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Abstract

Portable Vis/NIRS are flexible tools for fast and unbiased analyses of constituents with mini-

mal sample preparation. This study developed calibration models for dry matter content

(DMC) and carotenoids in fresh cassava roots using a portable Vis/NIRS system. We

examined the effects of eight data pre-treatment combinations on calibration models and

assessed calibrations on processed and intact root samples. We compared Vis/NIRS

derived-DMC to other phenotyping methods. The results of the study showed that the com-

bination of standard normal variate and de-trend (SNVD) with first derivative calculated on

two data points and no smoothing (SNVD+1111) was adequate for a robust model. Calibra-

tion performance was higher with processed than the intact root samples for all the traits

although intact root models for some traits especially total carotenoid content (TCC) (R2
c =

96%, R2
cv = 90%, RPD = 3.6 and SECV = 0.63) were sufficient for screening purposes.

Using three key quality traits as templates, we developed models with processed fresh root

samples. Robust calibrations were established for DMC (R2
c = 99%, R2

cv = 95%, RPD = 4.5

and SECV = 0.9), TCC (R2
c = 99%, R2

cv = 91%, RPD = 3.5 and SECV = 2.1) and all Trans

β-carotene (ATBC) (R2
c = 98%, R2

cv = 91%, RPD = 3.5 and SECV = 1.6). Coefficient of

determination on independent validation set (R2
p) for these traits were also satisfactory for

ATBC (91%), TCC (88%) and DMC (80%). Compared to other methods, Vis/NIRS-derived

DMC from both intact and processed roots had very high correlation (>0.95) with the ideal

oven-drying than from specific gravity method (0.49). There was equally a high correlation

(0.94) between the intact and processed Vis/NIRS DMC. Therefore, the portable Vis/NIRS

could be employed for the rapid analyses of DMC and quantification of carotenoids in cas-

sava for nutritional and breeding purposes.
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Introduction

Near infra-red spectroscopy (NIRS) is one of the most important analytical techniques based

on the vibrational properties of atoms in molecules [1,2]. NIRS has gained wide application

over years in the analyses of many materials including agricultural and food products [3,4].

When compared to other analytical and chemical methods, NIRS offers a fast, non-destructive

alternative for the simultaneous analyses of many constituents [5]. It requires minimal to no

sample preparation, and it is economically efficient and non-hazardous to the environment

[6].

NIRS is an ideal phenotyping tool in plant breeding, particularly in this era when new

breeding techniques are being adopted [7,8], requiring the phenotyping of thousands of indi-

viduals at low cost and with high precision and speed. NIRS permits the timely screening of

many samples and variables that would have been too expensive to assay by other analytical

methods [8,9]. One of its notable advantages, is its ability to measure samples in different

states–in solid and liquid forms [10].

Breakthroughs in technology have led to the increasing availability of spectrophotometers

of different ranges in a portable format and this provides greater flexibility for field-based anal-

yses of constituents. The portable NIRS and in some cases covering both the visible and near

infrared regions (Vis/NIRS) has the advantage of further reducing the need for sample trans-

portation to a laboratory and processing. It provides a quality phenotyping method for breed-

ing programs especially where standard laboratories are not available or their operation is

hampered by factors such as poor infrastructure and lack of highly skilled experts. It is believed

[6] that over the long-term developing NIRS is cheaper than the establishment of many proto-

cols for laboratory analyses of different traits, which in most cases are slow, costly and imprac-

tical for large-scale screening in plant breeding and nutritional quality analyses [7,11].

In cassava breeding, the adoption of new methods has necessitated standardized and accu-

rate phenotyping tools for efficient improvement, especially for complex traits [12]. Availabil-

ity of phenotyping tools for accurate and large scale screening of materials, particularly at early

stages of cassava breeding will reduce the loss of important genetic information and facilitate

the breeding of end-user and farmer-preferred varieties [13]. The current phenotyping tech-

niques for some key traits are laborious and time-consuming for large-scale screenings. Esti-

mates could be influenced by sampling and sample preparation including weight and number

of roots used in the prevalent specific gravity method [14–16] and inconsistency of power sup-

ply in the oven-drying method. Similarly, carotenoid quantification using color intensity [17]

could be subjective and inefficient in advanced population of yellow genetic materials. Con-

versely, laboratory processes using high-performance liquid chromatography (HPLC) or

UV-Visible spectrophotometer are low-throughput (less than 10 or 40 samples per day, respec-

tively) [11].

The use of NIRS for the analyses of traits on fresh cassava roots have been previously

reported [11] and has led to significant changes in a breeding system [18]. However, these

studies used a stationary tabletop NIRS device with processed root samples–peeled and

mashed, aimed at overcoming the reported uneven concentration of traits in cassava roots

[19]. Nevertheless, the possibility of reduced sample preparations using intact samples have

been reported in other scenarios [20–22]. Preparation of cassava root samples before NIRS

analysis adds to the harvesting time and the overall cost of phenotyping. The use of a full-

range portable Vis/NIRS device has not been reported in cassava breeding and the possibility

of reduced root processing has not equally been explored. Obtaining a good relationship

between calibrations from processed and intact samples could enable simultaneous field-based
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screening of materials on different important traits and the overall reduction of phenotyping

cost.

Generally, when working with NIRS, the spectral variation of interest can be masked by

additive and/or multiplicative light scattering, background noise and baseline drifts arising

from differences in particle sizes and effective path-length [23,24]. It is therefore important to

adopt suitable data pre-processing methods to minimize the influence of these physical effects

on the NIRS calibration [24,25].

In this study, we assess the use of a portable Vis/NIRS device for the analysis of important

fresh cassava quality traits on both processed (mashed) and non-mashed (intact) root samples.

