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Germinal vesicle (GV) stage is a critical transition point from growth to maturation in
mammalian oocyte development. During the following meiotic maturation, active RNA
degradation and absence of transcription significantly reprofile the oocyte
transcriptome to determine oocyte quality. Oocyte RNA-seq has revealed
transcriptome differences between two defined phases of GV stage, namely non-
surrounded nucleolus (NSN) and surrounded nucleolus (SN) phases. In addition,
oocyte RNA-seq has identified a variety of dysregulated genes upon genetic
mutation or environmental perturbation. Historically, due to the low amount of RNA
per oocyte, a few (20–200) oocytes were needed for a regular library construction in
bulk RNA-seq. In recent years, development of single cell sequencing allows detailing
the transcriptome of individual oocytes. Here in this study, different RNA-seq datasets
from single and bulk of mouse oocytes are compared, and single oocyte RNA-seq
(soRNA-seq) shows higher reproducibility. In addition, soRNA-seq better illustrates
developmental progression of GV oocytes, revealing more complex gene changes than
traditional views. Specially, an elevated level of ribosomal RNA 5′-ETS (5′ external
transcribed spacer) has been shown to highly correlate with SN property. This study
further demonstrates that UMI (unique molecular identifiers) based and other
deduplication methods are limited in their ability to improve the precision of the
soRNA-seq datasets. Finally, this study proposes that external spike-in molecules
are useful for normalizing samples of different transcriptome sizes. A list of stable genes
has been identified during oocyte maturation that are comparable to external spike-in
molecules. These findings highlight the advantage of soRNA-seq, and have established
ways for better clustering and cross-stage normalization, which can provide more
insight into the biological features of oocyte maturation.
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INTRODUCTION

Oocyte meiotic maturation immediately determines oocyte quality, during which around 70% of
oocyte RNA undergoes degradation (Piko and Clegg, 1982; Yu et al., 2016a; Wu and Dean, 2020).
Ablation of RNA degradation results in oocyte arrest, infertility, and abnormal early embryogenesis
(Yu et al., 2016a; Dumdie et al., 2018; Wu and Dean, 2020). Germinal vesicle (GV) stage initiates
meiotic maturation by terminating transcription, preparing for chromatin compaction and nuclear
envelope breakdown. Nuclear staining has identified two subpopulations of GV oocytes, namely
non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) based on their nuclear
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configurations. Bulk RNA-seq and integrated genetic studies
suggest SN oocytes are more competent for embryogenesis
(Ma et al., 2013; Schultz et al., 2018).

Single cell RNA-seq has revolutionized investigations of
transcriptomes that transform cell fate during development. As
a single cell, the mammalian fully-grown oocyte is unique in its
large size, uniform morphology, high nucleic acid content and
numerous types of RNA. Since single oocyte RNA-seq (soRNA-
seq) was introduced, it has become increasingly popular for
multi-omic studies in mice (Tang et al., 2010). These advances
provide greater understanding of developmental and genetic
variation. In addition, multi-omic studies also detailed
information in the co-regulation of different types of
transcripts that affect oocyte quality and ageing, such as
protein-coding RNA, small RNA and ribosomal RNA, etc
(Dumdie et al., 2018; Schultz et al., 2018; Chen et al., 2019;
Mihalas et al., 2019; Wu and Dean, 2020). However, there has
been no direct evaluation of soRNA-seq compared to bulk oocyte
RNA-seq, or any discussion of different analytical methods.

The current study firstly aimed to do a thorough comparison
among single and bulk oocyte RNA-seq datasets. By pairwise
analyses of several published RNA-seq datasets, soRNA-seq
exhibited higher reproducibility. Secondly, the variation of
soRNA-seq data were shown to reveal more complex
transcriptome differences of morphologically similar GV
oocytes (e.g., SN, NSN and intermediate) than previous views.
Interestingly, a strong correlation of 5′-ETS elevation with
potential SN phase has been discovered. Thirdly, by
performing multiple deduplication strategies, there was high
similarity in downstream analyses either with or without
deduplication. Finally, it was demonstrated that external spike-
in molecules, such as ERCC (External RNA Control
Consortium), can effectively account for transcriptome size
changes during oocyte maturation, during which active RNA
degradation takes place without transcription. For situations
when ERCC is not available, a group of stably transcribed
genes (constGenes) during oocyte maturation was extracted,
which provided high similarity to ERCC for cross-stage
normalization. This normalization allows greater appreciation
of oocyte heterogeneity at GV stage and across maturation. These
observations shed light on future oocyte transcriptomic studies.

