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Drug‑associated cues and drug 
dosage contribute to increased 
opioid seeking after abstinence
Mary Tresa Zanda1,2, Gabriele Floris1,2 & Stephanie E. Sillivan1,2*

Patients with opioid use disorder experience high rates of relapse during recovery, despite successful 
completion of rehabilitation programs. A key factor contributing to this problem is the long‑lasting 
nature of drug‑seeking behavior associated with opioid use. We modeled this behavior in a rat drug 
self‑administration paradigm in which drug‑seeking is higher after extended abstinence than during 
the acute abstinence phase. The goal of this study was to determine the contribution of discrete or 
discriminative drug cues and drug dosage to time‑dependent increases in drug‑seeking. We examined 
heroin‑seeking after 2 or 21 days of abstinence from two different self‑administration cue‑context 
environments using high or low doses of heroin and matched animals for their drug intake history. 
When lower dosages of heroin are used in discriminative or discrete cue protocols, drug intake history 
contributed to drug‑seeking after abstinence, regardless of abstinence length. Incubation of opioid 
craving at higher dosages paired with discrete drug cues was not dependent on drug intake. Thus, 
interactions between drug cues and drug dosage uniquely determined conditions permissible for 
incubation of heroin craving. Understanding factors that contribute to long‑lasting opioid‑seeking can 
provide essential insight into environmental stimuli and drug‑taking patterns that promote relapse 
after periods of successful abstinence.

The prevalence of opioid use disorder (OUD) and overdose deaths involving opioids has drastically increased in 
the past 2  decades1. In the United States, nearly 130 people die of opioid overdose every day and approximately 
$78 billion will be spent annually treating opioid use  disorder2,3. More than 80% of OUD patients relapse within 
the first  year4,5. For many individuals, drug craving persists over time and stable recovery is not attained until 
nearly 5 years after the last drug  exposure5. Understanding the neurobiology that contributes to progressive and 
perseverant drug-seeking is critical for the expansion of strategies to treat relapse in patients suffering from OUD.

Variability in animal, as well as human, behavior is inevitable and finding conditions that contribute to high 
or low levels of drug-seeking may reveal important insights into treating different populations of OUD patients. 
For many drug classes, drug-seeking increases during abstinence, growing stronger over time for individuals 
recovering from substance use  disorder6–10. This phenomenon is referred to as the ‘incubation of drug craving’ 
and can be modeled successfully in rodents for many drug types, including  opioids11. Time-dependent increases 
in seeking for the highly addictive opioid heroin have been well-described in the  literature12. Initially, continuous 
long-access exposure to opioids (e.g. 9 hours [h] per day) was employed to induce incubation of heroin  craving12. 
More recently, incubation for heroin seeking has been reported in rat models after continuous daily 6 h and even 
3 h sessions using operant  conditioning13–16. This translates to human drug-seeking patterns in which humans 
may be addicted to heroin but are not continuously administering it while they are  awake17.

Rat self-administration paradigms described in the literature that elicit incubation of heroin craving typically 
use discrete cues in conjunction with drug infusion, leading to the formation of a learned drug-cue association. 
Discrete cues are neutral stimuli, such as a light or tone, that become conditioned reinforcers when paired with a 
drug infusion during a self-administration protocol. These cues are then presented in the absence of the drug dur-
ing ‘relapse’ tests to assess the incubation of heroin  craving18. However, discriminative cues are also present prior 
to drug-seeking, as they signal for drug availability, and represent a critical target for therapeutic development. In 
rat self-administration protocols, discriminative drug cues may also be light conditions or tones but importantly, 
the cue is not temporally paired with a drug infusion. Instead, discriminative drug cues are environmental stimuli 
that function as ‘occasion setters’ to indicate whether the conditions are permissible for engaging in drug  taking19. 
While the contribution of discrete and discriminative cues to incubation of cocaine craving has recently been 
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described, the contribution of the two types of cues to the development of time-dependent heroin seeking has 
not been examined. In addition, incubation behaviors have not been studied in low-dose (less than 0.05 mg/kg/
infusion) heroin self-administration paradigms. Yet, heroin is used in a range of doses by humans and moreover, 
heroin acquisition in rat self-administration paradigms is supported at lower  doses20–22. The goal of this study 
was to determine the contribution of drug-associated cues and drug dosage to the incubation of heroin craving. 
After successfully modeling time-dependent increases in heroin seeking utilizing a well-established incubation 
protocol that paired discrete visual and auditory cues with the drug infusion, we assessed the relapse behavior 
in animals that self-administered lower dosages of heroin in the same context and when cues were manipulated 
as discriminative stimuli signaling drug availability. Our data demonstrated that incubation in rat heroin self-
administration paradigms was shaped by drug dose and drug cues. Distinct interactions between drug dosage 
and drug cues determined whether drug seeking remained steady throughout abstinence or increased over time. 
These findings provide insight into the behavioral mechanisms of the incubation of heroin craving, suggesting 
that not all learned experiences are able to trigger exacerbation of long-lasting drug-seeking behavior. Similarly, 
opioid users may process drug seeking cues differently depending on the extent of their drug usage.

