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Background: N6-methyladenosine (m6A) methylation played a key role in tumor growth.
However, the relationship between m6A and soft tissue sarcoma (STS) was still unclear.

Methods: The characterization and patterns of m6A modification in STS (TCGA-SARC
and GSE17674) were analyzed comprehensively through bioinformatics and real-time
polymerase chain reaction (RT-PCR). The effects of different m6A modification patterns on
prognosis and immune infiltration of STS were further explored. Differentially expressed
gene (DEG) analysis was performed. Moreover, anm6Ascore was constructed by principal
component analysis (PCA). In addition, two immunotherapy datasets (IMvigor210 and
GSE78220) and a sarcoma dataset (GSE17618) were used to evaluate the m6Ascore.

Results: Huge differences were found in somatic mutation, CNV, and expression of 25
m6A regulators in STS. Two modification patterns (A and B) in STS were further identified
and the m6A cluster A showed a better clinical outcome with a lower immune/stromal
score compared with the m6A cluster B (p < 0.050).In addition to , most STS samples from
m6A cluster A showed a high m6Ascore, which was related to mismatch repair and a
better prognosis of STS (p < 0.001). In contrast, the m6A cluster B, characterized by a low
m6Ascore, was related to the MYC signaling pathway, which led to a poor prognosis of
STS. A high m6Ascore also contributed to a better outcome of PD-1/PD-L1 blockade
immunotherapy.

Conclusion: Themodification patterns of 25m6A regulators in the STSmicroenvironment
were explored comprehensively. The novel m6Ascore effectively predicted the
characteristics of the tumor microenvironment (TME) and outcome in STS and
provided novel insights for future immunotherapy.
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INTRODUCTION

Since m6A was first detected in poly (A) RNA in 1974, this RNA
modification has been found to regulate huge numbers of
biological processes in many fields (Alarcón et al., 2015).
Currently, m6A regulators could be divided into three types:
adenosine methyltransferases (writers), demethylases (erasers),
and binding proteins (readers) (Cao et al., 2016). Dysfunction of
these regulators would contribute to incomplete m6A
modification, which further regulated tumor development and
progression (Delaunay and Frye, 2019). For instance, increased
expression of ALKBH5 caused by hypoxia could accelerate
mammosphere growth in cancer stem cells (Zhang et al.,
2016). Furthermore, high expression of ALKBH5 also
contributed to the inhibition of the progression of bladder
cancer (Yu et al., 2021). A recent study demonstrated that
overexpression of YTHDF1 could promote the growth of
hepatocellular carcinoma through autophagy (Li et al., 2021a).
Moreover, METTL3 was also found to accelerate tumorigenesis in
glioblastoma cells (Cui et al., 2017). Although the role of m6A
regulators in other tumors was widely studied recently, the
relationship between m6A and STS remained unclear. Hence,
it was of great importance to evaluate the role of m6A in STS.

Being rare mesenchymal malignancies with heterogeneity,
STSs have been paid more attention in the last few decades
(Stiller et al., 2013). The latest research calculated that nearly
13,130 new STS cases and 5,350 deaths would be detected in
America (Siegel et al., 2020). However, the current treatment of
STS is still surgery combined with radiotherapy, which led to
distant metastasis in 25% of STS patients, and the metastasis rate
rose to about 50% in high-grade STS (Brennan, 2005). Therefore,
it was important to explore novel strategies against STS.

Immunotherapy, mainly consisting of PD-1/L1 and CTLA-4,
has emerged as a promising treatment for cancer. However, the
responsiveness to those immune checkpoint blockade (ICB) was
low and few tumors were reported to effectively respond to ICB,
which disappointed clinicians and patients (Topalian et al., 2012).
The TME has been reported to be correlated with many tumor
activities including tumor angiogenesis and growth (Hanahan
and Coussens, 2012). As a key part of the TME, several immune
cells have been observed to affect the progression and the
response to cancer immunotherapy. Recent research revealed
that excluded T cells could inhibit the tumor response to ICB
(Mariathasan et al., 2018). Moreover, a recent study reported that
decreased YTHDF1 expression was found to enhance the
antitumor ability of CD8 (+) T cells in the mouse model
(Wilkerson and Hayes, 2010). Although many components of
the TME have been reported to be associated with tumor
progression and immunotherapeutic effects, these studies were
usually based on individual immune components and were not
related to them6Amodification. Therefore, integrative analysis of
m6A modification in the STS microenvironment and exploring
effective markers to predict the therapeutic effect of ICB were
urgently needed.

In this study, clinical and transcriptome data of STS from
TCGA (The Cancer Genome Atlas) and GEO (Gene
Expression Omnibus) databases were collected. Genetic
variation and expression of m6A regulators in STS were
further analyzed. The Search Tool for Recurring Instances
of Neighboring Genes (STRING) database was used to detect
connections among m6A regulators (Han et al., 2019). Then,
two different m6A modification patterns were identified using
consensus cluster analysis (Wilkerson and Hayes, 2010), a
method that has been widely used in bioinformatics.
Moreover, significantly different prognoses, immune
infiltration, and pathways of STS were detected between
these two m6A modification patterns. In addition, the
m6Ascore accurately evaluated the prognosis and
immunotherapy response of the tumor, which brought
novel insights into the immunotherapy of STS.