MATERIALS AND METHODS

Oocyte Collection and Culture
Ovaries were dissected in PBS, and transferred into M2 medium
(CytoSpring, M2114) plus milrinone (2.5 μM). The ovaries were
pierced mechanically with a 30-gauge needle to release oocytes
and only fully-grown oocytes (nuclear envelope-intact oocytes)
were collected for further experiments.

RNA-Seq Library Preparation of Intact and
Fractions of Mouse Oocytes
Individual and fractions (1/2, 1/4, 1/8) of mouse GV oocyte RNA-
seq libraries were prepared according to a published pipeline with

minor modifications (Macaulay et al., 2016; Wu and Dean, 2020).
Briefly, single GV oocytes from a healthy B6D2F1 female at
12 weeks old were collected and transferred individually into
2.5 μl RLT Plus (Qiagen) and stored at −80°C. A single GV oocyte
lysis was diluted 1:2, 1:4 and 1:8 which represented fractions of
oocytes. In total, eight oocytes were used for all libraries,
including six for different amplification cycles and two for
fractional oocytes. To prepare libraries for sequencing, 1 μl of
the 105-fold diluted ERCC spike-in mix (Thermo Fisher
Scientific, 4456740) was added to 2.5 μl of each single or
fractional oocyte sample. Poly(A) RNA was isolated by oligo
(dT) beads, reverse transcribed, amplified and purified (Macaulay
et al., 2016). Different fractions of oocytes (1/8, 1/4, 1/2, 1) were
amplified for 18 cycles. After purification, cDNAs were evaluated
by Bioanalyzer 2,100 (Agilent). Qualified cDNAs were used to
construct sequencing libraries by Nextera DNA Sample
Preparation Kits (Illumina). The sequencing was performed by
the NIDDK Genomic Core Facility using the HiSeq 2,500
Sequencing System (Illumina).

Use of Published RNA-Seq Datasets
15 published mouse oocyte RNA-seq datasets, including 121
libraries (containing bulk and single) are used in the current
study (Supplementary Table S11). Only wildtype (control
group) oocytes from the listed datasets are used here, because
the mutant oocytes and aged oocytes exhibited significant
differences in their transcriptomes compared to control
groups, which made them improper for comparing
reproducibility. All datasets are additionally named by whether
using single (s) or bulk (b) mouse oocytes as the initial material,
and the library construction methods (pA or rM). Specifically, the
library construction protocols (or kits) were checked for each
dataset: all libraries that used oligo (dT)-mediated RNA isolation
and/or reverse transcription are considered as poly(A)-based
(pA); all libraries that used ribosomal RNA probe-mediated
rRNA clearance are considered as RiboMinus (rM). The single
oocyte RNA-seq datasets do not contain original SN or NSN
information. The SN and NSN feature genes were obtained from
a bulk RNA-seq result (Ma et al., 2013) and implemented in
analysis as described below.

RNA-Seq Analysis
SRA files of all datasets (Supplementary Table S11) were
downloaded from NCBI and converted to Fastq files using
fasterq-dump tool of the SRA Toolkit (v2.11.2). Reads from
each Fastq file were trimmed with Cutadapt (v3.4) for light
quality trimming with parameters “-m 10 -q 20, 20”. The
number of reads that are aligned to coding, UTR, intronic or
intergenic regions were calculated using Picard tools
CollectRnaSeqMetrics (v2.25.7). The trimmed reads were
mapped to the Mus musculus GRCm38 genome plus ERCC.
fasta using STAR (v2.7.8a) to get the Bam files.

The Bam files were processed differently for downstream
analyses in Original, Dedup and Picard groups. For the
Original group, reads were counted using HTSeq (v0.11.4)
with default parameters. For the Dedup reads group, before
reads counting, the Bam files were processed for deduplication
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using the UMI index reads and alignments according to the
Ovation Solo RNA-seq manual v4 (python nudup. py). For the
Picard reads group, the Bam files were pre-processed by Picard
tools (v2.25.7) to mark and remove the duplicated reads without
implementing the UMI index reads. The deduplicated Bam files
were then counted using HTSeq (v0.11.4) with default
parameters. Count files were used for differential analysis.