Results
Experiment 1: Heroin seeking increased after extended abstinence from higher infusion 
doses. Incubation of heroin seeking has been demonstrated in many labs using modified experimental set-
tings, including a range of doses from 0.05 to 0.1 mg/kg/infusion, 3–9 h sessions and various combinations of 
visual cues with  tones12,13,16,23,24. We established a well-described paradigm of incubation of opioid craving in 
our laboratory using a rat model of heroin self-administration and a standard dose of 0.075 mg/kg heroin per 
 infusion16,24–26 (Fig. 1B–D). This protocol utilized both auditory and visual discrete cues during drug infusion 
and resulted in stable self-administration of heroin in 6-h daily sessions over 10 days (Fig. 1B, C). Rats quickly 
developed a significant preference for the active lever over the inactive lever that was maintained for the duration 
of acquisition. A significant main effect of lever and a time × lever interaction were observed (two-way repeated 
measures ANOVA, main effect of lever: F(1,30) = 30.23; p < 0.0001; time  ×  lever interaction: F(9,270) = 3.04; 
p = 0.0018; Fig. 1C). After acquisition, rats were returned to their home cage for either 2 or 21 days of forced 
abstinence. To assess time-dependent changes in drug-seeking after forced abstinence, rats were placed back in 
the self-administration chambers for a 90-min relapse test. All the contextual, visual and auditory cues present 
during self-administration were available during the relapse test, but active lever pressing did not result in drug 
infusions. As previously described in the literature, extended abstinence from the 0.075 mg/kg/infusion heroin 
dose resulted in increased drug seeking during the relapse test (unpaired t test of 2 vs. 21 day relapse, active lever: 
t(13) = 4.827; p = 0.0003; inactive lever: t(13) = 2.932; p = 0.012; Fig. 1D).

We next examined the robustness of opioid incubation after a low-dose protocol, below the threshold of 
what has previously been described. In a separate group of animals, rats self-administered heroin in 6-h daily 
sessions at a dose of 0.03 mg/kg/infusion under the same experimental conditions (Fig. 1A, E–F). Rats easily 
discriminated the active versus inactive lever and a significant main effect of lever was observed over the course 
of the 10 day protocol but not a time × lever interaction (two-way repeated measures ANOVA, main effect of 
lever: F(1,48) = 9.44; p = 0.0035; time × lever interaction: F(9,432) = 1.767; p = 0.0725) (Fig. 1F). However, the 
90-min relapse test revealed no significant differences in active lever presses at 2 versus 21 days of abstinence 
from the lower 0.03 mg/kg/infusion heroin dosage (Fig. 1G). While we did not detect incubation behavior with 
this low dose, it is worth noting that animals displayed perseverative behavior after 21 days of abstinence and had 
significantly more active lever presses at the 60–90 min time block of the relapse test than animals that underwent 
2 days of abstinence (2 day mean = 4.77 vs. 21 day mean = 20.63; p < 0.001; Supplemental Fig. 2). Thus, incubation 
of heroin craving from discrete drug cues was not observed at the 0.03 mg/kg infusion dosage.

Experiment 2: Discriminative drug cues elicited steady heroin seeking after extended absti‑
nence. We examined the requirement of specific paired cues for the establishment of the incubation of her-
oin seeking behavior by manipulating the cue light, using it as a discriminative cue for drug availability instead of 
pairing it with drug infusion (Fig. 2A). In experiment 2, rats self-administered 0.075 mg/kg/infusion or 0.03 mg/
kg/infusion in 6-h daily sessions but the house light remained on during the session (Fig. 2A). Drug availability 
was denoted by the presence of a light above the active lever and active lever pressing resulted in infusion of 
heroin but no tone cue. A significant main effect of lever and a time × lever interaction were observed when 
the 0.075 mg/kg dosage was used in experiment 2 (two-way repeated measures ANOVA, main effect of lever: 
F(1,30) = 23.48; p < 0.0001; time × lever interaction: F(9,270) = 3.34; p = 0.0007) (Fig. 2C). When animals were 
presented with discriminative drug cues after abstinence from the high dosage, incubation was not observed 

Figure 1.  Establishment of a rat incubation of opioid craving protocol with discrete drug cues. (A) An overview 
of the protocol to measure drug seeking after abstinence from self-administration of heroin paired with discrete 
drug cues. Animals underwent surgery for jugular vein catheterization then acquired heroin self-administration 
in 6-h daily sessions for 10 days. A relapse test was performed after 2 or 21 days of abstinence from heroin. 
During acquisition, the house light signaled the availability of the drug. Active lever pressing resulted in 
illumination of a light above the active lever and an auditory cue during drug infusions. A 20 second (s) timeout 
period followed each infusion, in which no lights were illuminated in the chamber. (B, C, E, F) The number 
of infusions and lever presses during heroin self-administration at a 0.075 mg/kg/infusion dosage (B, C) and 
a lower 0.03 mg/kg/infusion dosage (E, F). Error ± standard error of the mean (SEM). (D, G) Lever pressing 
during the relapse test after forced abstinence from the 0.075 mg/kg/infusion dosage (D) and the 0.03 mg/kg/
infusion dosage (G). *p < 0.05.
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Figure 2.  Discriminative cues produce steady drug-seeking during abstinence. (A) An overview of the protocol 
to measure drug seeking after abstinence from heroin self-administration using discriminative drug cues. 
Animals underwent an identical experimental protocol as described in Experiment 1 except with modified 
light and tone cues. (B, C, E, F) The number of infusions and lever presses during heroin self-administration 
at a 0.075 mg/kg/infusion dosage (B, C) and a lower 0.03 mg/kg/infusion dosage (E, F). (D, G) Lever pressing 
during the relapse test after forced abstinence from the 0.075 mg/kg/infusion dosage (D) and the 0.03 mg/kg/
infusion dosage (G). Error ± SEM. *p < 0.05.
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(unpaired t test of 2 vs. 21 day relapse, active lever at 0.075 mg/kg/infusion dosage: t(14) = 1.088; p = 0.2948; 
Fig. 2D).