We assess the impact of data pre-processing for possible increase in the predictive ability of the

calibration models. The ultimate goal of this study was to develop calibration models using the

portable Vis/NIRS for the analyses of DMC and carotenoids in fresh cassava roots which could

accelerate accurate phenotyping and general improvement of cassava. To examine the useful-

ness of this tool on dry matter quantification, we compared dry matter values derived from the

conventional specific gravity method and predicted values from the portable Vis/NIRS (intact

and mashed) to the ideal oven-drying method.

Materials and methods

Calibration samples

In 2015, first calibration set (Table 1) was developed using clones (U15I, N = 113) from the

germplasm collection of the National Root Crops Research Institute (NRCRI), Umudike,

Nigeria. Single root samples were randomly selected from harvested clones of a training popu-

lation (TP) established for the implementation of genomic selection. The selected roots were

peeled and chopped into pieces (about 3x10 mm) using kitchen knives.

A second calibration set (Table 1) was developed in 2016 at the International Center for

Tropical Agriculture (CIAT), Cali-Palmira, Colombia. Between two to three root samples were

collected from F1 seedling plants of different half- and full-sib families of varying sizes [18,26].

Additional clones with white parenchyma from the germplasm collection at CIAT were added

in order to balance the calibration set. All the field sampling and selections were carried out

early in the morning and the selection of individuals for carotenoid was based on yellow/

orange color intensity of roots which is closely associated with high carotenoids especially

TCC and total beta carotene (TBC) in cassava [11,17]. The selected roots were peeled and

mashed into a homogenous sample in the laboratory using an Essen Skymsen food processor

(Model: PA-7SE, Brusque, Brazil).

Table 1. Description of calibration sets developed at NRCRI Umudike, Nigeria and CIAT, Cali Colombia in 2015 and 2016 on intact and mashed

root samples. Carotenoids (TCC and ATBC) data are on a fresh weight basis.

Statistics U15I C16I U16I/M C16M U15I C16I C16M C16M

DMC (%) TCC (μg g-1) ATBC (μg g-1)

No. 113 66 194 173 113 65 173 173

Mean 35.75 20.14 38.52 36.16 2.61 17.95 14.91 10.07

SD 7.95 4.27 5.76 4.16 2.14 3.84 7.73 5.86

Min. 16.34 16.54 16.47 20.14 0.10 10.09 0.70 0.03

Max. 50.98 41.98 50.00 44.13 8.82 26.15 30.84 21.02

U15I = Calibration set on intact root samples at Umudike in 2015; U16I/M = Calibration set on intact and mashed roots at Umudike in 2016;

C16I = Calibration set on intact roots from CIAT in 2016; C16M = Calibration set on mashed roots from CIAT in 2016.

https://doi.org/10.1371/journal.pone.0188918.t001
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A third calibration set (Table 1) was developed in 2016 at NRCRI for DMC using intact and

mashed root samples. Between two to three roots were randomly selected from one or two

plants in a plot of five plants per clone from the NRCRI TP. The selected roots were evaluated

for DMC by specific gravity before peeling and mashing using a portable power-operated

grater.

The 2016 set from NRCRI and a subset of the calibration set from CIAT were used for the

comparison of calibrations from intact and mashed root samples.

Spectral data collection

A portable Vis/NIRS device (QualitySpec Trek: S-10016) was used to collect spectral data on

both intact and mashed root samples. Spectral data on intact roots were obtained by placing

roots in contact with the window of the portable Vis/NIRS device. Each spectrum collected is

in fact the average of 50 spectra collected over a period of five seconds. Three spectra per root

were taken respectively on the proximal, middle and distal regions of roots at NRCRI in 2016

and CIAT. The selected root samples were first peeled, rinsed with water and dried with a

paper towel before spectra collection. However, depending on the size of the roots, spectral

data were only collected from the transverse section of the proximal end of the root and few

samples from proximal and distal ends in 2015 at NRCRI. The mean spectrum for each sample

was used for calibration.

For mashed samples, spectral data were collected from about 8g of homogenized mashed

roots in quartz sampling cups placed against the window of the portable Vis/NIRS device in

two replications per sample and spectrum averages were used for analyses.

Wet chemistry

Dry matter content (DMC). At both locations (CIAT and NRCRI), dry matter was mea-

sured as the percentage of dry weight relative to a given fresh weight of samples after oven-dry-

ing. Between 80 and 110 g (measured to 0.1 mg precision) of the mashed and homogenized

roots were oven-dried at a constant temperature of 105˚C for 24 hours at CIAT. At NRCRI in

2015, 10 g of the chopped samples were weighed before and after oven-drying while in 2016,

20 g of the mashed samples were dried in two replications. The oven temperature at NRCRI

was targeted for TTT˚C. Depending on the duration and source of power, samples were

weighed after drying. The average DMC of the two replications was used for analyses. Specific

gravity method as described in [14] was carried out before the selected two to three roots were

processed–peeled, washed and dried with a paper towel in 2016 at NRCRI.

Carotenoids. The reference samples at CIAT were measured for carotenoids using a

HPLC system (Agilent Technologies 1200 series, Waldbronn, Germany). To avoid quality deg-

radation of samples, an average of six (6) samples per day were analyzed with the HPLC. Simi-

lar to [11] and complying with the HarvestPlus standards for optimum carotenoids retention

[27], all the extractions were performed on fresh roots with minimal exposure to light, high

temperatures and reduction of time between mashing and extraction. The HPLC reference

traits included–TCC, all-trans β-carotene (ATBC), violaxanthin (VIO), Lutein (LUT), 15-Cis

beta-carotene (15CBC), 13-Cis beta-carotene (13CBC), Alpha carotene (AC), 9-Cis beta-caro-

tene (9CBC) and phytoene (PHY).

