < 140 mg/dL in different
time points during OGTT were included. For the diabetic group,
the rats presenting least one-time point with glycemia ≥ 200
mg/dL after overload glucose during OGTT were included in the
group. The female animals that did not present OGTT with these
characteristics for inclusion in the control or diabetic group were
excluded and euthanized.

Experimental Groups
Considering the four experimental groups, and based on
previous experiments conducted in our laboratory in relation to
reproductive parameters, using 90% power and error type I of 5%,
the effect size was determined. Based on the effect size, the sample
size was 11 rats per group.

After inclusion and exclusion criteria, the rats (90 days of
life = adulthood) were randomized in the experimental groups:
non-diabetic rats that received standard diet (NDS); non-diabetic
rats receiving high-fat/high-sugar diet (NDHF/HS); diabetic rats,
given standard diet (DS); and diabetic rats that received high-
fat/high-sugar (HF/HS) diet.

Standard or High-Fat/High-Sugar Diet
Females from non-diabetic and diabetic dams randomly received
standard diet (commercial food: 28.54% Kcal of protein, 62.65%
Kcal of carbohydrate, 8.7% Kcal of fat (Purina rat chow, Purina R©,
Brazil) or high-fat diet (23.43% Kcal of protein, 46.63% Kcal of
carbohydrate, 30% Kcal of fat) according to the experimental
group (Table 1). The main source of fat consisted of lard. After
preparation, the feed was kept refrigerated until the time of
consumption by the animals. In addition, the rats given high-
fat diet groups also received water with 5% sucrose (high sugar)
during the same period from day 90 to 120 of life and during
pregnancy, which corresponds to reproductive age of adult rats.
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FIGURE 1 | Experimental design.

TABLE 1 | Nutritional values of diet offered to non-diabetic and diabetic rats.

Information Food (Kcal/g) Water (Kcal/mL)

Commercial High-fat Standard High-sugar

Gross energy 4.02 4.93 – 0.20

Mixture (%) 7.45 3.65 100 100

Dry matter (%) 92.55 96.35 – –

Mineral matter (%) 6.66 2.84 – –

Crude protein (%) 25.76 26.77 – –

Ether extract (%) 3.49 15.19 – –

Gross fiber (%) 43.63 45.42 – –

Carbohydrates (%) 13.01 6.13 – 5.00

Mating
At 120 days of life, the female rats were similarly mated
as their mothers. After 15 consecutive days, non-mated rats
were considered infertile and excluded from the experiment.

For this, three females were placed in the overnight period
with normoglycemic males presenting similar age, which were
purchased for this purpose. The next morning (7–9 a.m.) the
male arts were removed and vaginal smears were performed in
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female rats. The presence of spermatozoa on the slides confirmed
the diagnosis of pregnancy, which was considered zero pregnancy
day (D0) (Damasceno et al., 2011).

Course of Pregnancy—Diabetes and
Obesity Features
Maternal body weight, food consumption, and water intake
were measured every 7 days up to the end of pregnancy, at
approximately 9 a.m. At days 0 and 17 of pregnancy, OGTT was
again performed to evaluate glycemia. The glycemic values were
used to mathematically estimate the total area under the curve
(AUC) by the trapezoidal method (Tai, 1994; Gallego et al., 2019).
For the obesity parameter, Lee Index was obtained at days 0 and
17 of pregnancy, and defined as the cube root of body weight (g)
10/nasoanal length (cm), for which a value equal to or <0.300
was classified as normal. Rats presenting values higher than 0.300
were classified as obese (Bernardis and Patterson, 1968; Soares
et al., 2017).

At term pregnancy (day 21), the female rats were anesthetized
with sodium thiopental (Thiopentax R©, intraperitoneal route,
120 mg/kg according to protocols of Ethical Committee), and,
after confirming the signs that showed successful anesthetic
procedure, the animals were decapitated to obtain blood samples.
Then, the rats were submitted to laparotomy for exposure of
uterine horns. White adipose depots were collected around
ovaries and then weighed.

Biochemical and Hematological Profile
Analysis
The blood samples were collected in dry tubes and maintained
on ice for 30min and then centrifuged at 1,575 × g for
10min at 4◦C. The serum supernatant was at −80◦C for
determination of triglycerides (TG), total cholesterol (TC), high-
density lipoprotein cholesterol (HDL-c), using commercial kits.