METHODS

Sample and Data Collection
TCGA-SARC with 265 STS samples and the corresponding
clinical information, somatic mutation, and CNV were
collected from UCSC-XENA (http://xena.ucsc.edu/). Here, we
chose somatic mutation data to explore the somatic mutation of
m6A regulators in STS, while CNV data were to explore the
difference in CNV of m6A regulators in STS. Transcriptome data
were used to explore the expression of m6A regulators between
STS and adipose tissue and for further bioinformatics analysis.
GSE17674 with 62 samples (Hugo et al., 2016) and GSE17618
(Savola et al., 2011) including 44 STS samples were collected from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/). The
human genome annotation GTF file was collected from the
gencode platform (https://www.gencodegenes.org/). GPL570
was used for GSE17618 and GSE17674. Robust multi-array
average (RMA) normalization was performed in GSE17674
and GSE17618, while transcripts per kilobase million (TPM)
normalization was performed in TCGA-SARC. Basic
information on these three datasets were shown in
Supplementary Table S1. Three pairs of STS samples and the
adjacent normal tissue were collected from Zhongnan Hospital of
Wuhan University. This study was also approved by the
institutional ethics board of Zhongnan Hospital of Wuhan
University.

Immunotherapy datasets IMvigor210 (anti-PD-L1) including
298 samples with complete clinical information and GSE78220
(anti-PD-1) (Hugo et al., 2016) including 27 samples with
complete clinical information were collected from a previous
study (Mariathasan et al., 2018) and GEO database, respectively.
IMvigor210 was normalized by the trimmed mean of M-values,
and GSE78220 was normalized by FPKM (Fragments Per
Kilobase Million). A total of 25 m6A regulators were selected
based on recent studies (Zhang et al., 2020; Chen et al., 2021). The
flowchart of this study is displayed in Supplementary Figure S1.
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Cell Culture
Human skeletal muscle cell line (HSMC) and sarcoma cell line
(A673) were collected from the American Type Culture
Collection. A673 was cultured in RPMI 1640 medium
(Hyclone) with 10% fetal bovine serum (Gibco) and 1%
antibiotics (100 U/ml penicillin and 100 μg/ml streptomycin).
HSMC was cultured in DMEM (Hyclone) medium with 10%
fetal bovine serum and 1% antibiotics (100 U/ml penicillin and
100 μg/ml streptomycin). The cells were maintained in an
incubator set to 37°C with 5% CO2 and passaged regularly.

Real-Time Polymerase Chain Reaction
The total RNA of cell lines and tissue was extracted by the Trizol
method (Invitrogen), and then, the RNA was reverse transcribed
by using a reverse transcription kit (Roche) to obtain cDNA; the
experimental operation was carried out according to the
instructions of Trizol and the reverse transcription kit. RT-
PCR was performed according to the instructions. The primer
sequence of each m6A regulator is shown in Supplementary
Table S2.

Identification of Different
N6-Methyladenosine Modification Patterns
in Soft Tissue Sarcoma Through Consensus
Cluster Analysis
The 25 m6A regulators included 15 readers (IGF2BP1, IGF2BP2,
IGF2BP3, YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2,
FMR1, HNRNPA2B1, HNRNPC, RBMX, LRPPRC, ELAVL1,
and EIF3A), eight writers (METTL3, METTL14, WTAP,
VIRMA, RBM15, RBM15B, ZC3H13, andCBLL1) and two
erasers (FTO and ALKBH5). Different m6A modification
patterns in STS were determined by consensus cluster analysis
in R software according to the expression of these m6A in TCGA-
SARC. Furthermore, the aforementioned process was repeated
1,000 times to obtain a stable clustering effect by using the
ConsensusClusterPlus R package (Wilkerson and Hayes, 2010).

Differentially Expressed Gene Analysis,
Protein–Protein Interaction Analysis, and
Connectivity Map Analysis
Gene signatures of different m6A modification patterns were
identified based on DEG analysis using the limma package
(Ritchie et al., 2015) in R software. DEGs were also analyzed
between normal samples and STSs in GSE17674. The
Benjamini–Hochberg method (Storey, 2002) was used here to
adjust multiple hypotheses. Adjust p < 0.050 and logFC > 1 or
logFC < −1 were considered significant. The Connectivity Map
used a genome-wide transcriptome system to comprehensively
describe the biological status of the disease, physiology, and drug
induction and further linked genes, drugs, and pathways (Lamb
et al., 2006). The DEGs were further uploaded to the cMap
database for drug prediction. p < 0.05 indicated statistical
significance. In addition, 25 m6A regulators were used for PPI
analysis and further visualized by Cytoscape (Shannon et al.,
2003). The confidence level was 0.4.