Measurement of TCC at NRCRI in 2015 was carried out at the NRCRI Carotene laboratory

in Umudike following the standard laboratory extraction method using acetone with mortar

and pestle and spectrophotometric quantification as described in the Harvest-Plus handbook

[27]. Homogenized samples of 10g were ground in a mortar with 3g of Hyflosuperce (Celite)

and 50mL of cold acetone. The mixture was filtered with a Buchner funnel with filter paper
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while the mortar, pestle, funnel and residue were washed into a suction flask and observed to be

sure that the washings or residue were devoid of color. Otherwise, the residue was returned to

the mortar for further maceration, filtering and washing. The next step involved the petroleum

ether partitioning where about 20mL of petroleum ether and acetone were added into a 500mL

separator funnel with Teflon stop-cock. Distilled water (~300mL) was slowly added into the

mixture. The two phases were allowed to separate and the lower, aqueous phase was discarded

while the remaining phase was washed 3–4 times with distilled water (~200mL) to remove

residual acetone. The petroleum ether phase was transferred into a 25mL volumetric flask

through a funnel containing glass wool and anhydrous sodium sulphate (about 15 g) to remove

the residual water. The absorbance of the extract was measured at 450 nm using a spectropho-

tometer (Electron Corporation Ltd–GENESYS 10 Series) and TCC was derived using:

TCC m=gð Þ ¼
A� Volume ðmLÞ � 104

A1%
1cm � sample weight ðgÞ

;

where; A ¼ absorbance; Volume ¼ total volume of extract; A1%
1cm

¼ absorption coefficient of b � carotene in Petroleum ether ðequals 2592Þ:

Data pre-processing and model development

Prior to model development, spectral data were first transformed to log (1/R) using ViewSpec

Pro software [28] and the full Vis/NIRS wavelength range (350 – 2500nm) was subjected to

pre-treatments for the correction of interferences on three segments of the wavelengths

(350nm -1000nm, 1001nm– 1800nm and 1801nm– 2500nm). The effect of two light-scatter

correction methods—Standard Normal Variate and De-trending (SNVD) [29] and Multiplica-

tive Scatter Correction (MSC) [30] were tested on four derivative and smoothing options. The

options are given by four digits (D, G, S1, S2): where D indicates the derivative order number

(0 indicates no derivation, 1 means the first derivative, and so on), G indicates the gap (the

number of data points over which derivation is computed), S1 indicates the number of data

points in the first smoothing (1 means no smoothing) and S2 indicates the number of data

points in the second smoothing, where 1 means no smoothing. The eight pre-treatment meth-

ods (SNVD+1111, SNVD+2111, SNVD+1551, SNVD+2551, MSC+1111, MSC+2111, MSC

+1551 and MSC+2551) were compared to no treatment in each calibration set for DMC, TCC

and ATBC.

SNVD. The SNVD correction requires two algorithms that are usually applied together.

The first algorithm is the Standard Normal Variate (SNV) and is used for correcting scattering

when the effective path length and baseline varies among samples of a data set [23] and for

granular or powdery samples or when the particle sizes vary among samples [29]. SNV is usu-

ally applied first to correct the effects of the multiplicative interferences of scatter and particle

size differences by removing the mean and scaling to unit variance. SNV correction is given

by:

Si ¼ ðS0 � SvÞ
.

Sd

; where Si ¼ corrected spectrum;

So ¼ original individual spectrum measured by the NIR device;

Sv ¼ average value of the sample spectrum to be corrected;

Sd ¼ standard deviation of the sample spectrum:

De-trending attempts to remove the additional variation in baseline shift and curvelinearity

by fitting the spectral values of a given i spectrum at k wavelength (Si,k) to a polynomial

Vis/NIRS for rapid DM and carotenoids analyses in cassava
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function–for example, a quadratic function (`Si,k) (Di) and subtracts the function (quadratic

baseline) from the spectral values (Dii) [25]:

‘Si;k ¼ aþ b:kþ c: k2 Di

Si; kðDe� trendÞ ¼ Si; k � ‘Si; k Dii

SNVD does not require external references and each spectrum is treated independently of

others in the training set [24].

MSC. This method attempts to correct for particle size dependence by linearizing each

spectrum to an ideal or reference sample spectrum which in most cases is the average spectrum

obtained from all the data in the training set. The slope and offset of the sample spectra are

adjusted to the ideal average spectra to give the MSC corrected spectrum [24,30]. The process

of MSC correction, assuming the reference is the mean, includes:

1. Reference spectrum calculation: �S j ¼
Pn

i¼1ðSi;jÞ=n

2. Using spectral responses in each spectrum to calculate a linear regression against the corre-

sponding points in the reference spectrum: Si ¼ ai�S þ bi

3. Subtracting the slope from the regression on the original spectrum and dividing with the

offset values to obtain MSC corrected spectrum:

SiðMSCÞ ¼ ðSj � biÞ= ai; where S ¼ spectral responses for all the wavelengths;
�S ¼ average responses of all the training set spectra at each wavelength;

Si ¼ responses for a single spectrum in the training set;

n ¼ number of training spectra;

ai and bi ¼ slope and offset coeff icients of the linear regression of the mean spectrum vector �S versus Sj spectrum:

Derivatives and smoothing. The basic method of derivation is finite difference where:

the first-order derivation, takes the difference between two values with a given gap size while

second order derivative is then estimated by calculating the difference between two successive

points of the first-order derivative spectra [24,31]. The basic derivative is usually not feasible

for most real measurements due to noise inflation and the modified smoothing and derivative

of Norris-Williams approach [24] is used:

1. Smooth the spectra. Average over a given number of points.

xsmooth;i ¼

Pm
j¼� m xorg;iþj

2mþ 1
; where m is the radius of the smoothing window centered on the current measurement point i:

2. Derive at each wavelength. For the first derivative take the difference between two

smoothed values at a given gap distance and for the second-order derivative, take twice the

smoothed value at point i and the smoothed value at a gap distance on either side:

x0i ¼ xsmooth; iþgap � xsmooth; i� gap

x@

i ¼ xsmooth;i� gap � 2:xsmooth;i þ xsmooth;iþgap

Spectra pre-treatments as well as model development were implemented in Win-ISI 4.0

software (Infrasoft International and FOSS, Hillerod, Denmark). The modified Partial Least

Squares (MPLS) algorithm was used to set up a multivariate model based on the reference

Vis/NIRS for rapid DM and carotenoids analyses in cassava

PLOS ONE | https://doi.org/10.1371/journal.pone.0188918 December 11, 2017 6 / 17

https://doi.org/10.1371/journal.pone.0188918


chemical values and the pre-treated spectra. The MPLS is a PLSR modified to scale the refer-

ence data and reflectance data at each wavelength to have a standard deviation of 1.0 [32,33]. It

reduces the spectral data to a few orthogonal combinations (or factors) of absorbance that

account jointly for the most spectral and reference value information [34].

Validation of models

Models were developed using individual calibration sets across locations and years and each

model was used to predict the values of other sets on either the mashed or intact root sample

categories. However, because of the differences in references value standards, the major cali-

bration set from mashed samples developed at CIAT was divided into two—calibration and

validation sets (Table 2) using the naes calibration sampling algorithm [35]—prospectr package

[36] in R for model development and validation. The naes sampling procedure usually uses

cluster analysis to select calibration samples from large multivariate datasets. By retaining prin-

cipal components explaining at least 99 percent of the total variance following a PCA on the

spectral variables, k-means clustering (1000 iterations) was carried out on the principal com-

ponent scores, with a number of clusters equal to the number of desired calibration samples

(Table 2). The calibration set was constituted by drawing samples from the center of each clus-

ter, leaving the remaining samples as validation set. This systematic sampling approach was

used to ensure that the calibration set was representative of the dataset than a random sam-

pling. The calibration set from intact roots in CIAT had small sample size and was only used

to evaluate the possibility of direct unprocessed root assay. In order to perform cross-predic-

tions in the WinISI software, the ASD spectra (350nm– 2500nm in 1nm gap) were trimmed to

a range (400nm– 2500nm in 2nm gaps) compatible with the Win-ISI software.

Reported calibration statistics included the standard deviation (SD), coefficient of determi-

nation (R2), standard error of calibration (SEC) and standard error of cross-validation (SECV).

In each model, leave-one-out cross-validation (iteratively removing one sample and predicting

it using the remaining samples) was used for internal model assessment. The optimum number

of PLS latent variables, which maximizes the covariance between the response and predictor

variables was selected based on the minimum value of SECV. In addition, the ratio of perfor-

mance to deviation (RPD = SD/SECV) as well as standard error of prediction (SEP) and stan-

dard error of prediction corrected for bias [SEP (C)] were used to evaluate the quality of the

prediction models [11,37]. Unlike SEC and SECV, RPD is independent of parameter units and

can therefore be compared between parameters [38].

Samples whose spectra had high Mahalanobis distance (H-outliers) with reference to the

average spectrum or for which the difference between the reference and the predicted value

was much higher than the standard error of cross-validation (SECV) (t-Outliers) were defined

as outliers and removed in the calibration model. As suggested by [39,40], the outlier limits

were set to 10 (H-outliers) and 2.5 (t-outliers). Up to three iterations of outlier identification

and re-calibration [41] were allowed [11,33,38]. Some of the models were stable (no outliers

detected) after one or two iterations.

Table 2. Descriptive statistics for model calibrations and independent set validations for DMC, TCC and ATBC using mashed root samples from

CIAT, 2016.

Traits Calibration set Validation set

No. Mean SD Min. Max. No. Mean SD Min. Max.

DMC 120 36.06 4.31 20.14 43.30 53 36.40 3.84 27.35 44.13

TCC 119 14.94 7.87 1.00 30.84 54 14.85 7.49 0.70 26.15

ATBC 119 9.97 5.89 0.029 21.02 54 10.29 5.85 0.31 20.33

https://doi.org/10.1371/journal.pone.0188918.t002
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All the datasets used for calibration and validation across the two locations–NRCRI and

CIAT, in 2015 and 2016 and from intact or mashed samples can be assessed in the supplemen-

tary file–S1 Datasets.

Correlation of DMC from alternative methods

To assess the relevance of the Vis/NIRS-derived DMC relative to the standard oven-drying

and the conventional gravitational methods, we compared the Vis/NIRS-derived values from

mashed and intact sampling with DMC from oven drying and specific gravity methods from

173 samples at NRCRI in 2016. The oven drying DMC has been described above. Specific grav-

ity DMC is derived from the linear relationship between DMC and specific gravity (SG):

DMC = 158.3SG– 142, where SG is the ratio of weight of the sample in air to the difference

between weights of the sample in air versus water.

The Pearson correlation was used to assess the relationships among the four various DMC

sets–oven drying, SG-derived, mashed NIRS-derived and intact root NIRS-derived DMC. The

regression between specific gravity and DMC for the selected samples was also estimated

[14,15].

Results and discussion

Statistics of reference data

It is important to ensure adequate range and precision of traits in developing NIRS calibra-

tions [42]. The range of the reference values for DMC on both sampling methods—intact

and mashed roots was between 16% and 51% which seems applicable to many breeding

programs for immediate evaluations and feasible DMC improvement (Table 1). The mean

DMC at Umudike in 2015 on intact root samples (U15I) was higher than the mean of the

reference data for the same trait generated at CIAT in 2016 on intact root samples (C16I)

but lower than what was obtained at Umudike in 2016 on both intact and mashed (U16I/

M) root samples (Table 1). The DMC of the intact/mashed (U16I/M) set from NRCRI in

2016 however, was higher than mashed samples from CIAT (C16M). The quantification

approaches for TCC were different at NRCRI and CIAT but the mean TCC at CIAT was

higher (17.95μg g-1and 14.91μg g-1on intact and mashed root samples, respectively) than

NRCRI (2.14μg g-1) from only intact root samples. Varying ranges of carotenoids were

obtained from the HPLC analyses for the carotenoids, although TCC and ATBC were used

for most of the carotenoid analyses.