For hematological analysis, blood was collected (500 µL)
and transferred to tubes with anticoagulant (EDTA). The total
leukocyte count was determined on blood samples diluted 1:20
in Turk’s solution, using a Neubauer’s hemocytometer. For
differential white blood cell counting, blood smears were fixed
with methanol and stained with Giemsa’s solution. According to
staining and morphological criteria, differential cell analysis was
performed under the light microscope by counting 100 cells, and
the percentage of each cell type was calculated.

Reproductive Outcomes and Fetal
Development
The gravid uterus was withdrawn and dissected for evaluation
of live and dead fetuses, reabsorption (embryonic death),
implantation, and corpora lutea numbers. The number of
undetectable implantation sites was determined by the Salewski
method (Salewski, 1964). The percentage of preimplantation
loss was calculated by [(number of corpora lutea – number of
implantation)/number of corpora lutea] × 100. The percentage
of postimplantation loss was determined by [(number of
implantation – number of live fetuses)/number of implantation]
× 100 (Afiune et al., 2017). Following the collection of fetuses

from the uterine horns, these were weighed and classified as
small (SGA), adequate (AGA), or large (LGA) for gestational
age (Moraes-Souza et al., 2017). The placentas were weighed to
calculate the placental efficiency (fetal weight/placental weight)
(Volpato et al., 2015).

After weight, each fetus was externally examined for cranial
conformation, implantation of ears, eyes, and mouth (existence
of a cleft lip), anterior and posterior limbs (absence or excess
of fingers, position, and size of limbs), thoracic, abdominal, and
dorsal regions (presence of hemorrhage, hematoma, and neural
tube closure defect), tail (size and shape), and anal perforation.
Half of the number of fetuses of each liter was fixed in Bodian’s
solution, and serial sections were prepared as described by
Wilson (1965) for visceral examination. The other fetuses were
processed for examination of the bones by the staining procedure
of Staples and Schnell (1964). Besides the skeletal analyses, the
counting of the ossification sites was performed according to
methodology proposed by Aliverti et al. (1979), which determines
the degree of fetal development. Fetuses that showed no external,
skeletal, and visceral anomalies were considered normal.

Statistical Analysis
The comparison of the mean values between the experimental
groups was determined by analysis of variance (ANOVA),
followed by Tukey’s multiple comparison test. Student’s t-test was
used to compare difference of time (day 0× day 21 of pregnancy).
Proportions were calculated by the Fisher’s exact test. To verify
the normality of the results, the Shapiro–Wilk Normality test
was used. Differences were considered statistically significant
when p < 0.05.

RESULTS

Obesity Features
Table 2 shows obesity features. The rats NDHF/HS presented
lower feed intake and higher water intake, a positive obesity rate
at day 0 of pregnancy, periovarian, and visceral adipose tissue
weight compared with the NDS group. The DS group showed
decreased gravid uterus weight and higher periovarian/visceral
adipose tissues weight when compared with NDS rats. The
DHF/HS rats presented increase in water and caloric intake,
number of obese rats, periovarian and visceral adipose tissue
weight, decrease in feed intake, maternal weight gain, and gravid
uterus weight compared with the NDS rats. In addition, the feed
intake was increased, and water intake was decreased compared
with NDHF/HS and DS groups; and the DHF/HS group had the
gravid uterus weight decrease compared with the NDHF/HS rats
and a higher positive obesity rate compared with the DS group.

Diabetes Biomarker
The area under the curve (AUC) obtained by oral glucose
tolerance test (OGTT) was increased in both diabetic groups
(DS and DHF/HS) on days 0 and 17 of pregnancy compared
with non-diabetic groups (NDS and NDHF/HS). In addition,
the DHF/HS group showed an increase in AUC on day 17 of
pregnancy compared with the DS group. There was no difference
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TABLE 2 | Obesity features of non-diabetic (ND) and diabetic (D) rats treated or not (S) with high-fat/high-sugar diet (HF/HS) before and during pregnancy.