When the lower 0.03 mg/kg/infusion dosage of heroin was used in the discriminative drug cue protocol 
during experiment 2, we observed a significant time × lever interaction but no main effect of lever (two-way 
repeated measure ANOVA: F(9,270) = 2.766; p = 0.0041; Fig. 2F). Similar to the 0.075 mg/kg/infusion heroin 
dose, incubation of craving was not observed after 21 days of abstinence from the lower 0.03 mg/kg/infusion 
dosage as drug seeking remained steady at both time points tested (unpaired t test of 2 vs. 21 day relapse, active 
lever at 0.03 mg/kg/infusion dosage: t(13) = 0.027; p = 0.979; Fig. 2G).

Lack of incubation with low heroin doses and discriminative cues cannot be attributed to dif‑
ferences in learning. Using published criterion that acquisition is achieved if the animal makes at least 10 
responses on the active lever and has at least a 2:1 ratio in active: inactive lever presses for the last three consecu-
tive sessions, we measured the number of rats that acquired self-administration across the two experiments at 
two heroin  doses21,27. When the 0.075 mg/kg/infusion dosage was used with discrete drug cues in experiment 1, 
100% of rats acquired self-administration (Table 1). Reducing the dosage to 0.03 mg/kg/infusion lowered acqui-
sition to 96%. Using only discriminative drug cues in experiment 2 further reduced acquisition to 93.8% for the 
0.075 mg/kg/infusion dose and 75% for the lower 0.03 mg/kg/infusion dose.

To rule out differences in incubation that may be attributed to inadequate acquisition, we compared the 
acquisition and relapse behavior of animals from experiments 1 and 2 that met the acquisition criteria. Animals 
in experiment 1 self-administered a higher number of infusions at the 0.03 mg/kg heroin dosage than their higher 
dosage counterparts and overall were more variable. The range of infusions over the last 3 days of self-admin-
istration in animals that met acquisition criteria was 16–152 with the 0.03 mg/kg heroin dosage, while animals 
had an infusion range of 16–47 with the higher 0.075 mg/kg heroin dose under the same protocol (Table 1). 
After the initial day, rats that acquired self-administration stabilized to an average of ~ 45 infusions during the 
last 3 days of self-administration, versus the ~ 30 infusions found with the high dose (Table 1). In experiment 2, 
the range of infusions over the last three days of self-administration in animals that met acquisition criteria was 
15–58 with the 0.075 mg/kg heroin dosage. On the contrary, even if most rats acquired self-administration of 
heroin with the 0.03 mg/kg heroin dosage and discriminative cues, a large amount of variability was observed in 
the number of infusions made by animals that met acquisition criteria, ranging from 6.7 to 215.7 during the last 
3 days of self-administration (Table 1). We reanalyzed the relapse behavior of animals from experiments 1 and 
2, excluding animals that did not meet the acquisition criteria of two-fold more active lever presses than inactive 
lever presses. Importantly, similar levels of active lever pressing were observed as reported above in Figs. 1D, G 
and 2D, G (Supplemental Fig. 3).

As mentioned above, a high amount of variability was observed with the 0.03 mg/kg/infusion heroin dosage 
in both protocols and the overall range of active lever presses and infusions was much broader for self-adminis-
tration under this dosage. While the number of infusions, active lever presses and inactive lever presses over the 
last 3 days of acquisition did not differ significantly between the four experimental conditions (Kruskal–Wallis 
test, infusions: H(3) = 2.64, p = 0.451; active lever presses: H(3) = 0.20, p = 0.978; inactive lever presses: H(3) = 7.38, 
p = 0.061), animals in the 0.075 mg/kg dose groups administered a higher total amount of heroin, regardless of 
the type of cues paired with heroin infusion (Kruskal–Wallis test of total heroin intake: H (3) = 21.15, p < 0.0001; 
Dunn’s post-hoc tests: Exp 1, 0.075 mg/kg dose vs. 0.03 mg/kg dose, p = 0.003; Exp 1, 0.075 mg/kg dose vs. Exp 
2, 0.03 mg/kg dose, p = 0.003; Exp 2, 0.075 mg/kg dose vs. 0.03 mg/kg dose, p = 0.017; Exp 1, 0.03 mg/kg dose vs. 
Exp 2, 0.075 mg/kg dose, p = 0.0193). To rule out differences in learning that may attribute to failure to acquire 
self-administration or variation in total number of infusions, we analyzed the number of lever presses during the 
time-out period, which occurred during the 20 seconds (s) immediately following a drug infusion, for all ani-
mals under both dosage and protocol conditions (Fig. 3A). Similar amounts of time-out pressing were observed 
for experiments 1 and 2, despite the differences in discrete and discriminative cues used during the two self-
administration protocols. A significant main effect of time was observed but no time by dose and cue interactions 
were observed (two-way repeated measures ANOVA, main effect of time: F(9, 621) = 3.67, p = 0.0002; Fig. 3A).