The use of the naes sampling algorithm enabled an even distribution of the calibration and

validation sets of the mashed samples developed at CIAT in 2016 as seen in their descriptive

statistics–mean, standard deviation and range (Table 2).

Effect of pre-processing methods on calibration statistics for different

calibration sets on intact and mashed root samples

Much emphasis has been laid on the need for optimum mathematical pre-treatment of spectra

prior to model generation in order to minimize the impact of interferences arising from varia-

tion in particle sizes, optical path-length and crystalline forms on spectra [43]. Given that the

portable Vis/NIRS has not been used in trait analyses in cassava, several pre-treatment combi-

nations were tested in order to identify the best combination that would minimize the effect of

interferences on prediction. A total of eight pre-processing combinations were assessed on the

different calibration sets for different traits and from the two sampling methods–intact and

mashed samples. The reported performances of the eight pre-treatment methods are based on
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R2 values for calibration (R2
c) and cross-validation (R2

cv) (Table 3). Usually, R2 of 0.50 has

been classified as useful in the discrimination of concentrations, between 0.60–0.82 for screen-

ing and quantification, 0.83–0.90 is important in most applications, 0.92–0.96 is useful in most

applications especially in quality assurance and above 0.98 is important for all applications

[42]. Also, RPD has been used in evaluating the robustness of a model. RPD values greater

than three (>3.0) has been considered sufficient; 2.0–3.0 (good); 1.5–2.0 (medium) and less

than 1.5 (poor) for analytical quality in various applications [37,41,44].

The average R2
c and R2

cv for DMC across the different calibration sets showed that SNVD

+1111 had the highest average R2
c (94%) and R2

cv (73%), slightly higher than MSC+1111 with

average R2
c of 92% and R2

cv of 72% (Table 3). The average R2
c from SNVD+1111 was also

higher (95%) than MSC+1111 (94%) although the R2
cv using MSC+1111 (86%) was higher

than that of SNVD+1111 (83%) for TCC calibrations. The highest average R2
c (~100%) for

ATBC was obtained from MSC+1111 and MSC+2551 whereas the highest R2
cv (~95%) was

obtained from SNVD (1111 and 2551) and MSC+2551. Across the three traits, overall average

performance from SNVD+1111 (R2
c = 95% and R2

cv = 79%) and MSC+1111 (R2
c = 94% and

R2
cv = 78%) were higher than other pre-treatments. It was observed that R2

c and R2
cv from

other pre-treatment methods on individual sets were in some cases similar or even greater

than values from SNVD+1111 or MSC+1111 but in all cases, performance from SNVD+1111

was still relatively high.

Compared to the no pre-treatment, the number of independent variables (spectra) used in

pre-treatment evaluations often varied with the treatment methods. The average R2
c and R2

cv

values from no pre-treatment for DMC and TCC calibrations were lower than the best pre-

treatments from SNVD+1111 and MSC+1111. However, the R2
cv on individual calibration

sets from no pre-treatment especially with the calibration set from CIAT in 2016 (C16M) was

Table 3. The effect of mathematical pre-treatments on models from different calibration sets.

Pre-trmt. Der.& Sm. R2 U15I U16I C16I U16M C16M U15I C16I C16M C16M

DMC (%) AV. DMC (%) TCC (μg) Av. TCC (μg) ATBC (μg)

NONE 0,0,1,1 R2
c 0.66 0.70 0.54 0.83 0.96 0.74 0.94 0.52 0.97 0.81 0.970

R2
cv 0.55 0.64 0.44 0.79 0.96 0.68 0.91 0.40 0.96 0.76 0.970

SNVD 1,1,1,1 R2
c 0.91 0.90 0.96 0.96 0.99 0.94 0.96 0.90 0.99 0.95 0.987

R2
cv 0.64 0.65 0.55 0.84 0.95 0.73 0.90 0.67 0.93 0.83 0.945

1,5,5,1 R2
c 0.80 0.92 0.60 0.84 0.97 0.83 0.94 0.95 0.96 0.95 0.952

R2
cv 0.64 0.73 0.50 0.80 0.95 0.72 0.90 0.76 0.93 0.86 0.928

2,1,1,1 R2
c 0.81 0.85 0.60 0.93 0.97 0.83 0.91 0.89 0.98 0.93 0.982

R2
cv 0.41 0.37 0.22 0.46 0.55 0.40 0.57 0.62 0.86 0.68 0.847

2,5,5,1 R2
c 0.79 0.86 0.64 0.87 0.97 0.83 0.95 0.84 0.96 0.92 0.994

R2
cv 0.55 0.64 0.48 0.80 0.95 0.68 0.84 0.61 0.92 0.79 0.947

MSC‘ 1,1,1,1 R2
c 0.77 0.91 0.97 0.96 0.99 0.92 0.95 0.89 0.99 0.94 0.995

R2
cv 0.59 0.68 0.57 0.83 0.95 0.72 0.89 0.64 0.94 0.82 0.944

1,5,5,1 R2
c 0.78 0.91 0.75 0.87 0.97 0.86 0.94 0.93 0.95 0.94 0.947

R2
cv 0.60 0.74 0.53 0.80 0.95 0.72 0.89 0.68 0.92 0.83 0.924

2,1,1,1 R2
c 0.79 0.85 0.60 0.93 0.97 0.83 0.90 0.89 0.99 0.93 0.984

R2
cv 0.41 0.41 0.22 0.46 0.56 0.41 0.57 0.62 0.86 0.68 0.852

2,5,5,1 R2
c 0.79 0.86 0.64 0.87 0.97 0.83 0.95 0.84 0.96 0.92 0.995

R2
cv 0.58 0.64 0.48 0.80 0.95 0.69 0.85 0.61 0.92 0.79 0.951

U15I = Calibration set on intact root samples at Umudike in 2015; U16I = Calibration set on intact root samples at Umudike in 2016; U16M = Calibration set

on mashed root at Umudike in 2016; C16I = Calibration set on intact roots from CIAT in 2016; C16M = Calibration set on mashed roots from CIAT in 2016.