Groups

NDS (n = 13) NDHF/HS (n = 11) DS (n = 12) DHF/HS (n = 13)

Food intake (g/day)a 19.7 ± 1.6 13.5 ± 1.5* 21.0 ± 2.4 16.4 ± 3.1*#$

Water intake (mL/day)a 44.2 ± 5.1 92.1 ± 23.3* 39.4 ± 13.9 72.0 ±18.8*#$

Caloric intake (Kcal/day)a 79.2 ± 6.4 84.9 ± 7.8 84.4 ± 9.6 95.2 ± 15.8*

Weight gain in pregnancy (g)a 116.7 ± 13.3 110.8 ± 16.6 90.7 ± 42.3 79.8 ± 39.9*

Gravid uterus weight (g)a 82.3 ± 13.2 82.9 ± 13.0 55.4 ± 31.4* 55.8 ± 26.9*#

Positive obesity (%)b

Previous pregnancy 0.0 71.4* 25.0# 77.8*$

Weight of periovarian adipose tissue (g)a 0.4 ± 0.1 0.9± 0.2* 0.8 ± 0.2* 1.1 ± 0.4*

Weight of visceral adipose tissue (g)a 3.1 ± 0.5 4.0 ± 1.5* 3.9 ± 0.9* 5.4 ± 1.8*

Data shown as mean ± standard deviation (SD) and proportions (%). *p < 0.05, compared with the NDS group; #p < 0.05, compared with the NDHF/HS group; $p < 0.05, compared

with the DS group (aANOVA followed Tukey’s multiple comparison test; bFisher’s exact test).

FIGURE 2 | An area under the curve of oral glucose tolerance test (OGTT) on days 0 and 17 of pregnancy of non-diabetic (ND) and diabetic (D) rats treated or not (S),

with high-fat/high-sugar diet (HF/HS) before and during pregnancy. Data shown as mean ± standard deviation (SD). *p < 0.05, compared with the NDS group; #p <

0.05, compared with NDHF/HS group; $p < 0.05, compared with the DS group (ANOVA followed Tukey’s Multiple Comparison test); ap < 0.05, compared with day 0

of pregnancy (Student’s T-test).

in AUC between days 0 and 17 of pregnancy of DHF/HS
rats (Figure 2).

Maternal Biochemical Parameters
There was no difference in TC, ALT, and AST concentrations
among the groups. The DHF/HS group showed an increase in
protein and albumin compared with the non-diabetic groups
(NDS and NDHF/HS). The TG levels groups presented an
increase in the NDHF/HS group compared with standard diet
groups (NDS and DS), and the DHF/HS showed an increase in
relation to other groups (Table 3).

Hematological Profile
The DS group showed decreased number of monocytes
compared with the NDS rats. There was an increase in total
leukocytes, segmented, and eosinophil in the DHF/HS group
compared with the other experimental groups. The DHF/HS
group also had increased number of monocytes in relation to the
NDHF/HS and DS groups (Table 4).

Pre- and Postimplantation Embryonic
Losses
Figure 3 shows the embryonic losses before and after the
implantation process. The diabetic rats of both groups (DS
and DHF/HS) showed an increased percentage of pre- and
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TABLE 3 | Biochemistry parameters at term pregnancy of non-diabetic (ND) and diabetic (D) rats treated or not (S) with high-fat/high-sugar diet (HF/HS) before and

during pregnancy.

Groups

NDS (n = 13) NDHF/HS (n = 11) DS (n = 12) DHF/HS (n = 13)

Total protein (g/dL) 5.5 ± 0.9 5.5 ± 1.5 6.3 ± 1.1 8.1 ± 1.9*#

Albumin (mg dL) 2.8 ± 0.2 2.8 ± 0.4 3.1 ± 0.5 3.3 ± 0.4*#

TC (mg/dL) 61.4 ± 3.2 77.4 ± 12.4 66.0 ± 5.2 82.0 ± 9.8

TG (mg/dL) 97.2 ± 7.1 372.4 ± 119.9* 182.0 ± 34.3# 485.6 ± 138.5*#$

ALT (U/l) 87.2 ± 8.9 90.8 ± 6.3 84.0 ± 7.8 92.6 ± 10.8

AST (U/L) 188.4 ± 8.5 151.8 ± 21.6 181.8 ± 27.6 164.6 ± 30.9

Data shown as mean ± standard deviation (SD). *p < 0.05, compared with the NDS group; #p < 0.05, compared with the NDHF/HS group; $p < 0.05, compared with the DS group

(ANOVA followed Tukey’s multiple comparison test).