Because animals in low dosage experiments had more time-out period exposure due to administration of a 
higher number of infusions, we calculated the number of lever presses during the time-out period divided by 
the number of infusions for each experimental protocol. Similarly, no time by dose and cue interactions were 

Table 1.  Descriptive statistics for animals that met criteria of two-fold more lever pressing on the active versus 
inactive lever.

% Meeting 
criteria

Active lever presses (last 3 days) Inactive lever presses (last 3 days) Infusions (last 3 days)

Mean Max Min Mean Max Min Mean Max Min

Experiment 1: discrete drug cues

0.075 mg/kg heroin dose-discrete drug cues 100 (16/16) 92.2 260.3 19.7 4.8 14.0 0.3 29.6 47.0 16.0

0.03 mg/kg heroin dose-discrete drug cues 96 (24/25) 265.8 2303.0 24.3 9.3 53.7 1.0 45.3 152.0 16.0

Experiment 2: discriminative drug cues

0.075 mg/kg heroin dose-discriminative drug cues 93.8 (15/16) 86.4 274.0 21.0 9.4 26.0 2.0 32.4 58.0 15.0

0.03 mg/kg heroin dose-discriminative drug cues 75 (12/16) 369.2 2335.0 7.7 8.6 28.3 1.7 66.3 215.7 6.7
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observed but a significant main effect of time was observed (Two-way Repeated measures ANOVA, main effect 
of time: F(9,621) = 3.77, p = 0.0002; Fig. 3B). These data indicated that differences in incubation of opioid craving 
in the four different experimental conditions cannot be attributed to failure to learn the acquisition protocol.

Contribution of cues and heroin intake to incubation of opioid craving. There is a range of 
self-administration behavior that exists for humans and preclinical rodent paradigms, with some animals self-
administering more drug infusions than others. We examined the contribution of varied heroin intake to relapse 
for both heroin dosages in the discriminative or discrete drug cue protocols. First, we compared across protocols 
by examining the relationship between the number of infusions on the last 3 days of self-administration, as well 
as the heroin intake during self-administration, to relapse. Because there was no significant difference in active 
lever pressing for animals in Experiment 1 with the 0.03 mg/kg dosage or for Experiment 2 at any dosage, we 
examined whether the amount of lever pressing during the relapse test correlated to total drug intake or num-
ber of infusions administered, regardless of the length of abstinence. Total heroin intake and number of infu-
sions were both significantly correlated to relapse lever pressing for the lower 0.03 mg/kg heroin dosage in both 
experiment 1 and 2. The correlation for the 0.075 mg/kg heroin dosage was not significant, although a strong 
trend was observed with discriminative cues in experiment 2 (Pearson correlation, 90 min relapse test vs total 
heroin intake: Experiment 1: 0.075 mg/kg, Pearson r = 0.395, p = 0.145; 0.03 mg/kg, Pearson r = 0.444, p = 0.026; 
Experiment 2: 0.075 mg/kg, Person r = 0.489, p = 0.054; 0.03 mg/kg, Pearson r = 0.826, p = 0.00015; 90 min relapse 
test vs average infusions: Experiment 1: 0.075 mg/kg, Pearson r = 0.279, p = 0.313; 0.03 mg/kg, Pearson r = 0.467, 
p = 0.019; Experiment 2: 0.075  mg/kg, Pearson r = 0.456, p = 0.076; 0.03  mg/kg, Pearson r = 0.888, p < 0.0001) 
(Fig. 4A–H). Correlation of average total active lever pressing during acquisition to relapse pressing resulted 
in similar values (Pearson correlation, 90 min relapse test vs average total active lever presses: Experiment 1: 
0.075 mg/kg, Pearson r = 0.4207, p = 0.1770; 0.03 mg/kg, Pearson r = 0.3612, p = 0.076; Experiment 2: 0.075 mg/
kg, Pearson r = 0.519, p = 0.0394; 0.03 mg/kg, Pearson r = 0.816, p = 0.0002). These results suggested that higher 
amounts of drug intake contributed to relapse behaviors when only discriminative cues were present, regardless 
of the drug infusion dosage. When discrete cues were presented with a low heroin dose, the total amount of drug 
self-administered promoted relapse and heavier use lead to higher more relapse behavior. Conversely, when 
discrete cues were presented in conjunction with a high dose of heroin, the total drug intake was irrelevant and 
drug craving increased in a time-dependent manner during abstinence.

We further explored this hypothesis to determine if the lack of incubation of opioid craving from discrete 
cues in the 0.03 mg/kg dosage was simply a result of less drug intake. To investigate this notion, we controlled 
for variation in heroin intake by analyzing the relapse behavior between animals that self-administered similar 
amounts of total heroin. We compared the relapse behavior for animals that self-administered higher amounts 
of total heroin during acquisition versus those that self-administer lower total amounts. We divided animals 
from each experiment and dosage into 4 groups: 2 days abstinence, high total heroin intake; 21 days abstinence, 
high total heroin intake; 2 days abstinence, low total heroin intake; 21 days abstinence, low total heroin intake. 
High heroin intake was defined as animals that self-administered more heroin than the median of all animals 
in each experimental protocol separately, while low heroin intake was defined as animals that self-administered 
less than the median of their respective experimental group.