https://doi.org/10.1371/journal.pone.0188918.t003
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in some cases, higher than the R2
cv from any of the pre-treatment methods. For example, the

highest average R2
cv (97%) for ATBC was obtained from no pre-treatment.

Percentage improvement of models arising from pre-treatments was higher using intact

than mashed root samples. This could be attributed to higher levels of interference when using

intact root than mashed samples.

Therefore, based on the R2
c and R2

cv performances, it seemed that the most promising pre-

treatment using the Vis/NIRS device was SNVD+1111. The high performance of SNVD has

been previously reported [29] for the same traits in cassava although using a different instru-

ment and on different derivative and smoothing gaps (2,5,5,1) [11,38]. It is therefore necessary

to adopt the most promising pre-treatment when working with NIRS devices.

Calibration models on intact and mashed root samples

Given the higher measurement speed and minimum processing of root samples using intact

roots, this method would be highly desirable with acceptable model performance. Higher accu-

racies with ground/processed samples have been obtained in similar settings [22,37] and the

correlation between predictions from intact and ground samples could be high enough for

routine screening purposes [20,22].

Using RPD as a calibration statistics to assess models developed from mashed and intact

roots, the result showed that the RPD values for DMC from mashed samples were 2.50 and

4.32 from U16M and C16M calibrations, respectively (Table 4A). The RPD from intact root

samples on both years– 2015 and 2016 at Umudike was 1.68 (Table 4B). For better comparison

using the same number of clones from CIAT in 2016 from the mashed samples (C16M66) and

intact samples (C16I66), the calibration from mashed samples was evidently higher than that

of intact root samples (Table 4A and 4B). Similar results were obtained when using the same

number of samples from NRCRI in 2016 (Result not presented). However, the R2
c of models

from intact roots were still high (>86%) with R2
cv ranging from 55% to 65% (Table 4B).

The calibration performance for carotenoids showed that the R2
c for most of the caroten-

oids was 99% except in alpha-carotene (80%), lutein (88%), phytoene (91%) and violin (94%),

which are found at low concentration in cassava roots (S1 Table). However, the R2
cv for these

traits varied from 41% in phytoene to 95% in ATBC (S1 Table and Table 5 respectively). Simi-

lar to the R2
cv, the RPD was lowest in phytoene (1.31) and highest in ATBC (4.29). Comparing

TCC calibration from mashed root at CIAT to TCC from intact root at NRCRI in 2015, both

calibrations had very good calibration performances (Table 5A and 5B) (Figs 1 and 2). How-

ever, the calibration performance from C16M (R2
c = 99% and R2

cv = 93%; RPD = 3.79) was

higher than U15I (R2
c = 96% and R2

cv = 90%; RPD = 3.16).

Similar to results obtained for DMC calibration using the same number of individuals for

comparison between calibrations from mashed and intact root samples, the calibration

Table 4. Calibration assessments of DMC from different calibration sets on mashed (a.) and intact (b.) root samples for DMC.

Calibration set SEC R2
c SECV R2

cv SD RPD

a. Calibrations of DMC on mashed root samples

U16M 0.91 0.96 1.87 0.84 4.67 2.50

C16M 0.41 0.99 0.95 0.95 4.10 4.32

C16M66 0.52 0.99 1.04 0.94 4.24 4.08

b. Calibrations of DMC on intact root samples

U15I 2.16 0.91 4.37 0.64 7.34 1.68

U16I 1.78 0.86 2.80 0.64 4.71 1.68

C16I66 0.77 0.96 2.59 0.55 3.86 1.49

https://doi.org/10.1371/journal.pone.0188918.t004
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statistics for carotenoids from mashed calibrations were still better than the calibrations from

intact root (Table 6A and 6B and S2 Table). The R2
c from mashed samples varied between

73% and 99% while intact root calibrations were greater than 67% except in an extreme case

where lutein was less than 50%. The R2
cv varied from 33% to 93% in mashed calibrations and

10% to 81% in intact root calibrations. Various RPD values were obtained from the two sam-

pling methods with values from mashed roots still higher than intact root calibrations.

Higher prediction models from ground against whole or intact samples have been reported

[21,22,37] and could be attributed to higher scattering noise for spectra obtained from intact

samples [21] even though the correlations between derived values from ground and intact

samples are usually high [21,22]. Also, the discrepancy between models from the two sampling

methods are minimal with small and less heterogeneous grains [21]. This means that reducing

interferences among other things such as heterogeneity in the case of cassava [19] could

improve accuracy from intact samples.

Validation of calibration models

Validation is very important in the development of a quantitative model using independent

sets of samples different from the data employed in model construction [45]. Individual mod-

els developed from different calibration sets from mashed or intact root samples were used to

predict the values of other sets in the same intact or mashed sample categories. As would be

Table 5. Calibration assessments of carotenoids from mashed (a.) and intact (b.) root samples.

