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Minimally invasive detection of cancer using
metabolic changes in tumor-associated nat-
ural killer cells with Oncoimmune probes

Deeptha Ishwar1,2,3,4,6, Rupa Haldavnekar 1,2,3,4,6,
Krishnan Venkatakrishnan 1,2,4,5 & Bo Tan 1,3,5

Natural Killer (NK) cells, a subset of innate immune cells, undergo cancer-
specific changes during tumorprogression. Therefore, trackingNKcell activity
in circulation has potential for cancer diagnosis. Identification of tumor
associated NK cells remains a challenge as most of the cancer antigens are
unknown. Here, we introduce tumor-associated circulating NK cell profiling
(CNKP) as a stand-alone cancer diagnostic modality with a liquid biopsy.
Metabolic profiles of NK cell activation as a result of tumor interaction are
detected with a SERS functionalized OncoImmune probe platform. We show
that the cancer stem cell-associated NK cell is of value in cancer diagnosis.
Through machine learning, the features of NK cell activity in patient blood
could identify cancer from non-cancer using 5uL of peripheral blood with
100% accuracy and localization of cancer with 93% accuracy. These results
show the feasibility of minimally invasive cancer diagnostics using circulating
NK cells.

Natural killer cells (NK cells), a subpopulation of lymphocytes
demonstrate spontaneous cytotoxicity towards tumors and
viruses1. NK cells are part of the innate immune system with an
essential function as the first line of defense against cancer
development2,3. Moreover, NK cells do not require previous sen-
sitization to recognize tumors4. As NK cells can discriminate
between cancerous cells from other healthy cells, the diagnostic
value of NK cell activity is significant. The field of immunotherapy
has gainedmomentum in the last few years5–7, but the possibility of
cancer diagnosis with NK cells has been overlooked. In adults, NK
cells account for 5% to 20% of total lymphocytes in circulation8. As
a result, NK cells will provide a realistic opportunity for cancer
diagnosis. We hypothesize that the presence of tumor will reflect
in the metabolic profile of NK cells as a result of NK cell activation
during tumor interaction. The signals derived from such an

activated state and quiescent NK cell state in circulation will enable
accurate cancer diagnosis.

Cancer heterogeneity, a hallmark of cancer and cancer stem cells
(CSCs) have a critical activity in tumor initiation, sustained prolifera-
tion and maintenance of tumor and help in metastasis. Cancer diag-
nosis research has established the importance of CSCs, a highly
tumorigenic subset of tumor cells demonstrating migration and
apoptosis resistance9. These fundamental building blocks of carcino-
genesis and cancer evolution are positively correlated to therapeutic
failures, drug resistance, and tumor relapse10–12. NK cells show pre-
ferential cytotoxicity towards CSCs as compared to the differentiated
counterparts13–15. The susceptibility of CSCs towards NK cells is
attributed to the upregulation of cytotoxicity receptors on NK cells
and their respective ligands of CSCs. Moreover, CSCs enriched after
antiproliferative therapies show increased expression of stress ligands
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resulting in NK cell sensitization16. Therefore, targeting the signals of
CSC-associatedNKcellsmayprove tobe an effective cancer diagnostic
approach.

For detection of the rare signals of tumor-associated NK cells in
circulation, an ultrasensitive sensor is necessary. It is very difficult to
identify tumor-associated NK cells as most cancer antigens are
unknown. Currently, there is no diagnostic tool to detect tumor-
associated NK cells in circulation. Therefore, a marker-free approach
was necessary. Furthermore, the use of blood samples without cellular
isolationwas essential to preserve the integrity of the rare signals ofNK
cell interaction with tumor17. The ultrasensitive technique of Surface-
enhanced Raman scattering (SERS) was adopted as the detection
methodology. SERS has demonstrated the capability of marker-free
diagnosis18. SERS interconnects biomolecular chemistry and physics to
biomolecular functions. Exploration of the complex NKCell functional
signatures can be achieved intuitively with SERS19. However, SERS
nanostructures are well known for significant challenges in achieving
reproducible and uniformRaman response. One-dimensional and two-
dimensional distribution of hot spots suffers from limited density
resulting in inhomogeneous signal distribution and non-reproducible
signals. Uniform SERS active sites are extremely difficult, expensive,
and time-consuming to produce. To overcome this limitation, we
developed a nickel-based metal-semiconductor probe system for the
generation of stable and reproducible signals. Nickel is an inexpensive
catalyst with numerous critical features, including oxidative addition
and easy access to different oxidation states, which are significant in
the development of metal-semiconductor nano systems20–22. These
fundamental properties of nickel enable a wide range of applications
including SERS. The plasmonic enhancement of nickel is widely
reported23–29 in addition to the charge transfer-based enhancement.
Consequently, the introduction of a hybrid material composed of
nickel and nickel oxide results in not only a significantly improved
SERS signal but also a signal that can be reproduced, which is extre-
mely valuable for cellular diagnostic applications with semiconductor-
based nanosensor technologies. Such materials (metal-semi-
conductor) will also make it possible for more substances to be can-
didates for Raman sensing. Synthesis of large quantities of
nanomaterial is equally challenging. Here we have demonstrated the
use of femtosecond laser fabrication methodology, which is amend-
able for mass production useful in large-scale research on cellular
structures and intracellular signals. Additionally, for the sensor to
be robust, highly reproducible signals are required. The use of the
multiphoton ionization mechanism of ultrashort femtosecond
pulsed laser results in uniform production of multi-mode probes
that are highly reproducible. The modern fiber-oscillator/ fiber-
amplifier design of this laser provides high spatial mode quality with
very low noise performance. The fiber amplifier of this laser minimizes
variation of energy levels. This results in very stable peak power and
ionization energy performance resulting in the synthesis of nano-
particles with minimal distribution and dimension variation.
“OncoImmune probe platform” was synthesized with 3D networks of
nickel nanoprobes. The shape of the probes was tuned for ultra-
sensitive detection.