Differential expression between groups was analyzed using R
(v3.5.1) with DESeq2 (v1.24.0) using default parameters. A gene/
ERCC was considered valid to be included in differential analysis
when it had at least five reads in at least two libraries. In all cases,
significantly changed genes are defined as P-adjust < 0.01.
Principal component analysis and k-means clustering were
performed using the factoextra R package (v1.0.3). In all
k-means clustering, the value of nstart was set as 25 to get the
best one among 25 initial configurations.

When ERCC molecules or constGenes were used for
normalization, the counts of the ERCC molecules or
constGenes were provided as the “controlGenes” for
estimating the size factors. Otherwise, the default estimation
method (median ratio) was used.

The regression analyses of gene expression levels and ERCC
molecules were performed by R (v3.5.1). For example, in
Figure 1, when comparing between each library, the gene
counts are normalized by the number of total counts; when
comparing between each dataset (one dataset contains
multiple libraries as biological replicates), the gene counts
were firstly averaged across all libraries, then the obtained

averaged gene counts were further normalized by the mean of
total averaged gene counts.

Use of Published Datasets for Ribosomal
RNA (rRNA) Analysis
GSE141190 (Wu and Dean, 2020) contains ribosomal RNA
sequencing datasets (rRNA-seq), which were performed using
total RNA without rRNA depletion. Thus, majority of the reads
come from rRNA due to the extremely high abundance of rRNA
in a cell. GSE141190 dataset also contains poly (A)-based soRNA-
seq libraries, which are used for analyzing the residual rRNA. For
rRNA read analysis, the reads (from either rRNA-seq or poly (A)
soRNA-seq) were directly mapped to and counted against the
rRNA genome file (Grozdanov et al., 2003). Coverage values of
each base in the rRNA genomic sequence was calculated using
SAMtools coverage (v1.14) function. Heatmaps of rRNA
coverage was plotted using plotnine (v0.8.0) in Jupyter-
notebook. Line plot of rRNA coverage was plotted using
seaborn (v0.11.2) in Jupyter-notebook. When calculating the
coverage in each library, the coverage value of each position
was firstly divided by the sum of coverage values of the entire
rRNA transcript (from position 1–13,403), to get the normalized
coverage values. Then the normalized coverage in the 5′-ETS
region were summed to get the summarized coverage, which is
used to color the dots in the PCA. Due to the existence of some
spikes (Supplementary Figure S2B), the region used for 5′-ETS
calculation was set to be 500–1,500 of 5′-ETS. Principal

FIGURE 1 | Single oocyte RNA-seq has high reproducibility. (A) Dot plots showing the Pearson correlation coefficients between 120 pair-wise comparisons of
16 RNA-seq datasets of mouse germinal vesicle (GV) oocytes. Dots are grouped by b vs. b (bulk vs. bulk), b vs. s (bulk vs. single) and s vs. s (single vs. single). Boxes and
violins indicate the distribution of the dots. The three highlighted black dots are shown in (B). (B) Examples from each comparison group in (A), showing transcript
abundance regression analysis between two datasets. Values represent the log10 mean of gene counts from all libraries in each dataset normalized by library sizes.
Three gray dashed lines: y = x, y = x + 1 and y = x−1. Red numbers are the Pearson correlation coefficients. (C) Dot plots showing the Pearson correlation coefficients
between 5,995 pair-wise comparisons of 110 individual libraries. Dots are grouped by b vs. b (bulk vs. bulk), b vs. s (bulk vs. single) and s vs. s (single vs. single). Boxes
and violins indicate the distribution of the dots. (D) Principal component analysis of all 110 libraries from 16 datasets at GV stage, b: bulk, s: single, pA: poly (A) RNA-seq,
rM: RiboMinus RNA-seq. Details of dataset information are in Supplementary Table S11. (E) Sample distance matrix of all 110 libraries from 16 datasets at GV stage.

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 8279373

Wu Single Oocyte RNA-Seq

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


component analysis and k-means clustering were performed
using the factoextra R package (v1.0.3).