Figure 3.  The amount of time-out pressing was not changed by drug dosage or drug-associated cues. (A) The 
number of lever presses on the active lever during the 20-s time-out period that followed each infusion was 
measured for each experimental protocol. (B) The amount of time-out pressing was calculated by adjusting 
for the total number of infusions made in each experimental protocol. Shown are active lever time-out presses 
divided by the number of infusions for experiments 1 and 2. Error ± SEM.
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Figure 4.  Total drug intake contributes to relapse behavior for low-dose heroin self-administration protocols 
with either discrete or discriminative drug cues. Lever pressing during the 90 min relapse test for both 2 and 
21 days abstinence animals was correlated to each animal’s total drug intake during self-administration (A–D) 
or the average of infusions on the last three days of self-administration (E–H) for experiment 1 (A, B, E, F) and 
2 (C, D, G, H). Pearson r values and p-values are shown for each comparison. *p < 0.05.
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Importantly, this method of analysis matched animals for drug intake at 2 and 21 days timepoints within 
each experimental condition (Fig. 5). In experiment 1, there was a significant main effect of abstinence on the 
relapse test in animals that self-administered the 0.075 mg/kg heroin dosage but no abstinence X heroin intake 
interaction was observed (two-way ANOVA, main effect of abstinence on relapse test: F(1,11) = 23.02, p = 0.0006; 
post hoc LSD test: high heroin 2 vs. 21 days, p = 0.001; low heroin 2 vs. 21 days, p = 0.027; Fig. 5A). Thus, total 
heroin intake had no relationship to lever pressing during the relapse test. Relapse was instead promoted by the 
amount of time an animal went through abstinence from this cue and dosage protocol. For animals that self-
administered the 0.03 mg/kg heroin dosage with discrete cues in experiment 1, a significant main effect of heroin 
intake on relapse was observed but no abstinence × heroin intake interaction (Two-way ANOVA, main effect of 
heroin intake level on relapse test: F(1,21) = 4.59, p = 0.044; Fig. 5B). Animals that self-administered a low total 
amount of heroin over the course of the 0.03 mg/kg protocol tended to have higher lever pressing at 21 days of 
abstinence, but this result was not statistically significant.

In experiment 2, a significant abstinence X heroin intake interaction was observed in animals that self-admin-
istered the 0.075 mg/kg heroin dosage with discriminative cues but no main effects of heroin intake or abstinence 
day (Two-way ANOVA, abstinence × heroin intake interaction: F(1,12) = 5.25, p = 0.041; Fig. 5C). Animals that 
self-administered lower amounts of total heroin at this dosage and discriminative cue protocol had significantly 
more active lever presses at 21 days abstinence versus 2 days and displaying incubation behavior (post hoc LSD 
test: low heroin 2 vs. 21 days, p = 0.028; Fig. 5C). Lowering the heroin dosage to 0.03 mg/kg in combination with 
the discriminative drug cue protocol did not result in significant differences during the relapse test for high or 
low heroin takers, although low heroin takers displayed a trend similar to all other experimental groups.

Discussion
The present study examined the contribution of drug dosage and drug associated cues to long lasting drug seek-
ing behaviors. In a rat model of heroin self-administration, animals maintained a high motivation to seek heroin 
regardless of whether high (0.075 mg/kg/infusion) or low (0.03 mg/kg/infusion) doses of heroin were used. 
However, as previously described in the literature, heroin seeking was exacerbated after extended abstinence 

Figure 5.  Variability in total drug intake contributes to incubation of craving for discriminative but not discrete 
drug cues at a 0.075 mg/kg/infusion dose. In each experimental protocol, some animals self-administered high 
total heroin intake or lower amounts of total heroin intake. Animals were classified as high or low heroin takers 
based on whether they were above or below the median total heroin intake for their experimental protocol. 
Shown are the average amounts of total heroin intake over 10 days of heroin self-administration as well as 
active lever pressing during a 90 min relapse test at 2 or 21 days after the last drug session for experiment 1 with 
discrete drug cues (A, B) and experiment 2 with discriminative drug cues (C, D). Error ± SEM. *p < 0.05.
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from a 0.075 mg/kg dose, leading to an incubation of  craving16,26. In the operant learning paradigm that we have 
utilized, cues presented at the time of drug infusion allowed animals to form drug-cue associations that facilitated 
learning of the self-administration paradigm. We first replicated published findings that utilized a light and/or 
tone discrete cue to induce opioid craving after extended abstinence. Although most research groups use a light 
associated with the drug-contingent lever, there is not a uniform protocol that has been established for require-
ment of incubation of opioid craving. However, it has been shown that a compound stimulus (tone + light), 
instead of a singular stimulus itself, significantly increased cocaine seeking-behavior after extended abstinence, 
and this effect was more pronounced when the cocaine-related stimuli are presented in a contingent  manner28,29.