In this work, we explore the feasibility of using the signals derived
from cancer-cell-associated NK cells as well as CSC-associated NK cells
as a stand-alone cancer diagnosis methodology. OncoImmune probe
platform functionalized with SERS capability is introduced for under-
taking circulating NK cell profiling (CNKP) for cancer diagnosis. This is
achieved by atomic scale narrowing of the probe apices resulting in a
substantial increase in the localized surface plasmon resonance (~650-
fold enhancement with a limit of detection of up to femtomolar
(10−15 M) concentration). This marker-free approach enables the gen-
eration of the holistic profiles of the metabolic states of NK cells.
SERS profiling of NK cells associated with hard-to-detect cancers
(triple negative breast cancer, small cell lung cancer, colorectal

adenocarcinoma cancer encompassing about 60% of cancer cases) is
achieved with single-cell sensitivity with highly reproducible signals.
CNKP of cancer-cell-associated NK cells and CSC-associated NK cells
demonstrates well-defined, distinct, cancer-specific signals. We
experimentally show the preferential targeting of CSCs by NK cells
compared to cancer cells with a 1.4-fold increase (p <0.0001 t test) in
activation for CSC-associated NK cells. This also demonstrates that the
use of CNKP of CSC-associated NK cells is useful for cancer diagnosis.
The machine learning model trained with SERS signals of NK cell
activity in cell culture can identify cancer from non-cancer with a very
small amount of peripheral blood (5 µL) without the need for cellular
isolationwith 100%prediction accuracy. Localization of tumor shows a
prediction accuracy of up to 93%. As the training data is obtained from
easy to collect cell-culture, this approach eliminates the disadvantages
of insufficient human data for training. By utilizing tumor-associated
NK cell signals in peripheral blood, CNKP has the potential to improve
minimally invasive cancer diagnostics.

Results and discussion
Prediction of tumor-associated NK cells for cancer diagnosis
method
In this study, we report that molecular probing of NK cells has the
potential to provide diagnostic information for cancer patients. As
CSCs are resistant to antiproliferative therapies and have the ability to
repopulate bulk tumor30, it is important to identify CSCs. In this study,
the existence of CSCs was determined by observing changes in NK cell
expressions. Todetect the presence of CSCs, NK cells were selected for
several reasons. NK cells forming the critical part of the innate immune
system, are the first line of defense against cancer and are responsible
for the cancer immune surveillance3. Additionally, NK cells do not
require any prior sensitization to recognize tumors4. Moreover,
amongst all immune cells, only NK cells demonstrate preferential
cytotoxicity towards CSCs16,31,32. Although CSCs are able to escape
other immune cells, CSCs cannot escape NK cell surveillance and
demonstrate vulnerability towardsNKcells. Therefore,wehypothesize
that the presence of CSCswill naturally activate NK cells with signature
molecular changes, enabling identification of CSCs and hence the
presence of cancer. Figure 1 illustrates this diagnostic approach. For
this purpose, NK cells were cocultured with cancer cells as well as
CSCs. This led to NK cells exhibiting three phenotypes based on cell-
specific association. Consistent with this idea, we obtained naïve NK
cell spectra, cancer-associated NK cell spectra, and CSC-associated NK
cell spectra from cell culture. The three phenotypes form the basis for
the distinction of cancer diagnosis in this study. Analysis of SERS
spectra of human blood samples based on the similarity to the SERS
spectra of NK cell activity using a simple machine learning algorithm
was undertaken. We hypothesize that the Raman signals of NK cell
interaction with cancer cells and CSCs can be detected from patient
blood. Thus, we first cocultured NK cells with cancer cells, CSCs and
non-cancer cells and collected SERS signals using SERS functionalized
OncoImmune Probe Platform.

In this study, machine learning (ML) - a subfield of artificial intel-
ligence that has evolved rapidly in recent years was adopted for pre-
diction. Unlike conventional techniques, ML techniques have the
capabilities of addressing complex problems involving massive com-
binatorial spaces or nonlinear processes without incurring massive
computational costs33. We have explored the use of ML by adopting
the ML approach for cancer diagnosis, to address the complex mole-
cular fingerprinting of tumor-associated NK cells for prediction of
cancer. ML tools have consistently generated, tested, and refined sci-
entific models34,35. This family of statistics-based methods that can
make predictions of properties of molecules and materials without
invoking computationally demanding electronic structure calculations
has the potential to accelerate a variety of applications in chemical and
molecular sciences including Raman spectroscopy. The spectral
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Fig. 1 | Schematic representation of working of circulating natural killer (NK)
cell profiling (CKNP) with OncoImmune probe platform. Left panel demon-
strates training dataset collection with tumor (cancer—purple spectra and CSC-
associated NK cell—red spectra) and non-cancer-cell-associated NK cell Raman
profile—green spectra. Middle panel demonstrates model learning. Exploratory
analysis with K-means clustering was performed. PLSDA (Partial Least Squares

Discriminant Analysis) was then applied. Right panel depicts schematic of circu-
lating NK cells interacting with cancer and cancer stem cells. A small volume (5 µl)
of buffy coat (cancer patient—blue spectra non-cancer—pink spectra) was dropped
on theOncoImmuneprobe platformandRaman spectrawere obtained. Analysis of
the spectra based on the similarity of NK cell activity using machine learning
algorithm demonstrated very high accuracy.
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dataset from co-culture was used to train the machine learning model
with binary classification (cancer & non-cancer). The supervisedmodel
successfully classified the co-culture data into two clusters. Human
blood samples of cancer and non-cancer were also classified through
this model.

Synthesis characterization of OncoImmune probe platform for
in-silico detection of cancer
We successfully synthesized cubiform networks of nickel nanoprobes
using an ultrafast femtosecond laser. Figure 2a shows a schematic of
femtosecond laser ablation on nickel substrate generating nickel ions,
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Fig. 2 | Synthesis and characterization of OncoImmune probe platform for in-
silico detection of cancer. a Schematic representation of multiphoton ionization
resulting in the formation of intricate 3D nickel nano network of the Oncoimmune
probe platform. b High-resolution scanning electron microscopy (HRSEM) image
of the OncoImmune probe platform demonstrating 3D networks of the probes
generating maze-like sensing platform. Scale bar = 200nm. c High-resolution
transmission electron microscopy (HRTEM) demonstrating the small size of the