TABLE 4 | A hematological profile at term pregnancy of non-diabetic (ND) and diabetic (D) rats treated or not (S) with high-fat/high-sugar diet (HF/HS) before and during

pregnancy.

Groups

NDS (n = 13) NDHF/HS (n = 11) DS (n = 12) DHF/HS (n = 13)

Leukocytes (103/mm3 ) 5.91 ± 0.82 5.47 ± 2.63 6.03 ± 0.82 8.64 ±1.65*#$

Segmented (103/mm3 ) 2.23 ± 0.31 (38–43%) 2.64 ± 1.60 (41–51%) 2.52 ± 0.43 (33–53%) 4.51 ± 1.24*#$ (44–60%)

Lymphocytes (103/mm3 ) 3.41 ± 0.73 (52–62%) 2.73 ± 1.01 (45–55%) 3.34 ± 1.02 (44–64%) 3.81 ± 1.01 (35–53%)

Monocytes (103/mm3 ) 0.20 ± 0.08 (2–4%) 0.12 ± 0.06 (1–3%) 0.09 ± 0.04* (0–2%) 0.25 ± 0.08#$ (2–4%)

Eosinophils (103/mm3 ) 0.01 ± 0.02 (0–1%) 0.01 ± 0.01 (0–1%) 0.02 ± 0.03 (0–1%) 0.09 ± 0.08*#$ (0–2%)

Basophil (103/mm3 ) 0.00 ± 0.00 (0–0%) 0.00 ± 0.00 (0–0%) 0.00 ± 0.00 (0–0%) 0.00 ± 0.00 (0–0%)

Data shown as mean ± standard deviation (SD). *p < 0.05, compared with the ND group; #p < 0.05, compared with the NDHF/HS group; $p < 0.05, compared with the DS group

(ANOVA followed Tukey’s multiple comparison test).

FIGURE 3 | Percentage (%) of pre- and postimplantation losses of non-diabetic (ND) and diabetic (D) rats treated or not (S), with high-fat/high-sugar diet (HF/HS)

before and during pregnancy. *p < 0.05, compared with the NDS group; #p < 0.05, compared with the NDHF/HS group (Fisher’s exact test).
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postimplantation losses compared with those of non-diabetic
animals (NDS and NDHF/HS).

Fetal and Placental Data
The fetal weight and number of fetuses classified as adequate
for gestational age (AGA) were decreased in the NDHF/HS
and DHF/HS groups compared with those of NDS group. The
percentage of fetuses classified as small for gestational age (SGA)
was increased in the NDHF/HS and DHF/HS rats in relation
with those of the NDS group. The NDHF/HS group presented
decrease in placental weight compared with the other groups,
and the DHF/HS rats showed decrease in placental efficiency
compared with the NDS rats. The ossification sites of fetuses from
dams that received HF/HS diet (ND and D) were decreased in
relation to respective control groups (Table 5).

Fetal Anomalies
The percentage of normal fetuses was decreased in three groups
when compared with the ND group. The diabetic groups (DS
and DHF/HS) showed an increased percentage of fetuses with
skeletal anomalies compared with the ND groups. The fetuses of
the DHF/HS rats showed higher incidence of visceral anomalies
compared with those of the ND group, higher percentage
of skeletal anomalies and lower percentage of normal fetuses
compared with those of the NDHF/HS group (Figure 4A).
Representative images of the main anomalies found are shown
in Figures 4B–J.

DISCUSSION

The streptozotocin-induced mild diabetes in rat offspring after
birth caused a diabetic status. This was confirmed by oral glucose
tolerance test (OGTT) and higher area under curve (AUC) data.
Before pregnancy, there was no significant difference in fertility
rates among the groups. In the experimental model of mild
diabetes induction, used in the present study, the fertility rate was
around 90%, corroborating Sinzato et al. (2021). In the groups
that consumed HS/HF diet, the treatment time was not enough
to change the fertility rate. During pregnancy of these rats, the
hyperglycemia led to impairment on embryonic development,
contributing to embryo losses as verified at term pregnancy.
The rats that received high-fat diet and sugar in drinking
water at adulthood presented with greater Lee index values,
confirming obesity. In addition, these female rats showed higher
periovarian and visceral fat weight and hypertriglyceridemia.
In this maternal condition, there was higher incidence of
small fetuses for gestational age, indicating intrauterine growth
restriction (IUGR) associated with obesity. The use of animal
models to study maternal association between diabetes and
obesity helps understand the functional, biochemical, and
morphological changes caused by these connected diseases. Our
findings showed that diabetes and obesity status caused maternal
hyperglycemia and an abnormal leukocyte profile, contributing
to IUGR. In addition, this association led to embryo-fetal losses
and the onset of anomalies in the fetuses at the end of pregnancy,
confirming the maternal, fetal, and perinatal complications
induced by diabetes and obesity during pregnancy.