We report that auditory and visual cues presented as conditioned stimuli for drug infusion supported robust 
incubation behavior at a high heroin dosage (0.075 mg/kg/infusion) but not at a low, previously untested dose 
(0.03 mg/kg/infusion). When the light cue was presented as a discriminative stimulus signaling drug availability 
in the absence of conditioned stimuli, heroin incubation behavior did not occur in all animals. These findings 
indicate that there were interactions between drug dosage and drug-associated cues that were required for time-
dependent increases in opioid seeking after extended abstinence. This contrasted with a previous study of cocaine 
seeking behavior where a discriminative stimulus not paired to a conditioned stimulus was able to induce robust 
cocaine seeking behavior up to 300 days after  abstinence30. Differences in the induction of incubation behavior 
from discriminative stimuli could be due to the class of drug self-administered. Indeed, heroin and cocaine elicit 
different behavioral profiles since they act on different physiological  substrates31 and show different incubation 
 profiles32. Session durations could have played a role too in failure of incubation: we used 6 h daily sessions, 
while Madangopal et al. used two 3 h daily sessions. Moreover, the experimental design used in the referenced 
cocaine study was different from the one we employed in experiment 2 because it trained animals to discriminate 
between a specific light stimulus coupled to the drug availability and a second stimulus light that was not coupled. 
Thus, the presentation of two light stimuli triggering different cause and effect relationships contributed to the 
associative learning. Discriminative stimuli paired with heroin availability were able to control drug-seeking 
only when presented briefly and  contingently31,33. The presentation of the discriminative cue light above the 
active lever in experiment 2 might have failed to induce the conditioned response. Therefore, we hypothesize that 
short presentation of a light cue only during the infusion was more salient (experiment 1) than a light turning 
off during infusion (experiment 2). In addition, it is worth noting that the house-light turning off during the 
time-out period in experiment 1 has worked as occasion setter for the conditioned response together with the 
conditioned stimulus to better establish the associative  learning34 required to enhance incubation behavior. On 
the contrary, in experiment 2, the house-light stayed on the entire session, even during drug-infusion. Discrete 
cues have been shown to be more potent than contextual in eliciting heroin-seeking behavior after  abstinence35,36.

The fact that drug dosage was an essential factor for developing incubation of heroin seeking contrasted 
with an earlier study that examined the contribution of heroin self-administration dosage to contextual versus 
cue-induced relapse. In that study, Zhang et al. did not find differences in a relapse test between doses ranging 
from 0.025 to 0.1 mg/kg. However, the study also did not report incubation effects, likely due to the fact that 
the number of infusions was limited to 25 during  acquisition35. It has been widely demonstrated that drug use 
and abuse is accompanied by the development of maladaptive drug-associated memories that contribute to 
relapse. Avoidance from abstinence symptoms, together with environmental cues, can recall associated memories 
previously formed as  response37,38. Opioid abstinence symptoms are more severe than other drugs and play an 
important role in opioid relapse. However, low doses of opioids do not enhance  memory37. Therefore, differences 
in the establishment of incubation at different doses could be due to the fact that high doses of a drug might elicit 
a stronger stimulation at the cellular level that ultimately might change the robustness of memory formation 
with respect to the lower dose. This does not explain why the 0.075 mg/kg dosage failed to induce incubation 
behavior when coupled with the discriminative protocol in high heroin takers. However, the answer might reside 
in the different processes that comprise the cue-associated learning processes. The tone and cue-light together 
with the dosage are the components responsible for perseverative drug-seeking behavior even in the absence of 
the drug-reinforcement. Several studies have reported that in reinstatement models of drug relapse, different 
types of brain areas and receptors contribute to heroin seeking behavior when the self-administration acquisi-
tion behavior is coupled with a discrete or discriminative  cue39. Indeed, beside dopamine receptor activation, 
serotonin receptors (5-HT2A) are mostly implicated in discrete cues, while a cannabinoid receptor (CB1) was 
reported to be involved in discriminative cue-induced heroin reinstatement. Similarly, different brain areas are 
involved for the two paradigms: bed nucleus of the stria terminalis, ventral medial prefrontal cortex, pallidum 
and substantia nigra, basolateral amygdala and central amygdala for discrete cues; versus the medial prefrontal 
cortex, amygdala and nucleus accumbens core for discriminative cue. Reinstatement models and incubation 
models share the ability to precipitate relapse even in the absence of a reinforcing effect of the drug. Thus, it is 
possible to speculate that incubation behavior, as well, might be able to activate different kinds of receptors and 
brain areas when the learning acquisition behavior is led by a discrete or discriminative cue.

The lack of incubation with the lower 0.03 mg/kg dosage in both experiments 1 and 2 was not from animals 
failing to acquire self-administration behavior because the majority show a strong preference for the active ver-
sus inactive lever. Indeed, we determined that the discriminative stimulus used in experiment 2 did not induce 
differences in learning the self-administration paradigm as no differences in lever-pressing during the time-out 
period were observed. Surprisingly, the time-out pressing trends were similar among discrete and discrimina-
tive cue protocols at both high and low heroin dosages. Furthermore, animals that went through only 2 days of 
abstinence in each of the experiments had similar, strong levels of drug-seeking in the relapse test.