probes. Scalebar= 5 nm (d) energydispersive x-ray spectroscopy (EDX) showed the
presence of nickel and nickel oxide-based probes in the Oncoimmune platform.
e Probe size distribution frequency. Samples n = 100 independent particles. For
particle size calculation, 100 independent particles were measured, and five inde-
pendent experiments were performed. f Raman spectra demonstrating the pre-
sence of nickel and nickel oxide peaks. Raman measurements were taken 10 times
and averaged.
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neutral species, and nickel radicals. The Yb-doped ultrafast, femtose-
cond laser pulse consists of high-energy photons that arrive in a near-
simultaneous (10−15seconds) interval36. High peak power facilitated the
augmented ablation of the nickel substrate as more than one photon
can interact simultaneously facilitating direct multiphoton ionization
(MPI). MPI of the nickel substrate caused excitation of the electrons
from the valence band to the conduction band. These free electrons
acquired more energy by inverse bremsstrahlung (IB) absorption,
wherein the electrons acquire more kinetic energy from the incoming
photon37. MPI together with IB absorption created an electron ava-
lanche causing further ionization. As the duration of the pulse is much
shorter than the time taken by nickel electrons to conduct heat, there
is a phase change where the solid nickel becomes a super-heated
liquid. Above, the ablation threshold strong atomization and ioniza-
tion of the super-heated liquid occurs and results in explosive boiling
of the liquid with subsequent vaporization. This phase change caused
an irreversible breakdown of the nickel crystalline structure into its
constituent nickel ions, molecules, neutrals, and electrons. The kinetic
energy of the ejected ions is considerably high, and the peak kinetic
energy of nickel ions is estimated to be around 0.5 KeV38. Above and
around the ablation area, an evaporation layer known as the Knudsen
layer is formed, which contains ions, atoms, and molecules39. With
continuous vaporization, the plume gets supersaturated, and nuclea-
tion begins to appear. The presence of background gas altered the
expansion kinetics of the plume and resulted in a change in the shape
and chemical composition of the nanoparticles. Under low-pressure
nitrogen, two observations were made. First, nitrogen gas increased
the condensation of vapor and resulted in the formation of smaller
nanoparticles, as there is less time for nuclear growth. Second, the
faster condensation and the supersaturated plasma increased the
pressure within the plume and resulted in cubic-shaped nanoparticles
with sharp edges are formed. Under low-pressure oxygen gas, the
trend was reverse with multi-faceted roughly spherical nano shapes
being produced with dimensions bigger compared to nanoparticles
made with low-pressure nitrogen gas40. Figure 2b shows scanning
electron microscopy (SEM) image of synthesized nanoparticles. Sur-
face morphology and topography indicate a network of nano-scale
probes in three-dimensional layered assemblies. Figure 2c shows a
transmission electronmicroscopy (TEM) image of the probes showing
the small size of probe with sharp features (Supplementary Figs. 1a–c).
The small size favors excellent SERS signal. Particle size analysis was
done using ImageJ software. The median particle size was 4.3 nm
(Supplementary Fig. 1d).

Energy dispersive x-ray spectroscopy (EDX) was done to under-
stand the chemical composition of the probe containing nickel metal
components together with nickel oxide components. Figure 2d shows
the majority of nickel peaks and an oxygen peak. Figure 2f shows
Raman characterization of OncoImmune probe sensor with nickel and
nickel oxide peaks. X-ray photoelectron spectroscopy (XPS) was
undertaken for analysis of surface functional groups. Supplementary
Figure 2 shows the XPS- O1S, C1S, and Ni2P spectra which provided
information on the material composition as well as the surface prop-
erties of the probes. The peak positions are presented in Supplemen-
tary Table 1. On curve fitting of Ni2P spectra with Gaussian function,
the presence of two spin-orbital regions representing Ni 2 p1/2 at the
binding energy of 856 eV and Ni 2p 3/2 at the binding energy of 862 eV
were evident41. Shoulder shake-up peaks at higher binding energies
874 eV and 880eV were also present. The energy difference of 17 eV
between the Ni 2p3/2 and Ni 2p1/2 supports the existence of nickel
oxide (NiO)42,43. The curve fitting of O1S spectra showed four distinct
peaks. The peak at 529 eV was assigned to core level of O2- anions. The
peak at 531 eV was assigned to the lattice Oxygen and the peak at
533 eV was assigned to the defective sites within the oxide crystal,
adsorbed oxygen or hydroxide groups while the small peak at 534 was
due to the adsorbed water44. The C1S spectra showed peaks at 284 eV

assigned to C-C and C–H hydrocarbon states. The peak at 286 eV was
due toC–OHandC–Obondswhile the peakat 288 eVwasattributed to
carbon atoms bound to oxygen with double bond C=O43.

Molecular level detection with OncoImmune probe platform
To detect a particular population of NK cells associated with a tumor,
we require an ultrasensitive sensor capable of detecting minute con-
centrations in blood. Therefore, we evaluated the sensitivity of the
probe using the hematologically compatible leukocyte marker R6G
(rhodamine 6G) (Fig. 3a). As shown in Fig. 3b, the peaks at 612 cm−1,
773 cm−1, 1126 cm−1, 1183 cm−1, 1313 cm−1, 1363 cm−1, 1513 cm−1 and
1651 cm−1 were evident. The detailed Raman assignment is presented in
SupplementaryTable2.We tested threeprobes tooptimize the sensor.
Figure 3e showsTEM images of the three types of probes.Weobserved
highest SERS ~ 650-fold with the probes with the smallest size (median
size 4.3 nm) and sharp cubical geometries. The medium-sized probes
(median size 5.13 nm) with partially rounded corners demonstrated
~450-fold enhancement. The probes with the largest size (median size
5.35 nm) with round geometries demonstrated lowest enhancement
~430-fold enhancement. Although the size of the probes was instru-
mental in increasing the surface area, the probes had a very similar
particle size distribution. Therefore, we hypothesize that the sub-
stantial variation in the enhancement was due to the change in the
geometry (Supplementary Fig. 3a, b, e, f)).