RESULTS

Single Oocyte RNA-Seq Exhibit Higher
Reproducibility
To estimate the reproducibility of mouse oocyte RNA-seq, I
obtained all published datasets from single or bulk mouse
oocytes at GV (geminal vesicle) stage, which is the beginning
of oocyte maturation (Xue et al., 2013; Kim et al., 2015;
Veselovska et al., 2015; Yu et al., 2016a; Yu et al., 2016b;
Dumdie et al., 2018; Guo et al., 2018; Sha et al., 2018; Yao
et al., 2018; Seah et al., 2019; Taborska et al., 2019; Wu et al.,
2019; Xu et al., 2019; Castillo-Fernandez et al., 2020; Du et al.,
2020; Wu and Dean, 2020) (Supplementary Table S11). All raw
sequencing files were processed in parallel. Different datasets
have slightly different transcript distribution, and only the coding
reads were taken for comparison (Supplementary Figures
S1A–S1D; Supplementary Table S1). Interestingly, soRNA-
seq datasets (GSE141190, GSE96638, GSE126688, and
GSE44183) had higher correlation coefficients within the
single group than when compared to the bulk group (Figures
1A–C). By unsupervised principal component analysis (PCA)
that color-coded by datasets, single oocyte groups show higher
similarity, though experiments/methods contribute to the
observed differences (Figures 1D,E; Supplementary Figure
S1E). Thus, soRNA-seq can generate highly reproducible and
consistent results.

Single Oocyte RNA-Seq Better Identify
Populations of GV Oocytes
Fully grown mouse oocytes are highly uniform in their
morphology and size. However, there are two different
populations regarding nuclear configuration, developmental
potential and transcriptional activity, namely non-surrounded
nucleolus (NSN) and surrounded nucleolus (SN) oocytes (Ma
et al., 2013; Schultz et al., 2018). Definitions of the two
populations initially came from nuclear staining: NSN oocytes
have puncta in the nucleus while SN oocytes have a circular signal
surrounding nucleolus. Bulk RNA-seq have also revealed
differences in NSN and SN oocytes (Ma et al., 2013).
However, potential intermediate stages have been observed
(Shishova et al., 2016), suggesting developmental progression
at GV stage involves more complex changes. Separating the
morphologically similar stages is technically difficult. I
reasoned that soRNA-seq data would have an advantage to
reveal the developmental progression compared to bulk RNA-
seq. Through supervised clustering, soRNA-seq could
demonstrate developmental stage progression.

To document this, I analyzed all published soRNA-seq
datasets (GSE141190, GSE96638, GSE126688, and GSE154370,
respectively, Supplementary Table S11). Principal component
analysis (PCA) of each dataset was conducted using defined SN-
featured genes as the feature vector, which are the genes

expressing more than two folds in SN oocytes compared to
NSN oocytes (Ma et al., 2013). Then, the summarized counts
of all SN-featured genes were profiled on the PCA plots. As a
result, samples having higher level of SN-featured genes tend to
have smaller PC1 values, which was further supported by the top
five SN-featured genes individually (Figure 2A; Supplementary
Figure S1F). Thus, each dataset can be assigned a developmental
direction from NSN to SN along the negative PC1 axis
(Figure 2A).

Next, I combined all four poly(A)-based soRNA-seq datasets
(from GSE141190, GSE96638, GSE126688 and GSE154370,
including 78 libraries in total) to allow more powerful analysis
(Figure 2B). Based on the PCA using SN-featured genes, a
k-means clustering was performed by pre-defining cluster
number as 2. I named the two obtained clusters as “SN-High”
and “SN-Low” according to the level of SN-featured genes in each
cluster (Figure 2C). Presumably, SN-High cluster consists of
oocytes more like the SN phase while SN-Low cluster consists of
oocytes more like the NSN phase. As expected, most of the known
SN-featured genes are up-regulated in SN-High group, while
most of the NSN-featured genes are down-regulated in the SN-
High group (Figure 2D) (Ma et al., 2013).