Deciphering which conditions may contribute to high or low levels of drug-seeking will advance our under-
standing of diverse populations of OUD patients. Because of this, we reported the range of drug intake and 
drug-seeking that occurs in each of the experiments with different dosages and drug cues. We reported that drug 
intake at the low 0.03 mg/kg heroin dose was the strongest predictor of relapse behavior at both 2 and 21 days 
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of abstinence under both experimental conditions. Animals that self-administered the most drug at this dosage 
had the highest amount of drug-seeking behavior, regardless of the length of abstinence. While the effect was 
stronger when discriminative cues are used, we also detected significant correlations between relapse and total 
drug intake as well as number of infusions in experiment 1, when visual and auditory cues were presented as 
conditioned stimuli. Given that human opioid users experience a myriad of drug-associated cues in their envi-
ronment which would be akin to experiment 2 with discriminative cues, this suggests that heavy opioid users, 
regardless of the length of usage, may have more persistent, long-lasting drug craving than light users. Indeed, a 
study of prescription opioid users demonstrated that those who used more prescribed opioids in the first month 
of usage were more likely to develop into long-term opioid  users40.

In contrast, when the higher 0.075 mg/kg dosage of heroin was used together with discrete cues, the amount 
of drug infused during self-administration did not impact relapse. Instead, relapse was determined by the length 
of time of abstinence. When the higher dosage of heroin was coupled with discriminative cues, there was a 
significant correlation between active lever pressing and relapse, as well as a trend for a significant correlation 
between relapse and total heroin intake or average infusions. Animals that self-administered small amounts of 
the 0.075 mg/kg dosage, but not the 0.03 mg/kg dosage, displayed more drug seeking after 21 days of abstinence 
versus 2 days. Surprisingly, high total amounts of heroin infused at a dosage of 0.075 mg/kg with discriminative 
drug cues did not induce incubation. Indeed, lever pressing at 21 days of abstinence for the low heroin takers 
was similar to the animals with the same dosage but discrete cues. Together these data suggest that multiple 
mechanisms may contribute to perseverant drug seeking across a wide range of dose and cue interactions.

While we have not investigated neuroanatomical mechanisms of long-lasting heroin seeking as a function of 
drug dosage and cues here, the literature has elucidated a role for the corticolimbic system in the incubation of 
heroin  craving41. Structures of the corticolimbic system activate immediate early genes during a relapse test after 
extended heroin  abstinence26,42. Decreased cortical Fos activation correlates with blunted incubation of opioid 
craving in adolescent animals, relative to  adults42. Thus, the lack of incubation observed when a lower 0.03 mg/kg 
heroin dose was employed could be attributed to a failure to engage the cortex. Finally, decreasing dopaminergic 
tone in the nucleus accumbens shell or the caudate putamen reduces morphine seeking in a relapse test after 
long-term  abstinence43. Future studies that investigate the contribution of striatal dopamine to long-lasting heroin 
seeking may further delineate the molecular mechanisms responsible for varied responses in opioid relapse as 
a function of drug dosage and drug-associated cues. Such studies are critical to establish therapeutic targets for 
the treatment of OUD and maintenance of long-lasting abstinence from opioids.

Methods
Subjects. Seventy-three adult male Sprague Dawley rats (Charles River Laboratories), 7–8 weeks old, weigh-
ing 230–250 g upon arrival were pair-housed on a reverse 12- hour light/dark cycle (lights off at 9:00 A.M.) with 
constant room temperature (22 ± 2 °C) and humidity (40%). Animals were provided free access to laboratory 
chow and water. After 5–7 days of acclimation, animals underwent intravenous catheter surgery and were singly 
housed for the remainder of the study. All procedures followed the National Institutes of Health’s Guide for the 
Care and Use of Laboratory Animals and were approved by Temple University’s Institutional Animal Care and 
Use Committee. Experiments were performed in accordance with the ARRIVE Essential 10 Guidelines.

Drug. Heroin hydrochloride was supplied by the National Institute on Drug Abuse drug supply program and 
was freshly dissolved in 0.9% sterile sodium chloride. Drug solutions were filtered by 0.2-micron syringe filter 
prior to use.

Surgery. Rats were deeply anesthetized with isoflurane (3% induction, 2–2.5% maintenance) and were 
implanted with silastic tubing catheters (SAI Infusion Technologies, Lake Villa, IL, USA) in the right jugular 
vein under aseptic conditions. The catheter was fixed to a 22G stainless steel cannula cemented with a poly-
propylene mesh backmount (PlasticsOne Technologies, Roanoke, VA, USA) and passed subcutaneously over 
the shoulder, exiting in the mid-scapular region. Animals were given 5–7 days for recovery following surgery. 
During recovery, rats were monitored daily for weight and behavior changes and received meloxicam (1 mg/
kg, injected subcutaneously) and antibiotics (Cefazolin 10 mg/kg, injected intravenous). Catheters were flushed 
with heparinized saline solution (10 USP/ml) every day during recovery and self-administration. The day before 
starting self-administration, animals were tested for catheter patency with propofol (1%) and food restricted to 
standard rat chow that measured 10% of their bodyweight. Food-restriction during self-administration did not 
impair their performance or decrease their bodyweight (Supplemental Fig. 1) and was used to increase motiva-
tion to perform the task. Immediately after the 10th heroin self-administration session, animals were given food 
ad libitum for the remainder of the study. Thus, no animals were food-restricted during the relapse test as food 
deprivation can increase heroin  reinstatement44.