As shown in Fig. 3b, the limit of detection of R6G was done with
varying concentrations of R6G and their corresponding SERS signal.
Weused 1 × 10−6, 1 × 10−9, 1 × 10−12, 1 × 10−15 and 1 × 10−18 M concentrations
of R6G. The SERS intensity was observed for all the peaks except at
attomolar concentrations. We were able to detect the Raman signal of
the analyte in femtomolar range which is necessary for the rapid
detection of trace levels of tumor-associated NK cells. The SERS
enhancement was substantially increased a combination of different
mechanisms that bring about intense SERS enhancement in the syn-
thesized nickel probes (Fig. 3c, d). The interconnected nickel nanop-
robes geometries were capable of augmenting the electromagnetic
field through collective free electron oscillations45, at resonant fre-
quency called localized surface plasmon (LSPR)46,47. Maxwell’s equa-
tion for electricalfield enhancementwas solved for a definedboundary
condition using FDTD simulation48,49. The finite element simulation
model was created with ANSYS software to assess the electrical field
strength in the proximity of nickel nanoprobes. The result obtained for
5 nm nanoprobes in dielectric medium on irradiation with 532nm
excitation source and 785 nm excitation source is presented in Sup-
plementary Fig. 3a, b. The simulated data shows the average electrical
field enhancement on the surface to be 0.485 eV and 0.461 eV for 532
and 785 nm excitation, respectively. The electrical field enhancement
at a single hotspot (sharp edges of the cubes) were calculated to be
2.73 eV and 2.62 eV at 532 and 785 nm respectively (Supplementary
Fig. 3a, b). The intensity of enhancement is directly proportional to the
fourth power of the amplitude of the electric field (Eelec) in the region
of the probes (Escat α Eelec4). Additionally, when the number of probes
was increased, the electrical field enhancement also increased sub-
stantially (1.4-fold with two probes). Therefore, the presence of hun-
dreds of small probes in the laser spot will exponentially improve the
signal. This in addition to the presence of multiplicative charge
transfer resonance has resulted in substantially enhanced SERS.

The large surface area of the probe surface allows the adsorption
of molecules on the surface of the probe. R6G was used as analyte to
investigate SERS activities of nickel nanostructures due to their
excellent adsorption on the nickel surface50. The adsorbedmolecule in
contact with nickel nanoprobes displays charge transfer effect due to
Herzberg-Teller vibrionic coupling. The wavelength-dependent SERS
shows selective enhancement of b2 modes of R6G molecule (Fig. 3d).
The Herzberg–Teller vibrionic coupling is brought by the interaction
of excited state (LUMO) of R6G molecule and fermi level electrons in
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Fig. 3 | Molecular level detection with OncoImmune probe platform.
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Domain (FDTD) simulation of Ni probes demonstrating the presence of localized
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mechanism. eTEM images of sharp& cubical, blunt, and round probeswithmedian
diameter of 4.3 nm, 5.13, and 5.35, respectively. scale bar = 5 nm. f SERS enhance-
ment with R6G observed with sharp, blunt, and round probes were 650-fold (blue),
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the nickel51. The net result of this interaction is a broadening of the
virtual level of the molecule and charge transfer between metal and
R6Gmolecule. As shown in supplementary Figure 3g, charge transfer is
also evident from the UV–Vis absorption spectra of R6Gmolecule with
nickel nanoprobes compared to pure nickel probes and pure R6G. In
addition to the plasmonic and charge transfer mechanism, nickel
metal enhances the electromagnetic field of NiO by forming a strong
local electric field at Ni/NiO interface. Since the work function of Ni
(5.01 eV) is much smaller than NiO (5.2-6.2 eV), the electrons are
transferred from nickel to NiO, increasing the negative charge in the
interface close to NiO and equal positive charge in the interface close
to nickel.MetallicNi influence the near band-edge emissionof NiO and
electrons from the interfacemove to conduction band. This increased
local electrical field facilitates SERS52. Additionally, the nickel nanop-
robes system has materials with various refractive indices (nickel is
~1.96, NiO is ~2.8 and air = 1)53. These varying refractive indices allow
multiple light scattering54 and multiplication of Raman photons
thereby improving Raman enhancement55.

Additionally, the 3D interconnected networks have a critical
function in the overall SERS amplification. Multiple SERS active sites
were introduced due to the presence of 3D networks resulting in
localized surface plasmon resonance at the complex formation56. SERS
intensity can be determined by the width of individual interparticle
gaps57. In this case, the presence of narrow width gaps as well as larger
width gaps is evident in the 3D structures of probes as shown in the
TEM. FDTD simulation as per Supplementary Fig. 3c, d demonstrated
substantial increase in the intensity of LSPRwith greater number of hot
spots. Themultiple layers of the 3Dnanostructures haddual function—
first to produce plasmonic enhancement and second to adsorb analyte
molecules resulting effective charge transfer. Themultiplicative effect
of the plasmonic enhancement due to the localization of light in the
multiple layers of ultra-small gaps in the probes and charge transfer
enhancement resulted in substantially enhanced signal response58.

OncoImmune probe platform assisted trapping and circulating
natural killer cell profiling for cancer diagnosis-CNKP
Human peripheral bloodmononuclear cells are composed of a diverse
array of immune cells, including T cells, NK cells, Dendritic cells, and
monocytes. We began by demonstrating the OncoImmune probe
platform capacity to discriminate between various types of PBMCs. As
seen in Fig. 4e, the spectra of diverse cell types exhibit unique char-
acteristic peaks. The spectra are distinguishable because of the distinct
Raman shifts observed for different types of cells. The principal com-
ponent analysis demonstrated clear clustering of cells into four sepa-
rate groups (Fig. 4f). Additionally, the hierarchical cluster analysis
showed a dendrogram with distinct clustering (Fig. 4g). As a result, we
determined that NK cells may be recognized from other types of
immune cells by their distinct characteristic spectra. PCA (Principal
Component Analysis)was used to characterizeNK cells. PCAdecreases
the dimensionality of data by decomposing the Raman spectra math-
ematically into primary components. The first principal component
showed apositive association betweenNKcells and all other cells and a
negative correlation between all other cells (Fig. 4h).Using this feature,
we defined the NK cell signature’s strongest peak in the PC1 loading
spectra (Fig. 4i). Then, PBMCs were mapped using Raman spectro-
scopy. As seen in Fig. 4j, we were able to successfully demonstrate the
presence of NK cells in the PBMC mixture. This investigation estab-
lished unequivocally that circulatingNK cells are capable of generating
distinct NK cell signature spectra that are highly distinguishable from
all other PBMC spectra and may be utilized as a cancer detection
marker.