Cal. set Traits (μg) No. Range Mean SD SEC R2
c SECV R2

cv RPD

a. Calibration for carotenoids from mashed samples using the entire calibration set from CIAT

C16M TCC 164 0.70–28.87 14.84 7.32 0.64 0.99 1.93 0.93 3.79

ATBC 161 0.03–20.33 10.05 5.53 0.64 0.99 1.29 0.95 4.29

b. Calibration for TCC using intact root samples from Umudike in 2015

U15I TCC 102 0.10–8.82 2.45 1.99 0.38 0.96 0.63 0.9 3.16

https://doi.org/10.1371/journal.pone.0188918.t005

Fig 1. Predicted plotted against observed TCC in the calibration set, mashed samples, CIAT 2016.

https://doi.org/10.1371/journal.pone.0188918.g001
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expected, especially where there were obvious differences in reference value protocols, the

cross-prediction statistics based on coefficient of determination (R2
p) were less than 50%

except in the case of using U16M for calibration and C16M for validation on DMC calibration

(Table 7).

For independent validation of models, the mashed calibration set developed at CIAT was

trimmed and divided into calibration and validation sets for the three traits–DMC, TCC and

ATBC. Previously, the effect of trimming on the Vis/NIRS data was evaluated by comparing

calibrations developed from untrimmed and trimmed sets. The result showed that there was

no obvious variation or trend between the trimmed and untrimmed data sets (S3 Table).

Using the trimmed calibration and validation sets, models were built using the calibration set

with larger number of samples and used to predict an independent validation set with fewer

training set (Scenario 1) and conversely, using the validation set to predict the values of the

larger set (Scenario 2). The average values from the two scenarios were used for independent

calibration and validation of models for the three traits. The use of larger number of calibra-

tion (Scenario 1) was slightly higher for DMC and ATBC than TCC (Table 8). This probably

Fig 2. Predicted plotted against observed TCC in the calibration set, intact root samples, NRCRI 2015.

https://doi.org/10.1371/journal.pone.0188918.g002

Table 6. Carotenoids calibrations from mashed (a) and intact (b) root samples from CIAT using the same sample size (n = 66).

Cal. set Traits No. Range Mean SD SEC R2
c SECV R2

cv RPD

a. Calibration of carotenoids on mashed samples

C16M66 TCC 63 10.09–25.81 17.72 3.67 0.42 0.99 1.23 0.89 2.98

ATBC 59 4.91–16.42 11.40 3.17 0.25 0.99 0.82 0.93 3.87

b. Calibration of carotenoids on intact root samples

C16I66 TCC 64 10.09–26.15 17.83 3.74 1.16 0.90 2.13 0.67 1.76

ATBC 63 4.91–19.97 11.94 3.53 0.89 0.94 1.53 0.81 2.31

https://doi.org/10.1371/journal.pone.0188918.t006
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highlights the role of calibration size on prediction accuracy. The coefficient of determination

for prediction (R2
p) ranged from 76% to 91%. On the average, R2

p for ATBC was highest

(91%) followed by TCC (88%) and DMC (80%). The same pattern was observed in RPD distri-

bution. The standard error of prediction corrected for bias SEP(C) was lowest in ATBC

(1.65 μg) and highest in TCC (2.36 μg) while DMC was 1.77 percent. The high R2
p values

(>80%) showed that the handheld Vis/NIRS device could be useful in quality and standardized

phenotyping in cassava breeding especially for DMC, TCC and ATBC.

Correlations of NIRS analyzed, specific gravity and oven-drying dry

matter content (DMC) methods

Compared to the current regression equation used by many breeding programs, DMC =

158.3SG– 142 (R2 = 0.84) [14–16], the relationship between DMC and SG obtained from the

NRCRI dataset was given as DMC = 67.33SG– 37.03 (R2 = 0.23). The correlations among the

four different DMC methods showed positive relationships among the different methods

(Table 9). The highest correlation (0.98) was between oven-drying method and NIRS-derived

DMC on mashed root samples. The correlation between oven-drying method and NIRS-

derived values from intact root was also very high (0.95) and similar to the relationship

between NIRS on intact and mashed root samples (0.94). There was a moderate correlation

(0.49) between DMC by oven-drying and specific gravity methods.

Although it is very important to standardize the drying conditions for oven-drying method

in different breeding programs, it might be necessary for each system to review the relation-

ship between specific gravity and reference DMC by oven-drying and establish protocols for

accurate sampling. The low R2 value obtained in this study could be attributed to the sampling

protocols, weight and number of roots used for specific gravity measurement [14,16]. Field-

based specific gravity and for very large population is usually carried out before peeling and

Table 7. Validation using different calibration sets on intact and mashed root samples for DMC.

Calibration set Validation set SEP SEP(C) R2

a. Cross-calibration set validations on intact root samples

U15I U16I 133.37 7.45 0.03

U15I C16I 147.18 6.07 0.04

U16I U15I 65.48 17.82 0.28

U16I C16I 7.91 3.51 0.39

C16I U15I 28.65 19.20 0.18

C16I U16I 12.50 7.29 0.19

b. Cross-calibration set validations on mashed root samples

C16M U16M 6.81 4.38 0.48

U16M C16M 3.10 2.59 0.72

https://doi.org/10.1371/journal.pone.0188918.t007

Table 8. Independent validation of models for DMC, TCC and ATBC.

Trait Cal Val SEP SEP(C) R2
p SD RPD

DMC Cal Val 1.47 1.46 0.836 3.4 2.3

Val Cal 2.10 2.08 0.763 4.14 2.0

TCC Cal Val 2.64 2.52 0.859 6.62 2.6

Val Cal 2.23 2.19 0.901 6.28 2.9

ATBC Cal Val 1.70 1.59 0.908 5.21 3.3

Val Cal 1.70 1.71 0.902 4.8 2.8

https://doi.org/10.1371/journal.pone.0188918.t008
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cassava peels have been reported to constitute as high as 7.9% of the root size [16] and could

even be higher with soil particles and fibrous neck still attached to the root. This could reduce

the reported relation between DMC derived by specific gravity and oven-drying which in most

cases was carried out after peeling [16]. On the other hand, the use of Vis/NIRS, could help to

address the challenges associated with the existing methods while improving the overall quality

of phenotyping in cassava.