Then I sought to perform k-means clustering by defining
cluster number as 3. Interestingly, the original SN-High cluster
could be further divided into two subsets, which were named as
SN-High2 and SN-Mid according to the level of SN-featured
genes (Figure 2E). Presumably, SN-High2 consists of oocytes at
very late GV stage, while SN-Mid consists of oocytes in the
middle stage. Further differential analysis between the SN-High2,
SN-Mid and SN-Low clusters revealed that many genes do not
change consistently from NSN to SN. 768 genes firstly increase
from early to middle stage and decrease during middle to late
stage (up-dn). 757 genes firstly decrease from early to middle
stage and increase during middle to late stage (dn-up). In
addition, 649 genes consistently be accumulated from early to
middle, and middle to late stage (up-up), while 791 genes
consistently be cleared from early to middle, and middle to
late stage (dn-dn) (Figure 2F; Supplementary Table S2). To
summarize, using soRNA-seq datasets could obtain greater
understanding of developmental progression of
morphologically similar GV oocytes.

Ribosomal RNA (rRNA) 59-ETS Level
Increases at SN Phase
In eukaryotic cells, a primary rRNA transcript contains both
mature rRNA subunit fragments, namely 18, 5.8 and 28S
rRNA, and the Internal/External Transcribed Spacers,
namely ITS1, ITS2 and 5′-ETS, 3′-ETS (Figure 3A) (Henras
et al., 2015). Multiple cleavages and degradation take place to
process the primary rRNA into mature 18, 5.8, and 28S rRNA
fragments (Kent et al., 2009; Henras et al., 2015). Previous
studies observed that rRNA processing happens differently in
NSN and SN oocytes (Zhang et al., 2019). Depleting EXOSC10,
an RNA exosome associated RNase in GV oocytes, can cause
irregular rRNA pattern including elevated 5′-ETS and ITS1
(Wu and Dean, 2020). Interestingly, variation of 5′-ETS levels
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has also been observed in wildtype GV oocytes. I hypothesized
that oocytes with variable 5′-ETS levels may correlate with
different developmental status.

To substantiate this, I firstly evaluated whether the public
soRNA-seq datasets are reasonable for rRNA 5′-ETS study by
re-analyzing our own two datasets, including an rRNA-seq and
a regular poly (A) soRNA-seq (from GSE141190, Materials
and Methods), both of which contain EXOSC10 depleted
oocytes and control oocytes. For both datasets, I extracted
all reads that are mapped to rDNA genomic sequence and
ranked the samples according to the 5′-ETS coverage
(Figure 3B). As expected, the 5′-ETS from both rRNA-seq
and poly (A) soRNA-seq show up-regulation in the EXOSC10
depleted oocytes. Thus, the 5′-ETS reads obtained from the
residual rRNA reads in the poly (A) soRNA-seq can very well
represent the real status of the rRNA in the original oocytes.

I then made use of the four poly (A) soRNA-seq datasets
(GSE141190, GSE96638, GSE126688 and GSE154370,
including 78 libraries in total). Due to the non-specific

spike signals in the 5′-ETS, a region (500–1,500) was
selected to calculate the 5′-ETS coverage, which in most
datasets represent the residual 5′-ETS fragments
(Supplementary Figure S2B, Materials and Methods). In
each soRNA-seq dataset, I profiled the 5′-ETS coverage of
all libraries in the PCA plot (Figure 3C). Regression analysis
showed three out of four datasets exhibit a strong negative
correlation between PC1 values and 5′-ETS coverage
(coefficients of correlation as −0.87, −0.93, and −0.86,
respectively, Figure 3D). Given that PC1 negatively
correlates with SN status (Figure 2A), I concluded that SN
oocytes likely have more 5′-ETS. Then the 78 oocytes were
combined to define 5′-ETS-High and 5′-ETS-Low groups to
perform differential analysis (the threshold is the mean value
of the 5′-ETS coverage in all libraries, 0.00229). Strikingly,
most of the SN-featured genes are up-regulated in 5′-ETS-
High group, while most of the NSN-featured genes tend to be
down-regulated (Figures 3E,F). A similar conclusion can also
be obtained when I arbitrarily defined 5′-ETS-High and 5′-