Next, we investigated themetabolic states of NK cells using NK-92
cell line and primary NK cells. Figure 4b shows signature Raman
spectra of NK-92 cell with characteristic bands from carbohydrates,
proteins and lipids. Raman assignment of all biological peaks reported

in this study are tabulated in Supplementary Table 3. Noticeable peaks
are phenylalanine band at 1003 cm−1, CH deformation at 1450 cm−1 and
amide I at 1661 cm−1. However, the most distinct bands typical of
lymphocytes are seen at 1522 cm−1 and 1158 cm−1 belonging to
carotenoids59. Carotenoids are robust Raman scatterers and have
characteristic Raman spectra. The presence of carotenoids in NK cells
is an indication of cytotoxicity and cell surface activation. Other
spectral peaks originate fromenzymes in the dense granuleswithin the
cytoplasm60. Figure 4d demonstrates heatmap of the holistic Raman
profile of NK cells demonstrating correlated cellular biomolecules.
Supplementary Figure 4a show theprimaryNK cell spectra. TheRaman
shifts of all major peaks of primary NK cell were identical to NK-92.
Additionally, PCA was used to demonstrate the similarity between
NK92 and primary NK cells. As can be observed from the PCA, the first
three major components were merged into a single cluster for NK92
and primary NK cells, demonstrating the two cell types’ strong simi-
larities (Supplementary Fig. 4b).

NK cell function is dependent on the balance between inhibitory
and stimulatory signals received through interaction with tumor cells.
When the stimulatory signals are more than the inhibitory signals, NK
cells mediate the killing of tumor cells. Hence, NK cell cytotoxicity is
affected by the dynamic environment the cell interacts with. In
patients with cancer, the number of NK cells is increased. However,
quantification of NK cells is often a poor indicator of the cause and
severity of the disease. Therefore, we wanted to analyze the quality of
NK cell by investigating the metabolic state of NK cell to see the
changes in the tumormicroenvironment. In this study, we hypothesize
that NK cells undergo metabolic changes on interaction with cancer
cells and CSCs. Our findings support our hypothesis that NK cells
faithfully reproduce the changes in tumor cellular environment. We
find that NK cells change from inactive to active and vice-versa upon
interaction with cancer cells and CSCs. The holistic analysis of mole-
cular properties of the cells was possible due to the efficient probe-cell
interaction. First, the 3D interconnected structures of the OncoIm-
mune probe platform entrapped the cells (Fig. 4c). The surface func-
tionalization permitted cellular contact with the nanoprobes. As
previously shown in the XPS analysis, the presence of oxygen con-
taining groups such as –OH, C–O, C=O, C–OH incorporated on the
surface of the nanoprobes, instrumental in efficient probe-cell
interaction61–63. Substantially enhanced signal response was attrib-
uted to the efficient probe-cell interaction.

Ultrasensitive detection with OncoImmune probe platform
assisted CNKP
NK cells have been known for their ability to selectively recognize and
kill CSCs. However, in circulation, the amount of CSC associated with
NK cell is very less. Therefore, we need ultrasensitive sensor that can
detect trace levels of tumor-educated NK cells in circulation. Surface-
enhanced Raman scattering (SERS) was adopted for ultrasensitive
detection. SERS-based methods, very useful for monitoring intracel-
lular proteins and other macromolecules such as lipids and nucleic
acids enabled intensive analysis of cellular biochemical composition64.
SERS-based molecular fingerprints at the sub-cellular level will allow
real-time information in a non-destructive way65. This marker-free
approach will be useful for the analysis of minute intracellular
changes66. Variation in the biomolecular expression can be captured
by the OncoImmune probe platform very effectively. The ability of the
sensor to detect the NK cells even at a single-cell level will enable the
detection of rare CSC-associatedNK cell signals in circulation. To show
single-cell sensitivity of Oncoimmune probe platform Raman spectra
of NK cells with serial dilution (from 100 NK cells in 10 µl to 1 NK cell in
10 µL) was undertaken (Fig. 5a). As shown in Fig. 5b, the increase in
Raman intensity was directly proportional to the number of cells
captured on the sensor. SERS intensity ratio I1450/I1485 (lipid/DNA),
I1450/I813 (lipid/RNA), and I1450/I1650 (lipid/protein) demonstrated
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Fig. 4 | Immune cell profiling for cancer diagnosis. Circulating natural killer cell
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(e) Representative Raman spectra of various types of PBMCs—dendritic cells (red),

macrophages(blue), NKcells(pink) andT cells(purple). Source data are provided as
Source Data File. f Principal component analysis demonstrating clear clusters dif-
ferentiating the immune cell types (g) Hierarchical cluster analysis support PCA
analysis demonstrating unique fingerprints of PBMCs (h) Score plot of PC1
demonstrating variation in the signals ofNKcells (i) PC1 loading todefine signature
peaks of NK cells for distinction in the mixed population of PBMCs (j) NK cell
mapping of the OncoImmune probe platform. Scale bar = 20 μm. Raman mea-
surements were taken 10 times and averaged.
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to recognize NK cell signals at single-cell level. The gray maps with blue dots are
schematic representation of cells on OncoImmune probe platform. Raman mea-
surements were taken 10 times and averaged.
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increasing trend with increasing concentration for immune cell cap-
ture across all spectra of different concentrations. The linear regres-
sion for the number of immune cells captured by the sensor to the
Raman intensity is shown in the figure from 100 cells to a single cell (R2

0.80, 0.84 and 0.94 for I1450/I1485, I1450/I813, I1450/I1650 respectively).
Figure 5c shows the high-resolution single-cell Raman mapping of NK
cells demonstrating ability to detect cells at single-cell level. Supple-
mentary Figure 5a showsTEM images of the platform taken atdifferent
sites and a fair distribution of nanoparticles can be seen. An average of
15 particles can be seen per random site (n = 4, S.D 2.5) (supplementary
figure 5b). Additionally, to show the excellent reproducibility, the
relative standard deviation (RSD) was calculated using two SERS ana-
lytes (crystal violet, methyl orange) and patient buffy sample. By
selecting 9 random spots, the RSD was calculated with 1176 cm−1,
1111 cm−1 and 1000 cm−1 as the reference peak for crystal violet, methyl
orange and buffy sample, respectively. Supplementary Figure 6 shows
the uniform signal intensity with an RSD of 3.25 (crystal violet),
3.92(methyl orange) and 10.98% (buffy). The high reproducibility
resulted in very low relative standard deviation demonstrating the
robustness of this approach.

Applicability of cancer-associated NK cells for cancer diagnosis
We collected SERS spectral profile data from three cancer-associated
NK-92 cells (breast carcinoma (MDA-MB231), small cell lung carcinoma
(H69-AR) and Colorectal cancer (Colo 205) by co-culturing NK92 with
cancer cells for 24 h. After 24h, 5 µl of the cocultured and tumor-
associated NK-92 cells were dropped on the OncoImmune platform
and SERS spectral profile was obtained using 785 nm wavelength.
Control NK-92 cells were grown separately, and SERS spectra were
obtained at 785 nm for comparison. The control NK-92 spectral profile
for non-cancer-associated NK cells correlated with the previously
reported SERS spectral profiles of NK cells67,68. Casual observation of
the SERS spectra of tumor-associated NK cells and non-tumor-
associated NK cells show unexpected differences between control
and tumor-associated NK cell spectra and between the different
cancer-associated NK cells spectra.