Characteristics of the Soft Tissue Sarcoma
Microenvironment Based on Different
N6-Methyladenosine Modification Patterns
CIBERSORT algorithm was used to evaluate the immune
infiltration of TCGA-SARC (Chen et al., 2018). The
permutations of the signature matrix were 1,000. The immune
and stromal scores of STSs were evaluated by the ESTIMATE
package (Yoshihara et al., 2013).

Functional Enrichment Analysis
To further explore the differences in enrichment pathways among
different m6Amodifications, all genes from TCGA-SARC were used
for gene set enrichment analysis (GSEA) based on different m6A
modification patterns (A and B). Moreover, the clusterProfiler
package (Yu et al., 2012) was used to screen significant pathways
using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) based on 25 m6A regulators and m6A
modification-related DEGs, respectively. False discovery rate <0.05
and p < 0.05 were considered significant.

Construction of the m6A Score
In order to quantify the modification patterns of m6A in STS, we
constructed an m6A score learning from a previous study
(Sotiriou et al., 2006). The specific procedures were as follows:
first, the consensus cluster analysis was used to divide patients
into several clusters according to DEGs between different m6A
modification patterns; second, the prognostic DEGs were
screened based on univariate Cox regression analysis; and
finally, after z-score normalization, principal component
analysis (PCA) was used to construct m6A score based on
prognostic DEGs using principal component 1 as the signature
score. The formula of the m6A score is shown as follows:

m6Ascore � ∑pc1m −∑pc1n,

where m represents the expression of prognostic DEGs with
hazard ratio (HR) < 1, while n represents the expression of
prognostic DEGs with HR > 1.

Statistical Analysis
Statistical Product and Service Solutions software (SPSS 22.0) and
R 3.6.2 were used for data analysis. The Maftool package
(Mayakonda et al., 2018) was used to display the mutation
landscape in TCGA-SARC, while the RCircos package
(Krzywinski et al., 2009) was used to show the variation of 25
m6A regulators on human chromosomes. Pearson correlation
analysis was performed using the corrplot package (https://cran.
r-project.org/web/packages/corrplot/index.html) to assess the
relationship among different m6A regulators and different
immune cells, respectively. Cox regression analysis (Harrell
et al., 1996) was performed along with Kaplan–Meier curve
analysis to identify the prognostic m6A regulators and DEGs,
respectively. For the survival analysis, a survival package was used
and a cut-off point was set using the survminer package (Ranstam
and Cook, 2017). Furthermore, different datasets were separately
divided into different groups based on low and high m6A score,
and prognostic differences were explored. All heatmaps were
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shown using the Pheatmap package (Wang et al., 2014) in R
software. The survival rate was compared by the logrank test.
Meanwhile, the receiver operating characteristic (ROC) curve for
predicting the prognosis of TCGA-SARC and GSE17618 was
performed by using the timeROC package (Blanche et al., 2013).
PCA was performed using the FactoMineR package (Lê et al.,
2008). The Kruskal–Wallis test was performed to compare
differences between groups. All significance levels were p < 0.05.

RESULTS

Landscape of N6-Methyladenosine
Variation in Soft Tissue Sarcoma
Somatic mutations in TCGA-SARC are shown in Figure 1A. Of
the 237 samples, 176 were detected to have somatic mutations,
accounting for 76.3% of the total. Furthermore, the mutation
frequency of TP53, ATRX, and TTN was 36, 16, and 11%,

FIGURE 1 | Landscape of somatic mutations and CNV of m6A regulators in STS. (A) Summary of somatic mutations in STS; (B) variant classifications of mutations
in STS; (C) summary of somatic mutations of m6A regulators in STS; (D) CNV of 25 m6A regulators in STS; and (E) locations of different m6A regulators in human
chromosomes.
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respectively. The summary of variant classification and type is
also shown in Figure 1B. The major variant classification, type,
and single-nucleotide variant type were missense mutation,
single-nucleotide polymorphism, and C-T transition,
respectively. Considering the widespread somatic variation that
existed in STS, the somatic mutations of m6A regulators are also
shown in Figure 1C. Among 237 samples, only 12 samples had
m6A mutations with low mutation frequency. The CNV
alteration of 25 m6A regulators is also shown in Figure 1D.
CNV generally occurred in every m6A regulator. Among them,
ZC3H13 (66%), EIF3A (47%), FTO (54%), RBMX (49%), and
FMR1 (47%) were found to have higher frequency of CNV gain.
ELAVL1 (41%), ALKBH5 (40%), YTHDF1 (37%), HNRNPA2B1
(36%), and IGF2BP3 (35%) had higher frequency of CNV loss.
Figure 1E also displays the location of different m6A regulators.
We also explored the expression of these regulators at the cellular
and tissue levels (Figure 2 and Supplementary Figure S2). The
result turned out that a wide difference in m6A expression existed
in STS. Compared with normal samples, ALKBH5, CBLL1, and