FIGURE 2 | Single oocyte RNA-seq provides greater insight into GV oocyte development. (A) Principal component analyses of four single oocyte RNA-seq
(soRNA-seq) datasets. In each plot, dots are color-coded by the mean count of pre-defined SN-featured genes (Ma et al., 2013). The arrows on the bottom
suggest the developmental progression of all single oocytes within each dataset, identified by the level of the SN-featured genes. (B) Principal component
analyses of combined datasets in (A) Dots are color-coded by the dataset identifiers. (C) K-means clustering based on (B), with a pre-defined cluster
number of 2. Dots are color-coded by the mean counts of SN-featured genes. SN-High and SN-low are assigned based on the level of the SN-featured genes.
(D) Log2 fold change values of SN-High vs SN-Low in (C). Each dot is a gene either SN-featured (shown in red) or NSN-featured (shown in blue). (E) K-means
clustering based on B, with a pre-defined cluster number of 3. SN-High2, SN-Mid and SN-low are assigned based on the level of the SN-featured genes. (F)
Dot plots showing log2 fold change values of SN-Mid vs. SN-Low, and SN-High2 vs. SN-Mid in (E). Genes exhibit different changes from SN-Low to SN-Mid
and from SN-Mid to SN-High2, including 649 genes that are up-regulated in both phases (up-up), 768 genes that are firstly up-regulated then down-regulated
(up-dn), 757 genes that are first down-regulated then up-regulated (dn-up), and 791 genes that are down-regulated in both phases (dn-dn).
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ETS-Low groups in each dataset (Supplementary Figures
S2C,D). These finding indicates that elevated 5′-ETS may
serve as a new biological feature of GV oocytes progression.

Deduplication for Single Oocyte RNA-Seq Is
Dispensable
Single cell RNA-seq is susceptible to many biases, including gene
capture, reverse transcription efficiency and amplification cycles
(Hwang et al., 2018). The incorporation of UMI (unique
molecular identifiers) significantly improves single cell
sequencing reproducibility by quantifying reads with more
precision (Islam et al., 2014). To test whether UMI also
benefits soRNA-seq, I re-analyzed the GSE141190 RiboMinus
RNA-seq using UMI deduplication which determines duplicates

by both UMI and alignments. The N8 UMI, capable of
distinguishing up to 65,536 molecules, is sufficient to
distinguish the ~20,000 different RNAs expressed in mouse
oocytes (Piko and Clegg, 1982; Wu and Dean, 2020). On
average, the number of reads of the Dedup (UMI-based)
samples was 43% ± 15% of their Original samples (Figure 4A;
Supplementary Figure S3A; Supplementary Table S3). After
filtering out low-count genes, the linear regression of gene counts
in Original and Dedup groups, normalized by library size,
exhibited a high correlation at the same stage (Figure 4B).

Then I performed downstream differential analysis using both
Original and Dedup counts. The Original and Dedup counts from
the same oocyte were similar, documented both by unsupervised
PCA and hierarchical clustering of sample distances (Figures
4C,D). The MII vs GV differential analysis in both Original and

FIGURE 3 | rRNA 5′-ETS elevation correlates with SN property. (A) Schematic of a mammalian rRNA primary transcript, including mature rRNA fragments (18, 5.8,
and 28 S), external transcribed spacers (5′-ETS, 3′-ETS), and internal transcribed spacers (ITS1, ITS2). (B)Heatmaps of rRNA coverage document 5′-ETS up-regulation
in EXOSC10-depleted oocytes. Left: rRNA reads obtained from rRNA-seq; right: residual rRNA reads obtained from poly (A) RNA-seq. Each heatmap is sorted in
ascending order of the 5′-ETS coverage value. (C) PCA plots (the same as Figure 2A) color-coded by the 5′-ETS coverage values across all oocytes per dataset.
(D) Regression analysis of PC1 and 5′-ETS coverage in each dataset. Blue line is the predicted linear regression line with 95% confidence interval. Red number is the
Pearson correlation coefficient. (E) PCA plot (the same in Figure 2B) color-coded by the 5′-ETS coverage values across all oocytes. (F) Log2 fold change of 5′-ETS-High
vs. 5′-ETS-Low in the combined four datasets in E. Pre-defined SN-featured and NSN-featured genes are shown in red and blue, respectively.
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Dedup groups also were very similar (Figures 4E,F). On the other
hand, no significant change in gene expression was identified
(P-adjusted < 0.01) when comparing Original and Dedup at the
same stage (Supplementary Figure S3B).