NK cells that are completely devoid of any tumor cell association
showed characteristic Raman spectra with characteristic bands from
carbohydrates, proteins, and lipids. This profile can be correlated to
the NK cells in circulation. Figure 4 (b) show the signature Raman
spectra of circulating NK cell. The band at CHdeformation at 1450 cm−1

and amide I at 1661 cm−1, amide II band at 1555 cm−1 and amide III band
at 1337 cm−1 can be seen. Other spectral features are disulfide bonds
(S–S) between 500and550cm−1 and aromatic amino acids at 1004 cm−1

(from phenylalanine), 830 cm−1 and 854 cm−1 (from tyrosine doublets),
1340 cm−1 of tryptophan69.

The spectral intensity of tumor-associated NK cells was slightly
altered compared to NK cells which have not associated with tumor
cells (Fig. 6a). A heatmapof circulatingNKcell profiles indicates a small
difference in metabolic characteristics between NK cells associated
with cancer and those not associated with cancer (Fig. 6b). This can be
due to NK cell recognition of tumor and switching to an active mode.
Breast, lung, and colorectal cancers differ in their prognosis and
treatment outcome due to their different signaling mechanisms and
molecular pathways. Consequently, the immune responses vary
between different cancers. Significant changes take place at the cel-
lular level in NK cell activity with cancer cells as evidenced by the SERS
profile. Intracellular changes in NK cells due to upregulation or
downregulation of proteins are drivers of spectral changes. On
observation of the SERS profile, the major contributing metabolites in
breast cancer were disulfide stretching proteins (increased), tyrosine
(decreased), phenylalanine (decreased), nucleic acids (decreased)
corresponding to 521 cm−1, 854 cm−1, 1000 cm−1 and 1662 cm−1,
respectively. These collective data show that NK cells associated with
different cancer types are different (Fig. 7a–c).

The association of NK cells with tumor did not result in a homo-
genous signal as once thought of, rather they are uniquely hetero-
genous with distinct subsets. Despite the presence of minor
differences, the principal component analysis (Fig. 6c) did not
demonstrate clear clustering between cancer and non-cancer-cell-
associated NK cells. The overlapping clusters can be possibly due to
the immune escape phenomenon exhibited by cancer cells on asso-
ciation with NK cells resulting in the signals similar to the non-cancer-
associated NK cell70. We observed a strong negative correlation on the
dependence of NK cell SERS signature for diagnostic purpose with
cancer cells (Fig. 6e). Since NK cells are preferentially cytotoxic to
CSCs, we hypothesized that NK cells associated with CSCs could pro-
vide a better diagnostic signature when compared with non-cancer-
associated NK cell.

Evaluation of CSC-associated NK cell for cancer diagnosis
We compared themetabolic profile of CSC-associated NK-92 cells. The
major changes in NK-CSCs metabolites were a significantly decreased
disulfide stretching proteins, relative increase in quantity of nucleic
acids, decrease in tyrosine andphenylalanine, increase in glycogen and
fatty acids and lipids, increase in carotenoids, phospholipids, cytosine,
decrease in tryptophan corresponding to 521 cm−1, 787 cm−1, 854 cm−1,
1000 cm−1, 1048 cm−1, 1137 cm−1, 1168 cm−1, 1268 cm−1, 1509 cm−1,
1339 cm−1. The decrease in thepeak at 520 cm−1 of NK cell in association
with CSCs indicate that NK-CSCs have regulated their Killer immu-
noglobulin receptor (KIR) expression, suggesting a possible decrease
inMHC expression by CSCs. This paves way for increased cytotoxicity.
The loss or decreased expression of MHC in CSCs is correlated with
better clinical outcomes and a promising strategy to reverse the
immune escape71. The most distinct bands typical of lymphocytes are
seen at 1522 cm−1 and 1158 cm−1 belonging to carotenoids59. As men-
tioned earlier, carotenoids are robust Raman scatterers and have
characteristic Raman spectra. Dramatic changes in the profile of CSC-
associated NK cells indicated the suitability of CSC-associated NK cell
for further analysis (Fig. 6e). One significant feature of this association
is that unlike cancer cells, CSCs areunable to escape immunedetection
with NK cell and their association is readily reflected in their tumor
profile. NK cells have a unique affinity for CSC as shown by many
studies where NK cells lyse and kill CSC population in mice. The
observed spectra show the immune cell stimulated/inhibited status
upon interaction with the cancer cells. Several markers that are indi-
cative of lymphocyte activation were identified from the spectra. The
peak at 521 cm−1 is a disulfide band suggestive of the formation of
immunoglobulins72. The disulfide bonds are characteristic in Raman
spectra and appear distinct and separated from other peaks and help
in the conformation of protein. NK cells exhibit immunoglobulin
receptor protein on its surfaceKIR involved in the education ofNK cell.
A comparison of a heatmap of circulating NK cell and CSC-associated
NK cell shows substantial differences in metabolic characteristics
(Fig. 6f). Principal Component Analysis (Fig. 6g). show clear separation
of clustersbetweenCSC-associatedNKcells andnon-tumor-associated
NK cells. K means clustering further confirmed the formation of clear
clusters (Fig. 6h).