IGFBP1 showed lower expression while most of the m6A
regulators showed high expression. Considering huge
differences in expression among the m6A regulators, we
further compared the difference in m6A expression between
normal samples and STSs in GSE17674, and the results were
consistent with the abovementioned trend (Figure 3A). PPI was
used to show interactions between m6A regulators, and the result
isshown in Figure 3B. These m6A regulators were well connected
to each other. The correlation plot of each m6A regulator is also
displayed in Figure 3C. Most of the m6A regulators were
correlated with each other, which was consistent with the
result of PPI. In addition, univariate Cox analysis indicated
that IGF2BP1 (p < 0.001), IGF2BP2 (p = 0.001), IGF2BP3
(p = 0.003), YTHDF2 (p < 0.001), HNRNPA2B1 (p = 0.002),
HNRNPC (p = 0.002), RBMX (p = 0.002), and VIRMA (p =
0.044) were significantly correlated with the prognosis of STS.
The abovementioned result is also shown in Figure 3D.In
addition, , GO and KEGG pathways based on 25 m6A
regulators were analyzed, and the results are shown in

FIGURE 2 | Expression of 25 m6A regulators between STS and normal adjacent tissue. (A–Y) Expression of different m6A regulators between normal adjacent
tissue and STS samples. p < 0.05*, p < 0.01**, p < 0.001***, and p = 0****.
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Figure 3E. These genes were enriched in RNA modification-
associated pathways. Since widespread variation and expression
of m6A regulators existed in STS, m6A regulators might play an
important role in the progression and prognosis of STS.

Identification of Two N6-Methyladenosine
Modification Patterns in Soft Tissue
Sarcoma
To further analyze the effect of m6A modification on STS, we
performed a consensus cluster analysis in TCGA-SARC. Twom6A
modification patterns (A and B) were identified, and the result of

clustering is shown in Figure 4A. The corresponding cumulative
distribution function plot and delta area plot for clustering are also
shown in Supplementary Figures S3A, B. m6A cluster A had 140
STS samples, while m6A cluster B had 125 samples. The heatmap
of m6A expression among different modification patterns is also
shown in Figure 4B. Among them, FMR1 (p < 0.001), HNRNPC
(p = 0.001), IGF2BP1 (p < 0.001), IGF2BP2 (p < 0.001), IGF2BP3
(p < 0.001), YTHDC1 (p < 0.001), YTHDC2 (p < 0.001), YTHDF1
(p = 0.006), YTHDF1 (p = 0.013), METTL14 (p < 0.001), METTL3
(p = 0.001), RBM15 (p < 0.001), RBM15B (p = 0.010), WTAP (p =
0.010), and ALKBH5 (p = 0.010) were significantly differentially
expressed in m6A cluster A and B. As in Figure 4C, the result of

FIGURE 3 | Expression, interactions, prognosis, and functional annotations of 25 m6A regulators in STS. (A) Expression of different m6A regulators between
normal samples and STS samples using the GSE17674 dataset; (B) PPI analysis of 25 m6A regulators; and (C) correlation plot among 25 regulators using Pearson
correlation analysis. p <0.010 indicated statistical significance. (D) Univariate Cox regression analysis for 25 m6A regulators in STS samples; (E) functional annotations
for 25 m6A regulators. p <0.05*, p <0.01**, p <0.001***, and p = 0****; ns, no significance.
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PCA also indicated that the consensus cluster well differentiated
m6A cluster A and m6A cluster B. The result of survival analysis
based on m6A clusters A and B is subsequently shown in
Figure 4D. m6A cluster A had a significantly improved
prognosis of STS than m6A cluster B (p = 0.004). The Cox
regression analysis also indicated that different m6A clusters
were correlated with the prognosis of STS (p = 0.004). The 5-
year survival rate of m6A cluster A (63.5%) was significantly better
than that of m6A cluster B (46.1%) with p = 0.038. The GSEA was
also performed, and the result is shown in Figures 4E–H. Pathways
associated with better prognosis were significantly enriched in
m6A cluster A including DNA replication [false discovery rate
(FDR) = 0; enrichment score (ES) = 0.721] and mismatch repair
(FDR = 0; ES = 0.662). In contrast, pathways including
epithelial–mesenchymal transition (EMT, p = 0, FDR = 0.001,
ES = −0.390) and MYC signaling pathway (p = 0, FDR = 0.003, ES
= −0.360) were enriched in m6A cluster B, which often led to
poorer outcome of STS. Full lists of enriched pathways are shown
in Supplementary Tables S3, S4. The aforementioned analysis
revealed that different m6A modifications were associated with
different pathways, which further affected the prognosis of STS.

