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The genome sequence for Microbacterium sp. strain 3J1, a desiccation-tolerant organism isolated from the Nerium oleander rhi-
zosphere, is reported here. The genome is estimated to be approximately 3.5 Mb in size, with an average G�C content of 67.7%
and a predicted number of protein-coding sequences of 3,310.
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Microbacterium sp. strain 3J1 is a highly desiccation-tolerant
Gram-positive bacterium belonging to the Actinobacteria

phylum and the Microbacteriaceae family, and it is isolated from
the Nerium oleander rhizosphere (1). The genome sequences of
other desiccation-tolerant microorganisms have been reported
(2–5), including that of the recently described new species, Arthro-
bacter siccitolerant (strain 4J27) (6). In response to changes in
osmotic conditions and water activity, these microorganisms pro-
duce different compounds (1) known as xeroprotectants (7).
These compounds, which are produced to protect essential
biomolecules and cell integrity, allow the cell to tolerate extremely
low concentrations of water and other chemical insults (8–10),
including reactive oxygen species (11). The major water-soluble
antioxidants found to date are glutathione (�-glutamyl-
cysteinylglycine [GSH]) and ascorbic acid (12), and the main
lipid-soluble antioxidants are tocopherols and carotenes (13), al-
though other antioxidant molecules have been found with impor-
tant roles in desiccation tolerance (11).

Here, the whole-genome sequence of Microbacterium sp. 3J1 is
reported based on pyrosequencing technology implemented in
the 454 Life Sciences-Roche platform with a combined approach
based on 8-kb mate pair and shotgun sequencing (Lifesequencing
SL, Valencia, Spain) (14). This technology was used to obtain a
total of 109,001 sequences with the mate pair sequencing, render-
ing an average read length of 286 nucleotides and a total of 128,699
sequences, yielding an average length of 595 nucleotides with the
shotgun sequencing strategy. The total number of sequenced
bases was 107,758,549, representing a sequencing depth of around
29�. For de novo assembly, Newbler Assembler version 2.6 was
used, with default parameters. This assembly yielded 30 contigs, of
which 15 were �500 bp. The N50 of the contig assembly was
326,731 bp, and the largest contig was 1,103,902 bp. Mate pair
information indicated that most of these contigs were ordered in
two scaffolds, the largest comprising 3,402,533 bp. The estimated
genome size of 3.5 Mb was deduced from this combination of
scaffolds and contigs. Gap-spanning clones and PCR products
were used to attempt gap closure, and putative coding sequences

were predicted. Genes were annotated with a pipeline imple-
mented at Lifesequencing, and protein-coding sequences (CDSs)
were predicted with Glimmer (15–17), RNAmmer (18),
tRNAscan (19, 20), and BLAST (21, 22) in combination. Most of
the contigs used to obtain complete genomic information for Mi-
crobacterium sp. 3J1 are contained in two scaffolds, with an aver-
age G�C content of 67.7%. The genome was found to contain
3,310 protein-coding genes, 4 rRNA operons, and 44 tRNA genes.

On the basis of this genome sequence, we propose the presence
of pathways for the biosynthesis of antioxidants, including gluta-
thione, ascorbic acid, tocopherols, and �-, �-, �-, �-, �-, and
�-carotene, among many others.

The complete genome sequence of Microbacterium sp. 3J1 will
contribute to the development of biotechnological applications in
the field of anhydrobiotic engineering (23).

Nucleotide sequence accession numbers. The complete ge-
nome sequence of Microbacterium sp. 3J1 has been deposited in
the TBL/EMBL/GenBank databases under the BioProject number
PRJEB8445 and accession numbers CDWI01000001 to
CDWI01000030.
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