Equipment. Drug self-administration studies were conducted in operant chambers (29.5 × 32.5 × 23.5 cm, 
Med Associates, Fairfax, VT, USA) encased in a sound-attenuated and ventilated cubicle (63.5 × 60.96 × 42.55 cm). 
Chambers were equipped with two retractable levers positioned 12 cm apart, 8 cm from the grid and extend-
ing 1.5 cm into the box. A cue light stimulus was located above levers and a cue house-light was positioned on 
the opposite wall. An acoustic cue compartment was located next to the house light wall. Drug infusions were 
delivered by a syringe pump (Med Associates, Fairfax, VT, USA) through a stainless-steel single-channel swivel 
(Instech Laboratories, Inc., Plymouth Meeting, PA, USA) and polyethylene tubing encased in a metal spring 
connecting the swivel to the catheter fitting on the animal’s back.
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Procedure. Self-administration procedures were conducted under a fixed ratio (FR) 1 schedule of reinforce-
ment where every active lever press resulted in a drug infusion (0.1 ml/kg/infusion) delivered at a rate of 17.86 µl 
per second. Animals were trained for 10 days of acquisition in 6-h daily sessions. After that, rats were split into 
two groups and underwent forced abstinence for 2 or 21 days in their home cage. To control for differences 
in drug self-administration, treatment groups were not randomized. Researchers balanced each experimental 
group for a given dosage and protocol to ensure that lever pressing and infusions were equivalent between 
animals that underwent 2 or 21 days of abstinence and were therefore not blinded during the relapse test. After 
each time-point limit, animals were re-exposed to the self-administration chambers for a 90-min relapse test 
with the same protocol employed in acquisition. All of the drug-associated cues present during acquisition were 
presented in the same manner during the relapse when the animal pressed the active lever. However, active lever 
pressing did not result in any drug infusion. To separate animals into high or low heroin takers, we defined high 
heroin intake as self-administration of more heroin than the median of all animals in each experimental protocol 
separately, while low heroin intake was defined as animals that self-administered less than the median of their 
respective experimental group, as previously  described45–47.

Experiment 1. When the animal began the session, the house light became illuminated and both the active 
and inactive levers extended. Active lever pressing resulted in (a) illumination of the stimulus light above the 
active lever during infusion; (b) presentation of the acoustic cue (2.9 kHz, 65 dB) for 2 s; and (c) activation of 
the infusion pump for intravenous infusion of drug solution (Fig. 1). Each infusion was followed by a 20 s time-
out period, during which the house light was turned off and the active lever was not responsive. Both levers 
remained extended during the time-out. After the time-out period, the house light became illuminated again, 
signaling the availability of drug. Lever pressing was recorded during the entire session, including during the 
time-out period. The inactive lever was not coupled to any effect. To evaluate the contribution of heroin dosage 
to time-dependent drug-seeking behaviors, two different doses were tested in this context: a dose of 0.075 mg/
kg/infusion (n = 16; Fig. 1B–D) and a lower dose of 0.030 mg/kg/infusion (n = 25; Fig. 1E–G). One animal died 
after the conclusion of self-administration, ~ 1–2 weeks into incubation, and was excluded from the relapse test.

Experiment 2. To evaluate the role of discriminative cues in the expression of the incubation of craving, we 
manipulated the light and tone cues delivered during self-administer heroin. The stimulus light cue worked as 
a discriminative signal of drug availability (Fig. 2). When the animal began the session, the house light and the 
cue light over the active lever were illuminated. The house light remained illuminated during the entire session. 
Active lever pressing resulted in (a) the stimulus light above the active lever turned off; and (b) activation of the 
infusion pump for intravenous infusion of drug solution. Each infusion was followed by a 20 s time-out period, 
during which the light above the active lever was not illuminated and the active lever was not responsive. Both 
levers remained extended during the time-out. After the time-out period, the light above the active lever became 
illuminated again, signaling the availability of drug. There were no auditory cues in this protocol and the inac-
tive lever was not coupled to any effect. Similar to experiment 1, two different doses of heroin were tested in 
this context: a dose of 0.075 mg/kg/infusion (n = 16; Fig. 2B–D) and lower dose of 0.030 mg/kg/infusion (n = 16; 
Fig. 2E–G). The high dosage has been well established in the literature to induce incubation of heroin craving 
with a discrete drug cue protocol and thus served as the positive control. One animal died after the conclusion of 
self-administration, ~ 1–2 weeks into incubation, and was excluded from the relapse test.

Statistical analysis. All data are presented as mean ± standard error of the mean (SEM). Two-way repeated 
measures analysis of variance (ANOVAs) were used to analyze acquisition data over 10  days. Unpaired stu-
dent’s t tests were used to analyze the cumulative 90-min relapse test for each experiment separately. Two-way 
ANOVAs with LSD post hoc tests were used to compare heroin intake and abstinence day interactions in the 
two experimental protocols. D’agostino and Pearson normality tests were performed to determine if data was 
normally distributed. To compare the number of infusions and lever presses across the two experimental proto-
cols, Kruskal–Wallis tests with Dunn’s post hoc tests were performed. Pearson correlations were performed to 
compare total heroin intake to lever pressing. A p value of less than 0.05 (p < 0.05) was considered statistically 
significant. All analyses were performed using the GraphPad software package (Prism version 8; GraphPad, San 
Diego, CA, USA).
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