Characteristics of N6-Methyladenosine
Modification Patterns in the Soft Tissue
Sarcoma Microenvironment
In order to understand the influence of m6Amodification patterns
on the STS microenvironment, the immune cell infiltration in

TCGA-SARC is shown in Figure 5A. The correlation plot of each
immune cell is also displayed in Figure 5B. CD8 T cells and
follicular helper T cells had higher correlation with other cells. The
relationships between 22 kinds of immune cells and different m6A
modification patterns were analyzed by the Kruskal–Wallis test,
respectively (Figure 5C). m6A cluster A showed higher infiltration
of M1 macrophage, CD8 T cell, and NK cell, while the M2
macrophage showed higher infiltration in m6A cluster B. M2
macrophage (p < 0.050), mast cell activated (p < 0.050), mast
cell resting (p < 0.0001), neutrophils (p < 0.050), and T cell CD4
memory activated (p < 0.010) were significantly correlated with
different m6A modification patterns in STS. In addition, the
immune and stromal scores of m6A cluster A/B were separately
calculated, and the results are shown in Figures 6A,B. Compared
with m6A cluster A, m6A cluster B was characterized by a
significantly higher immune score (p < 0.050) and stromal score
(p < 0.010). Survival analysis of different m6A modification
patterns in different immune scores and stromal scores was
subsequently performed, and the results are shown in Figures
6C,D. Significant prognostic differences were found in different
m6A modification patterns and immune/stromal score (p <
0.0001). The Cox regression analysis also showed that different
m6A modification patterns were significantly correlated with the
prognosis of STS in different immune scores (p = 0.001) and
stromal scores (p < 0.001), respectively. In addition, differences in
the microenvironment between m6A cluster A/B and normal
adjacent tissue were also explored in GSE17674. As shown in
Supplementary Figure S4A, consensus clustering analysis also

FIGURE 4 | Identification of two m6A modification patterns in STS. (A) The result of consensus clustering analysis in STS; (B) heatmap of expression of 25 m6A
regulators in m6A clusters A and B; (C) the result of PCA, indicating two distinct clusters were identified; (D) survival plot of two clusters in TCGA-SARC (p = 0.0039); (E)
enriched pathways in m6A cluster A: DNA replication; (F) enriched pathways in m6A cluster A: mismatch repair; (G) enriched pathways in m6A cluster B:
epithelial–mesenchymal transition; and (H) enriched pathways in m6A cluster B: MYC target.
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identified two distinct m6A modification patterns. The immune
score of both m6A clusters A and B was higher than that of normal
tissue with p = 0.159 and p = 0.034, respectively (Supplementary
Figures S4B,C). The aforementioned results suggested that
different m6A modification patterns affected the immune
infiltration in the STS microenvironment, which further affected
the prognosis of STS.

Construction of m6A Score
A total of 328 DEGs between different m6Amodification patterns
were determined. The full list of 328 DEGs is shown in
Supplementary Table S5. Among them, 227 genes were
upregulated in m6A cluster A while 101 genes were
upregulated in m6A cluster B (Figure 7A). The GO and
KEGG enrichment analysis was also performed, and the
results are shown in Supplementary Tables S6, S7. Similar to
the result of m6A regulators, these DEGs were enriched in the p53
signaling pathway (p = 0.002), ECM–receptor interaction (p =
0.005), and PI3K-Akt signaling pathway (p = 0.023), which were
closely related to the progression of STS. The heatmap of these
DEGs in STS is also shown in Figure 7B. Cmap was analyzed
according to these 328 DEGs, and the results are shown in
Supplementary Table S8. Imatinib (p = 0.001) and
furazolidone (p = 0.025) were regarded as important targets
treating STS. Univariate Cox regression analysis was further
performed to identify prognostic genes among these 328
DEGs. Of the 328 DEGs, 90 of them were identified as
prognostic genes (p < 0.050). Furthermore, 58 genes were

identified as protective genes due to HR < 1, while 32 genes
were regarded as risk genes based on HR > 1. The full list of
prognostic DEGs is displayed in Supplementary Table S9. The
relationships between DEGs and these prognostic genes are
visualized in a Sankey diagram in Figure 7C. To our surprise,
all protective DEGs, upregulated in m6A cluster A, were from
m6A cluster A. Contrary to m6A cluster A, all risk DEGs,
upregulated in m6A cluster B, belonged to m6A cluster B.
This was also consistent with the result of the survival
analysis. To further evaluate the stability of m6A modification
patterns, consensus cluster analysis was performed based on 328
DEGs, and two distinct gene clusters A and B were identified
(Figure 7D). The corresponding cumulative distribution
function plot and delta area plot for clustering are also shown
in Supplementary Figures S5A, B. Among them, 92.9% samples
of gene cluster A were from m6A cluster A while 66.7% samples
of gene cluster B were from m6A cluster B, which also implied
that the identification of m6A modification patterns was
relatively stable. The survival plot between different gene
clusters is also shown in Figure 7E. Gene cluster A had a
better prognosis of STS than gene cluster B (p = 0.027), which
was also consistent with the survival result of m6A clusters. The
Cox regression analysis indicated that different gene clusters were
significantly correlated with the prognosis of STS (p = 0.029). The
5-year survival rates of gene clusters A and Bwere 66.0 and 50.0%,
respectively. Due to the significant difference in immune
infiltration and prognosis between m6A modification patterns,
m6A score was constructed to quantify the modification pattern