To further evaluate how important deduplication is to single
oocyte RNA-seq, I took advantage of Picard deduplication, which
defines duplicates based only on mapping coordinates. As
expected, Picard trimmed off even more reads (Figure 4A).
Nevertheless, the correlation between Original and Picard
remained high though obvious deviation was present due to
read trimming (Supplementary Figure S3D). As expected,
differential analyses of Original vs Picard at the GV or MII
stages documented that a certain group of genes, including
those encoding ribosomal proteins (Rpl19, Rpl32, Rps20) were
sensitive to deduplication (Supplementary Figure S3C;
Supplementary Table S4). In addition, I took advantage of
the ERCC (External RNA Controls Consortium) spike-in
molecules, which were added to oocytes at the beginning of
library construction, to visualize the linearized amplification of
the libraries. All Original, Dedup and Picard groups had
comparable numbers of ERCC molecules detected, and all
generated a high correlation of ERCC molecule counts with
their concentrations (Supplementary Figures S3E–G). This
suggests that under a reasonable library amplification

condition, the RNA molecules being detected, and their
relative levels remain the same with or without deduplication.
Thus, deduplication provides only a limited advantage to the
robustness of soRNA-seq, possibly due to the high RNA
abundancy that makes the oocyte more like a tissue (bulk)
rather than a standard single cell.

Identification of Constant Genes for
Cross-Stage Normalization
It has been long known that around 80% transcriptome
undergoes dramatic decrease during mammalian oocyte
maturation (Piko and Clegg, 1982; Yu et al., 2016a; Wu and
Dean, 2020). Presumably, identification of the decreased and
stable RNA in this process could provide insight into the
molecular regulation of oocyte development and oocyte quality
control. Several RNA-seq readouts have been used to represent
cross-stage differences such as FPKM (Fragments Per Kilobase
Million) and RPM (Reads Per Kilobase Million) which are
normalized by gene length and library size (Yu et al., 2016a;
Zhang et al., 2018). However, this library-size based
quantification indicated as many genes with increased
abundance as with decreased abundance, which is difficult to
explain biologically in the absence of transcription during oocyte

FIGURE 4 | Deduplication of soRNA-seq reads does not significantly alter downstream analyses. (A) Bar graph of Original, UMI-deduplicated (Dedup) and
Picard-deduplicated counts. GV1-GV8, MII1-MII2 are oocyte IDs from GSE141190 RiboMinus datasets. (B) Plots of transcript abundance regression analysis
of Original vs. Dedup gene counts. The x-axis and y-axis are log10 normalized mean counts from Original and Dedup. (C,D) Principal component analysis (C)
and sample distance matrix (D) of combined Original and Dedup. (E) Differential analysis of MII vs. GV in Original and Dedup. (F) Comparison of the log2
fold change (MII vs. GV) in Original and Dedup. The x-axis and y-axis are log2 fold change (MII vs. GV) values in Original and Dedup.
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maturation. Gfp/Rfp spike-in molecules have also been used to
quantify changes in the transcriptome size, but not for differential
analysis of individual genes (Yu et al., 2016a).

Here I propose that the ERCC spike-in mix can serve as
control genes for soRNA-seq. In all 89 soRNA-seq libraries, 31
libraries having ERCC reads more than 500 were extracted of
both GV and MII stages, including 15 from GSE141190 poly (A),
five fromGSE96638 poly (A) and 11 fromGSE141190 RiboMinus
(Supplementary Table S11). When computing sample distances,
using ERCC normalization exhibited more variation within GV
stages, but the GV and MII stages can be very well separated
compared to the median ratio normalization (Supplementary
Figure S4A). In addition, ERCC normalization can better reflect
the RNA degradation happening during meiotic maturation
(Supplementary Figure S4B).

To better illustrate ERCC normalization, I performed poly (A)
RNA-seq of GV oocytes using different fractional amounts (1/2,
1/4, 1/8) of whole oocytes. The differential analysis also
confirmed the overall smaller library sizes of the fractional GV
oocytes compared to the intact GV oocyte (Figure 5A;
Supplementary Figures S4C,D; Supplementary Tables S5,
S6). Thus, I conclude that exogenous spike-in accounts for
changes in library size and facilitates investigation of
transcriptome degradation during oocyte maturation.