Metabolic disorders, such as diabetes, may cause hyperphagia
condition, but the mechanisms involved are not fully understood
(Li et al., 2019). The regulator of food intake is influenced by the
balance among appetite, satiety, and energy expenditure, and this
biological process is called “energy homeostasis” (Morton et al.,
2014; Deemer et al., 2019). This balance is regulated by the central
nervous system (Deemer et al., 2019) and multiple metabolic
signals, such as leptin (Zhang and Chua, 2017), insulin (Brüning
et al., 2000), glucagon-like peptide 1 (GLP1) (Ong et al., 2017),
and cholecystokinin (CCK) (Woods et al., 2018). In this study,
diabetes and high-fat/high-sugar diet alone did not interfere with
daily caloric intake. However, the association between diabetes
and abnormal diet might activate neurocircuits, which impaired
the controller system of energy homeostasis, influencing in body
weight (Morton et al., 2014) and the regulation of caloric intake.
Then, even the rats eating less high-fat diet but drinking more
sugar in the water presented obesity status. The deregulation
of energy consumption is one of the major causes of obesity
(Erlanson-Albertsson, 2005), confirmed by body weight (de
Almeida et al., 2016), body composition and fat deposits,
especially visceral fat (Poirier et al., 2006). Our findings showed
that diabetic rats submitted to a high-fat/high-sugar diet showed
a reduction in body weight gain during pregnancy, but, even
so, they developed obesity, as verified by Lee index, which
is a murinometric parameter for obesity classification used in
experimental studies (Bernardis and Patterson, 1968; Fernandes
et al., 2012). Concomitantly, there was an increased weight of
periovarian and visceral fat. In experimental models, the carcass
relative fat is one of the variables to indicate obesity (Nascimento
et al., 2008; Kim et al., 2017).

The oral glucose tolerance test (OGTT) determines degree of
glucose tolerance, expressing the ability of β-pancreatic cells to
secrete insulin and tissue sensitivity to this hormone (American
Diabetes Association, 2020). There were higher blood glucose
values in the OGTT in diabetic groups and consequent increase
in the area under the curve (AUC), leading to glucose intolerance
and, later, diabetes. Then, once diabetes and obesity have been
confirmed, it was demonstrated that diabetic and obese rats
presented higher levels of blood total protein and albumin. These
biochemical parameters are used in animal nutrition research
to evaluate its health (Luca and Reis, 2004). Several processes
regulate plasma albumin concentration, including synthesis,
distribution, and exogenous albumin loss (Dom and Kaysen,
2003). Roche et al. (2008) and Guerin-Dubourg et al. (2012)
described albumin as an antioxidant, and it might be elevated in
our animals to compensate the higher levels of reactive oxygen
species (ROS) induced by diabetes (Raza et al., 2011; Patche et al.,
2017; Sinzato et al., 2019) and obesity (Diniz et al., 2004; Burneiko
et al., 2006; De Sibio et al., 2013). Our results showed that
obesity, alone or associated with diabetes, causes dyslipidemia.
Other authors also verified dyslipidemia in experimental animals
(Panchal et al., 2011; Zhou et al., 2014; Hao et al., 2015; Senaphan
et al., 2015), and different types of diets influence the lipid
profile (Desroches et al., 2006). Lipid metabolism, including lipid
absorption, transport, synthesis, and degradation, is a complex
process, which can lead to other diseases (Huang and Freter,
2015). Among these, diabetes (Dong et al., 2017), inflammation,
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TABLE 5 | Fetal and placental weights, placental efficiency, and ossification sites of fetuses from non-diabetic (ND) and diabetic (D) rats treated or not (S) with

high-fat/high-sugar diet (HF/HS) before and during pregnancy.