FIGURE 5 | Effects of different m6A modification patterns on the immune infiltration of STS. (A) Immune infiltration of each sample in TCGA-SARC. (B) Correlation
plot of each immune cell in TCGA-SARC. (C) Comparison of immune cell infiltration among m6A clusters A and B.
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of each STS sample. Then, STS samples were divided into high-
and low-m6A score groups. Similar to what we found in gene
clusters, 75.7% samples of highm6A score were fromm6A cluster
A while 78.4% samples of low m6A score were from m6A cluster
B. The survival plot between high and low m6A score is also
shown in Figure 7F. A high m6A score had a better prognosis of
STS than a low m6A score (p < 0.0001). The Cox regression
analysis indicated that different m6A scores were significantly
correlated with the prognosis of STS (p < 0.001). The m6A score
was also compared in different m6A clusters and gene clusters,

and the result is shown in Figures 7G,H. The high-m6A score
group showed a significantly better outcome than the low-m6A
score group (p < 0.0001), and the result was the same in gene
cluster A (p < 0.001). In addition, in Supplementary Figure S6,
the area under the curve (AUC) of m6A score for prediction of
the 1-, 3-, and 5-year survival of STS was 0.77, 0.71, and 0.68,
respectively. Finally, a Sankey diagram was performed to
summarize the correlation between m6A clusters, gene
clusters, m6A score, and prognosis of STS (Figure 7I). It
could be clearly seen that m6A cluster A, gene cluster A, and

FIGURE 6 | Effects of different m6A modification patterns on the immune infiltration of STS. (A) Comparison of immune score among m6A clusters A and B; (B)
Comparison of stromal score among m6A clusters A and B; (C) survival analysis of different immune scores among m6A clusters A and B (A: m6A cluster A, B: m6A
cluster B, LSS, low immune score, and HSS, high immune score); and (D) survival analysis of different stromal scores amongm6A clusters A and B. (A: m6A cluster A, B:
m6A cluster B, LIS: low stromal score, and HIS, high stromal score); p <0.05* and p <0.01**.
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high m6A score were correlated with a better prognosis of STS
while m6A cluster B, gene cluster B, and low m6A score were
related to a poorer prognosis of STS. The aforementioned results
indicated that the m6A score could accurately distinguish the
m6A modification patterns and predict the prognosis of STS.

m6A score Could Predict Immunotherapy
Response
Considering thatm6A score could well predict the prognosis of STS,
we further explore whether m6A score could effectively predict the

response to ICB in IMvigor210 and GSE78220 datasets. For the
IMvigor210 dataset, 298 samples were divided into high-m6A score
(n = 243) and low-m6A score groups (n = 55). The result of the
survival analysis turned out that a high m6A score showed a better
prognosis than a low m6A score (Figure 8A, p = 0.036). The
corresponding Cox regression analysis also revealed that different
m6A scores were significantly correlated with the prognosis of each
sample in IMvigor210 (p = 0.037). Furthermore, the relative percent
of complete response (CR), partial response (PR), progression
disease (PD), and stable disease (SD) in high- and low-m6A
score groups were compared, and the results are shown in

FIGURE 7 |Construction of m6Ascore. (A) Volcano plot of DEGs betweenm6A cluster A and B; (B) the heatmap of the expression of DEGs in m6A cluster A and B;
(C) the relationship between DEGs and these prognostic genes visualized as a Sankey diagram; (D) the result of consensus clustering analysis in STS based on 328
DEGs; (E) survival plot of gene clusters A and B in TCGA-SARC (p = 0.027); (F) survival plot of high and low m6A score in TCGA-SARC (p < 0.0001); (G) comparison of
m6A score among m6A clusters A and B; (H) comparison of m6Ascore among gene clusters A and B; and (I) the relationship between m6A clusters, gene cluster
survival status, and m6A score visualized as a Sankey diagram.
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Figures 8B–D. 53.4% of the high-m6A score group had PD, while
67.2% of the low-m6A score group had PD, and patients with SD
had higher m6A score than patients with PD (p = 0.001). The ROC
analysis for the prediction of the response to anti-PD-L1 is shown in
Figure 8E, and the AUC was 0.646. For the GSE78220 dataset, 27
samples were divided into high-m6A score (n = 3) and low-m6A
score groups (n = 24). Survival analysis was further performed
between different m6A score groups. Similar to IMvigor210, the
high-m6A score group showed a better prognosis than the low-
m6A score group (p = 0.069, Figure 8F). The corresponding Cox
regression analysis also revealed that different m6A scores were
associated with the prognosis of each sample in GSE78220 (p =
0.018). The relative percent of CR, PR, and PD in the high-m6A
score group were all 33.3%, while in the low-m6Ascore group, the
proportion was 16.0, 48.0,, and 36%, respectively (Figures 8G,H).
Them6A score did not show a significant difference among samples

with different immunotherapy responses (Figure 8I), which could
be due to the small sample size of GSE78220. The ROC curve for
prediction of the response to anti-PD-1 is shown in Figure 8J, and
the AUC was 0.792.In addition, the independent sarcoma dataset
GSE17618 was used for the validation of the m6Ascore. GSE171618
dataset was divided into high- (n = 23) and low-m6A score groups
(n = 21). As in Figure 8K, the high-m6A score group showed a
better prognosis than the low-m6A score group (p = 0.030). The
corresponding Cox regression analysis also indicated that different
m6A scores were significantly correlated with the prognosis of STS
in GSE17618 (p = 0.034). The 5-year survival rates of the high- and
low-m6A score groups were 55.9 and 29.3%, respectively. The AUC
for prediction of the 3-, 5-, and 10-year survival of STS was 0.64,
0.66, and 0.84, respectively (Figure 8L). The event-free survival
curve between high and low m6A score is also displayed in
Supplementary Figure S7. Similar to the result of overall