Conclusions

From the results of this study, the choice of mathematical pre-processing is a very important

step in developing a robust calibration model and the choice of pre-treatment method might

be influenced by sampling methods. Calibration models developed with mashed samples were

clearly better than intact root samples although the calibration performance for some of the

intact root models were still adequate for screening purposes. Also, since the correlation

between DMC analysis on intact and mashed root samples was very high, the Vis/NIRS could

be employed for initial screening in the field before further extensive laboratory analyses.

However, with improved spectra collection protocols and increasing the number of scanning

points per root, we hope to further improve calibration performance from intact root samples

given that mashing requires additional resources including time and cost of harvesting. The

handheld Vis/NIRS has great potential for standardized and unbiased analyses of traits in cas-

sava breeding. It provides a good alternative for the evaluation and improvement of many

novel traits which have been difficult or costly to measure before now. In addition to being a

non-destructive analytical tool that only requires minimal sample preparation, the portable

NIRS is very useful in direct field analyses and will help reduce sample degradation. When

compared to the conventional laboratory methods for DMC and carotenoids in cassava breed-

ing, NIRS technique is rapid and cost-effective. It is a good alternative to quality and unbiased

evaluation of traits especially in low-cost breeding programs.

Supporting information

S1 Datasets. All the calibration and validation datasets from NRCRI and CIAT in 2015

and 2016 and from either intact or mashed root samples.

(ZIP)

S1 Table. Calibration for carotenoids from mashed samples using the entire calibration set

from CIAT.

(DOCX)

Table 9. Correlations among the different DMC methods.

NIRSI NIRSM DMV DMG

NIRSI 1

NIRSM 0.94 1

DMV 0.95 0.98 1

DMG 0.54 0.49 0.49 1

NIRSI = DMC by portable NIRS on intact root samples; NIRSM = DMC by portable NIRS on mashed root

samples; DMV = DMC by oven method; DMG = DMC by specific gravity method.

https://doi.org/10.1371/journal.pone.0188918.t009
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using common samples (n = 66).
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S3 Table. Calibrations for DMC, TCC and ATBC using trimmed and untrimmed ASD

spectra.
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23. Pizarro C, Esteban-Dı́ez I, Nistal AJ, González-Sáiz JM. Influence of data pre-processing on the quanti-

tative determination of the ash content and lipids in roasted coffee by near infrared spectroscopy. Anal

Chim Acta. 2004; 509: 217–227. https://doi.org/10.1016/j.aca.2003.11.008

24. Rinnan Å, Berg F van den, Engelsen SB. Review of the most common pre-processing techniques for

near-infrared spectra. TrAC—Trends in Analytical Chemistry. 2009. pp. 1201–1222. https://doi.org/10.

1016/j.trac.2009.07.007

25. Blanco M, Coello J, Iturriaga H, Maspoch S, De La Pezuela C. Effect of data preprocessing methods in

near-infrared diffuse reflectance spectroscopy for the determination of the active compound in a pharma-

ceutical preparation. Appl Spectrosc. 1997; 51: 240–246. https://doi.org/10.1366/0003702971939947

Vis/NIRS for rapid DM and carotenoids analyses in cassava

PLOS ONE | https://doi.org/10.1371/journal.pone.0188918 December 11, 2017 16 / 17

https://doi.org/10.1016/j.foodchem.2005.02.006
https://doi.org/10.1016/j.foodchem.2005.02.006
https://doi.org/10.1111/j.1744-7909.2012.01116.x
http://www.ncbi.nlm.nih.gov/pubmed/22420640
https://doi.org/10.1093/bfgp/elq001
http://www.ncbi.nlm.nih.gov/pubmed/20156985
https://doi.org/10.1631/jzus.2006.B0475
https://doi.org/10.1631/jzus.2006.B0475
http://www.ncbi.nlm.nih.gov/pubmed/16691642
http://dx.doi.org/10.1016/S0165-9936(02)00404-1
https://doi.org/10.1016/j.foodchem.2013.11.081
http://www.ncbi.nlm.nih.gov/pubmed/24423555
https://doi.org/10.1007/s00122-015-2555-4
http://www.ncbi.nlm.nih.gov/pubmed/26093610
http://hdl.handle.net/2077/20091
https://doi.org/10.2135/cropsci1987.0011183X002700010018x
https://doi.org/10.2135/cropsci1987.0011183X002700010018x
https://doi.org/10.1111/j.1439-0523.2011.01873.x
https://doi.org/10.1002/jsfa.2371
https://doi.org/10.2135/cropsci2015.11.0701
http://r4d.dfid.gov.uk/pdf/outputs/misc_crop/ortiz-et-al.pdf
http://r4d.dfid.gov.uk/pdf/outputs/misc_crop/ortiz-et-al.pdf
https://doi.org/10.1094/CCHEM.1999.76.4.552
https://doi.org/10.1021/jf061054g
http://www.ncbi.nlm.nih.gov/pubmed/17061827
http://www.nrcresearchpress.com/doi/pdf/10.4141/P04-195
https://doi.org/10.1016/j.aca.2003.11.008
https://doi.org/10.1016/j.trac.2009.07.007
https://doi.org/10.1016/j.trac.2009.07.007
https://doi.org/10.1366/0003702971939947
https://doi.org/10.1371/journal.pone.0188918


26. Ceballos H, Morante N, Sánchez T, Ortiz D, Aragón I, Chávez AL, et al. Rapid cycling recurrent selec-
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