To allow cross-stage comparison of sequencing samples when
ERCC is unavailable, I have extracted a set of 147 constant genes
(constGenes) during oocyte maturation. These 147 genes exhibit
little change (less than 50%) in transcript abundance from GV to
MII whether obtained by poly(A) RNA-seq or RiboMinus RNA-
seq (Figure 5B; Supplementary Table S7). The constGenes span
a large range of gene lengths (~0.5–27 kb), have GC content
~30%–60%, contain protein coding genes and lncRNAs
(Supplementary Table S8). As expected, the differential
analysis normalized by constGenes was very similar to those
normalized by ERCC (Figure 5C, Supplementary Figures S4E;
Supplementary Tables S9, S10).

In summary, based on higher reproducibility and known
genetic/developmental heterogeneity, single cell RNA-seq
appears to be a better method for transcriptome analyses of
mouse oocytes. When an overall change of transcriptome size is

anticipated, external spike-in or the constGenes are
recommended for normalization to provide better insight into
biological changes of the transcriptome.

DISCUSSION

This study has compared currently available mouse GV oocyte
RNA-seq datasets and concluded that soRNA-seq has high
reproducibility and reveals better details of developmental
progression. In addition, this study has also established
external spike-in or constant genes normalization method
for cross-stage comparison, and suggests that deduplication
of the single oocyte RNA-seq datasets does not significantly
alter the downstream analyses.

A fully grown oocyte has much larger size and more RNA
content compared to a somatic cell. This feature makes a single
oocyte a unique type of single cell, which is more like a “bulk”
status. For example, a regular somatic cell could capture
around a few thousand genes using 10x genomic sequencing
(Wang et al., 2019), or around 10,000 genes using SMART-seq
(Tang et al., 2009), while a single GV oocyte could detect up to
20,000 genes to the same scale as oocyte bulk RNA-seq 50–100
oocytes pooled as one sample). From our pair-wise
comparison (Figure 1A), it is surprising that though pooled
oocytes may have better reproducibility between replicates in
one dataset (Supplementary Figure S1E), the single oocyte
RNA-seq generally have better correlation across different
datasets. This may be due to the relatively uniform
sequencing methods for single oocyte RNA-seq. Secondly,
duplication level in libraries is directly determined by the
number of amplification cycles, sequencing depth, and
initial material. Within a reasonable amplification range
(i.e.,10–18 cycles in GV oocytes), duplication level is not
detrimental (data not shown), making deduplication
dispensable. When even more amplification cycles are used,
deduplication could be critical.

Unlike different cell types detected in a tissue-derived single
cell RNA-seq, single oocytes have almost identical morphology
and size. Thus, the heterogeneity comes mostly from

FIGURE 5 | Applying constant genes (constGenes) for cross-stage comparison. (A) Summaries of log2 fold change values in fractional (1/2, 1/4, 1/8) GV oocyte vs.
1 GV oocyte by ERCC normalization and median ratio normalization. (B)MA plots of selected 147 constant genes (constGenes) from poly (A) and RiboMinus RNA-seq
results. (C)MA plots showing the differentially expressed genes (MII vs. GV) from RiboMinus RNA-seq and poly (A) RNA-seq, normalized by constGenes. Blue/red dots:
genes having decreased/increased abundance by P-adjusted < 0.01.
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developmental variation or potential quality difference, which
has been largely neglected in bulk RNA-seq. By integrated
analysis of all soRNA-seq datasets, genes that undergo
increase or decrease during early or late phases of GV
oocytes have been discovered, which provide more
information than the NSN and SN-featured genes identified
by bulk RNA-seq. Presumably, under conditions that could
cause more variation, such as chemical treatment or genetic
perturbation, employing soRNA-seq can better illustrate the
spectrum of changes in oocytes. In addition, I observed rRNA
5′-ETS level exhibits high correlation with SN property, which
may be caused by both rRNA transcription during meiotic
prophase I and the different processing mechanisms of
individual rRNA fragments. Given the extremely low level of
rRNA 5′-ETS in a cell, it is hard to setup a threshold to define SN
phase. However, when multiple single oocytes are compared, the
earlier and later stages could be very well aligned based on their
rRNA 5′-ETS levels.

In summary, this study demonstrates the advantage of
soRNA-seq. I have also proposed rRNA 5′-ETS as a new
marker for SN oocytes and established constant genes-
mediated cross-stage normalization.
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