NK cells have amajor function in tumor control in early stages and
tumor progression in late stages. NK cells being the first line of defect
against cancer, kill cancer cells without any prior sensitization. The NK
cell also has a function in recruiting other immune cells into tumor
microenvironment. Their ability to sense the presence of tumor is by
recognizing the downregulation of MHC class molecule in stressed
cells or tumor cells. NK cells preferentially kill these cells that show low
expression ofMHCclass 1 receptor.NK cellmimicnormal cell behavior
when they interact with cancer cell (as seen with overlapping principal
components) due to their downregulation of MHC class I receptor
leading NK cells to believe that cancer cells are a part of self. This
immune evasion is the hallmark of the cancer cell. On the other hand,
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Fig. 7 | Variation in the signals of cancer cell and CSC-associated NK Cell.
a Spectral variation for triple negative breast adenocarcinoma. Pink spectra for
CSC-associated NK cell, maroon spectra of cancer-cell-associated NK cell.
b Difference spectra for breast. c Principal component analysis showing clear
separation of cancer-associated, and CSC-associated NK cells. d Two tailed t test of
distinct peaks in difference spectra demonstrate significant variation. (****mean
P ≤0.0001). e Spectral variation for small cell lung adenocarcinoma. Pink spectra
for CSC-associated NK cell, maroon spectra of cancer-cell-associated NK cell.
f Difference spectra for lung. g Principal component analysis showing clear

separation of cancer-associated, and CSC-associated NK cells. h Two tailed t test of
distinct peaks in difference spectra demonstrate significant variation. (****mean
P ≤0.0001). i Spectral variation for colorectal cancer. Pink spectra for CSC-
associated NK cell, maroon spectra of cancer-cell-associated NK cell. j Difference
spectra for colorectal. k Principal component analysis showing clear separation of
cancer-associated, and CSC-associated NK cells. l two tailed t test of distinct peaks
in difference spectra demonstrate significant variation (****mean P ≤0.0001 n = 60
independent cell spectra. Source data are provided as Source Data File. Raman
measurements were taken 10 times and averaged.
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NK cell on interaction with CSC show separate clustering. Therefore,
we confirm that the use of CSC-associated NK cell would be ideal for
diagnostic purposes. Thedifferences in theCSC-associatedNKcell and
cancer-associated NK cell spectra are reproducible and significant
(Fig. 7b, f and j) as seen with t-test. (P < 0.0001).

Principal component analysis demonstrated clear clustering of PC
scores confirming substantial variation in the signature of breast, lung
and colonCSC-associatedNKcells compared tonon-cancer-associated
NK cells (Fig. 7c, g and K). Our results clearly demonstrate the high
correlation of NK cells with CSCs and NK cell signatures reflecting the
watchful vigilance of tumors by NK cells. Our results strongly show the
plasticity of CSC-associated natural killer cells phenotypes with dif-
ferent cancer types of CSCs reflected in the circulation which can be
useful in cancer diagnosis. Similar to NK-92 cells, SERS spectra of pri-
mary NK cells demonstrate a similar pattern on interaction with CSCs
of breast, lung and colorectal (Supplementary Fig. 4c). Supplementary
Figure 4d shows the principal component analysis demonstrating
clear separation of clusters between CSCs and non-cancer cells
using the spectra of primary NK cells cocultured with CSCs. This fur-
ther established that even primary NK cells demonstrate CSC-specific
activity.

We also looked at how tumor-associated NK cells in-vitro com-
pared to the NK cells from real patients. As shown in Supplementary
Figure 7a, the spectra of NK cells from cell culture and patient-derived
NK cells demonstrated similar Raman shifts. (For breast cancer (Sup-
plementary Fig. 7a), the wavenumbers for the peaks at 1001 cm−1,
1044 cm−1, 1121 cm−1, 1450 cm−1, 1606 cm−1, 2863 cm−1 and 2934 cm−1, for
lung cancer (Supplementary Fig. 7c), the peaks at 975 cm−1, 1004 cm−1,
1044 cm−1, 1122 cm−1, 1313 cm−1, 1450 cm−1, 1521 cm−1, 1660 cm−1,
2858 cm−1, 2932 cm−1 were seen). As expected, there were variations in
the intensities of some Raman shifts. Multivariate analysis (principal
component analysis) was undertaken. The scatter plot of PC1 Vs PC2Vs
PC3 with principal component analysis demonstrated clustering of
both types of cells in one single cluster for breast cancer as well as for
lung cancer (Supplementary Fig. 7d, e). The cells will form separate
clusters if there is discrimination observed in the cells with PCA.
Therefore, we concluded that the evaluation of tumor-associated NK
cells in culture and theNK cells of actual cancer patients demonstrated
strong similarity to one another.

Prediction of tumor-associated nk cells for cancer diagnosis
directly with patient blood—without cellular isolation
Next, we assessed the diagnostic accuracy of CNKP classification by
collecting SERS spectra from 22 clinical samples obtained from
Ontario Tumor Board (OTB). Peripheral blood from cancer patients
diagnosed by clinical presentation and histopathological diagnosis
was processed to extract the buffy coat layer by density gradient
centrifugation. The patient cohort had three tumor types consisting of
breast adenocarcinoma (n = 8), lung carcinoma (n = 7) and colorectal
carcinoma (n = 7) as shown in Supplementary Table 4. 5 µL of buffy
coat was dropped on the sensor and SERS spectra were taken at
785 nm wavelength. Partial least squares regression—discriminant
analysis was done to discriminate healthy and tumor samples (Fig. 8b).

Briefly, PLSDA is a supervised machine learning analysis that
identifies features that contribute to the most variation. The PLSDA
models with cross validation was able to discriminate two clusters
(R2 = 0.9) and showed excellent discriminatory power with 100% sen-
sitivities and specificities and correctly predicted the samples as
healthy or having cancer. We did a principal component analysis to
find if the input data was discrete or not and subsequently the discrete
dataset fromNK cells associated with CSCs were used as training input
data for the PLSDA analysis. For subsequent training of the algorithm,
weused thepatient’s buffy coat cohort as input for validationdata. The
results generated 100% accuracy, 100% precision, 100% specificity and
100% sensitivity and prediction of 1.0, Area under the curve = 1 with R2

for calibration as 0.99 and R2 for prediction as 0.96 (Fig. 8e). In con-
trast, the training data from NK cells associated with cancer cells
during trainingwith PLSDA yielded very poor prediction with accuracy
of 28%, sensitivity of 9% and specificity of 50% showing the predictive
power of NK cells associated with CSCs as compared to NK cells
associated with cancer cells (Fig. 8g).

The molecular analysis of PLSDA provided basis for classification.
As per Supplementary Fig. 8a, the Variable of importance scores (VIP
scores) of vibrational peaks with the VIP score > = 1 were plotted. More
number of peaks assigned to nucleic acids as well as proteins were
evident in the VIP score plot. The loadings of latent variables also
demonstrated that the peaks for nucleic acids, proteins aswell as lipids
were responsible for complete clusteringwithout ambiguity for cancer
vs non-cancer. This also demonstrated the critical features of holistic
analysis of NK cell spectra for accurate cancer diagnosis.