FIGURE 8 | The m6Ascore predicted immune response in immunotherapy datasets and validation of m6Ascore. (A) Survival plot of high and low m6A score in the
IMvigor210 dataset (p = 0.036); (B) relative percent of immune responses in high and low m6A score in the IMvigor210 dataset; CR, complete response; PR, partial
response; SD, stable disease; PD, progressive disease; (C) relative percent of CR/PR and SD/PD in high and low m6A score in the IMvigor210 dataset; CR, complete
response, PR, partial response, SD, stable disease, PD, progressive disease; (D) box plots of m6Ascore in different immune responses in the IMvigor210 dataset;
(E) ROC curve for prediction of immune response in the IMvigor210 dataset; (F) survival plot of high and lowm6A score in the GSE78220 dataset (p = 0.069); (G) relative
percent of immune responses in high and low m6A score in the GSE78220 dataset; CR, complete response; PR, partial response; PD, progressive disease; (H) relative
percent of CR/PR and SD/PD in high and lowm6A score in the GSE78220 dataset; CR, complete response; PR, partial response; PD, progressive disease; (I) box plots
of m6A score in different immune responses in the GSE78220 dataset; (J) ROC curve for prediction of immune response in the GSE78220 dataset; (K) survival plot of
high and low m6A score in the GSE17618 dataset (p = 0.030); and (L) ROC curve for prediction of the 3-, 5-, and 10-year survival of STS in the GSE17618 dataset.
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survival, the high-m6A score group had a better prognosis (p =
0.074). The corresponding Cox regression analysis also indicated
that different m6A scores were significantly correlated with the
event-free survival of STS in GSE17618 (p = 0.070). In general, our
study revealed a non-negligible role of m6Amodification in the STS
microenvironment, which could well predict the response to PD-1/
PD-L1 immunotherapy.

DISCUSSION

Due to diverse histopathological classification, STS has not been fully
understood so far, which received widespread attention (Trojani
et al., 1984). A previous study constructed an m6A-related risk
model to predict the prognosis of STS (Hou et al., 2020). However,
different m6A modification patterns were not analyzed
comprehensively. Recent studies also revealed the significant role
of m6A modification in gastric cancer and pancreatic cancer (Zhou
et al., 2021). However, systematic analysis of the m6A modification
in STS was still rare.

The CNV analysis indicated that ZC3H13 and ELAVL1 had the
highest variant frequency. A recent study also indicated that
ZC3H13 could inhibit colorectal cancer through Ras-ERK
pathways (Zhu et al., 2019). Moreover, ELVAL1 knockout mice
were also found to have lower tumor growth in a previous report
(Chang et al., 2014). Therefore, our findings suggested that these
regulators might also play a key role in STS progression. Besides,
96% of m6A regulators were found to have significantly different
expressions between STS and normal samples, which was
consistent with a former study that m6A regulators expressed
differently in colorectal cancer based on bioinformatics analysis
(Zhang et al., 2021a). These results also suggested that m6A
regulation might exist in various types of cancer. Univariate
Cox regression analysis showed that IGF2BP1 and YTHDF2
were top significantly correlated with the poor prognosis of
STS. Previous studies also found that IGFBP2 could accelerate
the migration of tumor cells by regulating LEF1 and SNAI2 (Zirkel
et al., 2013). Moreover, IGF2BP1 was also regarded as a risk factor
in neuroblastoma (Bell et al., 2015). YTHDF2 was also related to
the poor prognosis of glioma in Lin et al.’s (2020) research, and the
latest research implied that stabilized YTHDF2 could enhance the
growth capacity of glioblastoma (Fang et al., 2021). These studies
were consistent with our results, which also revealed the potential
prognostic value of IGFBP1 and YTHDF2 in STS.

Furthermore, two m6A modification patterns in STS were
identified. m6A cluster A was correlated with DNA replication,
mismatch repair, and a better prognosis, while m6A cluster B was
related to MYC, EMT signaling pathways, and a poor prognosis. As
an important part of the cell cycle, stable DNA replication was key to
the normal activities of cells. Dysfunction of DNA replication might
result in the occurrence of diseases. For example, abnormal
replication of MCM10 would lead to NK cell deficiency (Mace
et al., 2020). A recent study also reported that DNA replication stress
could be used to enhance the antitumor ability in squamous cell
carcinoma (Zhang et al., 2021b). In addition, mismatch repair
(MMR) was also known for its tumor suppressor function. For
instance, dysfunction ofMMR genes would lead to Lynch syndrome,