Groups

NDS (n = 147 fetuses) NDHF/HS (n = 131 fetuses) DS (n = 95 fetuses) DHF/HS (n = 102 fetuses)

Fetal weight (g)a 5.57 ± 0.46 5.25 ± 0.65* 5.46 ± 0.49 5.35 ± 0.55*

SGA Fetuses (%)b 4.08 19.08* 10.54 16.66*

AGA Fetuses (%)b 90.48 75.58* 84.20 80.40*

LGA Fetuses (%)b 5.44 5.34 3.16 2.94

Placental weight (g)a 0.49 ± 0.06 0.47 ± 0.07* 0.49 ± 0.08# 0.50 ± 0.09#

Placental efficiencya 11.58 ± 1.42 11.45 ± 1.85 11.24 ± 1.68 10.82 ± 1.73*

Ossification sitesa 24.96 ± 1.71 22.80 ± 2.02* 24.42 ± 2.49 21.78 ± 0.93*$

Data shown as mean ± standard deviation (SD) and proportions (%). *p < 0.05, compared with the C Group; #p < 0.05, compared with the NDHF/HS group; $p < 0.05, compared

with the D Group (aANOVA followed Tukey’s multiple comparison test; bFisher’s exact test).

atherosclerosis (Joseph et al., 2003), obesity (Kaess et al., 2014),
and hypertension (Siri-Tarino and Krauss, 2016) are related. The
male rats feeding HFD showed increased blood pressure (Sá
et al., 2019), and Hsu et al. (2019) showed that the consumption
of HFD during pregnancy of rats was responsible for inducing
hypertension in adult offspring.

Considering the hematological profile, the association
between diabetes and obesity increased the number of total
leukocytes, segmented (mature neutrophils), monocytes,
and eosinophil. The total and differential leukocyte count
is an important parameter to evaluate conditions related
with inflammatory processes (George-Gay and Parker, 2003).
Increased leukocyte amount due to deregulation of immune
activity caused by adipose tissue expansion contributes to
obesity-induced inflammation (Trellakis et al., 2012; Poret
et al., 2018). Obesity may cause immunomodulation, inducing a
higher ratio from neutrophils to lymphocytes due to increased
recruitment and activation of peripheral blood neutrophils to
adipose tissue (Elgazar-Carmon et al., 2008; Trellakis et al.,
2012). In addition, it can stimulate mobilization of bone
marrow monocytes so that they fall into the bloodstream
and reach adipose tissue as macrophages (Ghigliotti et al.,
2014). In this study, the diabetic rats presented lower levels of
monocytes. Monocyte is one of the main leukocyte subtypes
and is considered an inflammatory biomarker (Badr et al.,
2019), and its influx in perivascular regions and retinal pigment
epithelium has been verified (Benhar et al., 2016). Decreased
peripheral blood monocyte levels were related to diabetic
retinopathy in diabetic adults without potential confounders
(Wan et al., 2020), suggesting the onset of the diabetes-
induced retinal complication in these dams. Eosinophils are
the main regulators of the physiological processes and immune
function of perivascular adipose tissue (Withers et al., 2017).
According to Maizels and Allen (2011), eosinophils prevent
inflammation caused by obesity because it possibly increases the
numbers of eosinophils or Th2 cells. This might be explained
because the IL-4 and IL-13 secretion signal gamma peroxisome
proliferator activated receptor (PPARγ), which, if activated by
appropriate lipids, inhibits the expression of genes that promote
inflammation (Szanto et al., 2010). Therefore, it is supposed that

eosinophilia present in the diabetic and obese group was due to
the homeostatic mechanism, tending to minimize the possible
inflammation caused by obesity.

The reproductive analysis of the animals in this study showed
embryonic losses before and after implantation, which were
higher in both diabetic groups, demonstrating the influence
of hyperglycemia on the implantation process. Regardless
of the degree of severity, hyperglycemia is related to pre-
and postimplantation losses in the intrauterine environment
(Sinzato et al., 2011; Bequer et al., 2018; Gallego et al.,
2018). Moreover, problems with cytokine regulation, which
occurs in diabetic pregnancy, can lead to damage during early
embryonic development, such as pre-implant failure, leading
to a reduced number of implants and postimplantation losses
indicated by an increased rate of resorption and a reduced
number of live fetuses (Sinzato et al., 2011; Dela Justina
et al., 2017). These findings contributed to a lesser weight
gain during pregnancy and maternal final weight at term
pregnancy. However, obesity did not increase embryo loss rates
in the animals.