which was susceptible to cancer including ovarian cancer (Zhang
et al., 2021b). MMR deficiency was also related to the occurrence of
endometrial cancer (McDougal et al., 2021). The MYC gene was a
proto-oncogene, which has been studied formany decades (Cole and
McMahon, 1999). A recent study showed that MYC could be
regulated by USP16, which further inhibited prostate cancer
progression (Ge et al., 2021). MYC was also found to participate
in angiogenesis (Meškytė et al., 2020). EMT was considered to be
related to tumor metastasis. A previous study reported that EMT
induced by HOXA10 contributed to gastric cancer metastasis (Song
and Zhou, 2021). These studies supported our results, which
provided novel insights into the role of m6A modification in
STS. The immune cell infiltration analysis showed that M1
macrophage, CD8 T cell, and NK cell were enriched in m6A
cluster A while M2 macrophage was enriched in m6A cluster B.
M1 macrophages were generally thought to inhibit tumor growth
while M2 macrophages were found to promote tumor progression,
which was also proved in many studies. For example, M1
macrophage could inhibit colon cancer growth (Engström et al.,
2014). In Jackute et al.’s (2018) study, low infiltration of M2
macrophages was correlated with an improved prognosis of lung
cancer. Improved CD8 T cell infiltration was also considered to be
correlated with a better prognosis (Li et al., 2021b). As a part of
innate immunity, NK cells also played an anti-tumor role. Recent
research reported that NK cells could inhibit lung tumor growth in
micemodels (Yamamoto et al., 2018).In addition, bothm6A clusters
A/B showed higher immune scores than normal tissue. This may be
due to the local inflammatory and immune response of tumor tissue,
which recruits more immune cells, while there is no tumor-mediated
immune cell aggregation in normal tissue. For example, a recent
study revealed that macrophages could be recruited for breast cancer
by increasing CCL2 (Wolfsberger et al., 2021). A former study also
indicated that many neutrophils were recruited in non-small-cell
lung cancer (Mollaoglu et al., 2018). Our findings were consistent
with these studies, indicating that the m6A cluster A was related to a
strong anti-tumor immune response while m6A cluster B was
related to a suppressed anti-tumor immune response.

The result of Cmap analysis showed imatinib and furazolidone
as important drugs for treating STS. A recent study illustrated that
furazolidone could induce apoptosis in lung cancer by
downregulating NF-kappa B (Yu et al., 2020). Furazolidone was
also found to prevent the growth of hepatoma cells by enhancing
reactive oxygen species (Sun et al., 2015). Furazolidone was also
found to be a potential drug for the treatment of acute myeloid
leukemia by enhancing the expression of p53 (Jiang et al., 2013).
Imatinib was found to improve the prognosis of gastrointestinal
stromal tumors (Kurtovic-Kozaric et al., 2017). A recent study also
implied that imatinibmight slow down the progression of leukemia
(Druker et al., 2001). Given the important role these drugs played
in other tumors, they might also become promising drugs for STS
treatment. We further identified two gene clusters based on DEGs
between m6A clusters A and B. Similar to our m6A cluster
modification patterns, gene cluster A showed a better prognosis
of STS, which also validated that our previous m6A modification
patterns were reliable. The m6Ascore was significantly higher in
m6A cluster A and gene cluster A, respectively.Moreover, the AUC
of m6Ascore for predicting the 1-, 3-, and 5-year survival of STS
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was 0.77, 0.71, and 0.68. In addition, the survival results of
validation dataset GSE17618 also showed that a high m6Ascore
was related to a better prognosis, and the AUC for predicting the 3-
, 5-, and 10-year survival was 0.64, 0.66, and 0.84, respectively.
These results demonstrated that the m6A score could identify
different m6A modification patterns and be used as a potential
prognostic indicator in STS.

Our results also showed that m6A score could predict the
response to immunotherapy. A high m6A score was correlated
with a better immunotherapy response. Previous studies focused
on suppressing macrophages to obtain a better immunotherapy
response (Dong et al., 2021) and adding nanoparticles into the
TME to further strengthen the anti-tumor ability (Yang et al.,
2021). These studies mainly changed the immunotherapy
response by affecting the components of the TME. However,
biomarkers to directly predict the response of immunotherapy
were still rare. Here, we reported the AUC of m6A score for
prediction of immune response to PD-1/L1 was 0.646 and 0.794,
respectively. Therefore, our m6A score could also be a promising
predictor for tumor immunotherapy. In addition, the m6A score
was also validated by an independent sarcoma dataset, which also
proved that the m6A score was reliable.

Our research also had some limitations. More immunotherapy
datasets were needed to validate the m6A score. In addition, more
clinical trials were also needed to further validate the drugs and
cancer-related pathways we screened in this study.

CONCLUSION

In general, the m6A modification patterns in the STS
microenvironment were comprehensively analyzed. An m6A
score to evaluate different m6A modification patterns was
established through integrative analysis. A high m6A score
showed a better prognosis of STS, while a low m6Ascore led
to a poor prognosis of STS. In addition, the m6A score was
validated by an independent dataset successfully and accurately
predicted the prognosis of STS, which could be a promising
predictor for cancer immunotherapy.
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