For the success of pregnancy, it is essential that, during the
implantation period, the physiological and molecular processes
are coordinated, involving close interactions between the uterus
and the blastocyst (Cha et al., 2012). Then, the dams presenting
biochemical alterations induced by diabetes, obesity, and both
contributed to impaired reproductive outcomes. In relation to
fetal development and growth from diabetic and/or obese dams,
our study demonstrated that only altered diet caused intrauterine
growth restriction, which was confirmed by reduction of the
fetal weight, higher percentage of small fetuses for the gestational
age, and decline of ossification sites. These findings corroborate
other authors since diabetes (Damasceno et al., 2014) and
maternal obesity and high-calorie intake (Zou et al., 2017) may
impair fetal development. Growth restriction may be related
to different maternal adaptations to diet and diet components,
with maternal nutrition being a possible factor in intrauterine
growth restriction (Howie et al., 2009; Setia and Sridhar, 2009;
Mark et al., 2011; Tellechea et al., 2017). The animals that
received a high fat/sugar diet had altered placental weights,
which may be related to functional or morphological placental
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FIGURE 4 | (A) Percentage (%) of anomalies of fetuses from non-diabetic (ND) and diabetic (D) rats in treated or not (S) with high-fat/high-sugar diet (HF/HS) before

and during pregnancy. Panels (B–J)—representative images of the main skeletal (B–D) and visceral (F–J) anomalies. Panel (B)—normal sternebra of rat fetuses.

Panel (C)—abnormally shaped sternebra and bipartite ossification of sternebra (arrow). Panel (D)—incomplete ossification of sternebra (arrow). Panels (E,F)—a

thoracic section from rat fetuses, with (E) normal trachea (arrow) and (F) dilated trachea (arrow). Panels (G,H)—a kidney transversal section from rat fetuses, with (G)

normal renal calices (arrow) and (H) dilated renal calices (arrow). Panels (I,J)—the pelvis section from rat fetuses, with (I) normal ureter (arrow) and (J) enlarged

ureter—hydroureter (arrow). *p < 0.05—compared with the NDS group; #p < 0.05, compared with the NDHF/HS group (Fisher’s exact test).

alterations. These placental changes may have contributed to
the decrease in fetal weight. Intrauterine growth restriction
leads to a variety of phenotypes related to the metabolic
syndrome in adult children, including hypertension (Tain et al.,
2017; Bendix et al., 2020). In addition, the obesity induced by
high-fat/high-sugar diet, whether associated or not associated
with diabetes, decreased the frequency of fetuses without
anomalies. The diabetes status increased skeletal anomalies. The
rats presenting diabetes and obesity showed an exacerbated
percentage of fetal abnormalities, with an increased frequency of
visceral anomalies. Bueno et al. (2020) already demonstrated that

maternal hyperglycemia causes an abnormal fetal metabolism,
contributing to an increase of visceral anomalies in the offspring
of diabetic rats. Besides, fetal metabolic dysregulation may also
occur due to the maternal consumption of a carbohydrate and
lipid-rich diet (Musial et al., 2017), which interferes with various
pathways of the developing organs, such as the liver, skeletal
muscle, adipose tissue, brain, and pancreas (Heerwagen et al.,
2010).

This study points out strengths as several variables and
biomarkers evaluated, using a solid and structured experimental
model; however, it is a study performed in laboratory animals
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and needs more attention for human application. For limitation,
we have the lack of measurement of leptin, since it could be
used during the discussion of appetite and feed intake. Another
limiting factor is the determination of the free fat acid levels to
relate to other lipid parameters.

In conclusion, the association between maternal diabetes
and obesity induces metabolic, leukocyte, and biochemical
alterations that contribute to affect fetal development and
growth. Further studies are needed to clear more the
mechanisms involved during diabesity in pregnancy to
prevent the fetal/neonatal outcomes in humans. Then,
the experimental model employed in our study helps
understand some pathophysiological mechanisms linked to this
association, allowing interventionist methods to avoid maternal
changes and, consequently, fetal repercussions as found in
this study.
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