Localization of cancer using OncoImmune probe platform
based CNKP directly with patient blood—without cellular
isolation
In addition to cancer diagnosis, tumor-associated NK SERS profile can
distinguish healthy and patients with different types of cancer. Unsu-
pervisedprincipal component analysis andhierarchical cluster analysis
can unambiguously discriminate healthy or non-cancer-associated NK
cells and three individual tumor varieties i.e., breast, lung and color-
ectal (Fig. 9a, b) to give tumor specific SERS spectralwavenumbers that
were used as training and validation data inputs for tissue of origin
algorithms. Supplementary Figure 4e shows Primary NK cells having
cancer-specific behavior. On co-culturing with CSCs of various tumor
types, clear clustering was observed with principal component analy-
sis. Supplementary Figure 9 shows signals of primary NK cells cocul-
tured with CSC derived from cancer patients also confirmed the
applicability of NK cells for cancer diagnosis. Identification of tumor
location was possible with molecular analysis of tumor-associated NK
(primary) as shown in Supplementary Fig. 10. Using MCR scores and
SVM discriminative analysis of the tumor-associated NK cells, we
identified sensitivity of 100%, specificity of 86%, accuracy 93% and
precisionof 88% for colorectal vs breast cancer and sensitivity of 100%,
specificity of 83%, accuracy 88% and precision of 93% for colorectal vs
lung cancer and sensitivity of 63%, specificity of 72%, accuracy 72% and
precisionof 67% for breast vs lung cancer allowingmultilevel diagnosis
across different tumors (Fig. 9d). An accuracy of 86% and 72%
demonstrated satisfactory results in terms of diagnostic tool for can-
cer. The low specificity can be attributed to intra tumor variation. Such
liquid biopsywill radically change the direction of cancer diagnosis for
multiple types of cancer on validation in large cohort studies.

Validation of the differential SERS expression seen in cancer and
CSC interacted NK cells and healthy NK cells using RT-qPCR and
glycolysis stress test
To validate the proposedmethod of SERS to detect changes in NK cell
signatures between cancer andCSC interactedNK cells and healthyNK
cells, two studies were undertaken. First, we analyzed the relative
mRNA expression levels of BCL2 through RT-qPCR. BCL2 (B cell lym-
phoma 2) gene encodes the BCL2 family of regulatory proteins that is
responsible for the regulation of apoptosis. BCL2 influenced tumor-
associated changes in immune cells favor the downregulation of pro-
apoptotic proteins resulting in resistance to NK cell-mediated cell
cytotoxicity73. The expression of BCL2 is an activation/proliferation
marker in the NK cells74. NK cells have increased expression of BCL2,
favouring immune escape by the cancer cells. However, the trend is
reversed in the presence of CSCs as NK cells have zero or reduced
expression of BCL2 favouring apoptosis and killing of cancer cells74.
The results of RT-qPCR, following ANOVA (Analysis of variance), show
that the expression of BCL2 genes was significantly upregulated in NK
cells cocultured with cancer cells compared to control NK cells
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Fig. 8 | Prediction of tumor-associated NK cells directly with patient blood
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(P < 0.0001). NK cells cocultured with CSCs showed significant
downregulation of BCL2 gene expression when compared to control
NK cells (P <0.001). Thus, there is a substantial difference between the
expression levels of NK cells cocultured with cancer and CSCs. These
results imply that CSC interacted NK cells are genotypically different
from cancer interacted NK cells. Next, to compare the results of RT-
qPCR with SERS, signature peaks of BCL2 were identified, and Raman
intensity was calculated, and compared with cancer, CSC interacted
NK cells and healthy NK cells. As shown in Fig. 10a, b, the Raman
experiment also demonstrated a similar trend of BCL2 gene expression
as the conventional RT-qPCR.

Second, NK cells have to compete with tumor cells in a nutrient-
depleted environment for glucose and amino acids. NK cells, there-
fore, exhibit the ‘Immune Warburg phenomenon’ and metabolic
switch to aerobic glycolysis75–77. In order to investigate the glycolytic
reprogramming in CSC-associated NK cells, we undertook a glycolysis
stress test for glycolytic characterization in live NK cells using glyco-
lysis assay (ABCAM ab222946). Quantification of glycolysis was
undertaken as per themanufacturer’s protocol. The signature peaks at
866 cm−1 and 835 cm−1, corresponding to lactate and pyruvate,
respectively, were used to detect glycolytic reprogramming that gives
rise to distinct Raman metabolic signature. The intensity of peaks for
glycolysis reprogramming demonstrated the lowest intensity for lung-
cancer-associated NK cells. The intensity was higher for breast-cancer-
associated NK cells as compared to lung cancer, but it also showed
much lower intensity as compared to control NK cells. The results of
these observations are shown in Fig. 10e, f.

We have successfully demonstrated the feasibility of adopting
signals reflecting changes in the metabolic profile of Natural Killer
cell (NK cell) during tumor-associated NK cell activation, for cancer
diagnosis. Profiling of tumor-associated circulating NK cell activity
(CNKP) was introduced as a pathway for cancer diagnosis with
liquid biopsy. Experimental demonstration of dissimilar profiles
between cancer-associated NK cells and CSC-associated NK cells
with statistical significance was achieved. This was instrumental in
demonstration of the crucial function of CSC-associated NK cells in
cancer diagnosis. Molecular signatures of CNKP were cancer-type
specific. This property of tumor-associated NK cells was influential
in the prediction of tumor location. SERS functionalized OncoIm-
mune probe platformwith small scaled probes was designed for this
marker-free approach. We achieved ultralow concentrations (up to
femtomolar 10−15M of analyte molecules). This was attributed to the
configuration of probes by narrowing of the atomic scale probe
apices, instrumental in the improvement of localized surface plas-
mon resonance. The 3D arrangements of the nanoprobes ensured
NK cell trapping, critical in signal amplification and transmission.
Highly reproducible signals were achieved. CNKP of three hard-to-
detect cancer-cell lines (triple negative breast adenocarcinoma,
small cell lung cancer, colorectal adenocarcinoma) was achieved
with single-cell sensitivity. We were able to identify cancer from
non-cancer using very small amount of peripheral blood (5 µL) with
100% prediction accuracy using machine learning model trained
with SERS signals of NK cell activity in cell culture. Prediction of
tumor location achieved prediction accuracy of up to 93%. This
approach overcomes lack of patients by using data from easy to
collect cell culture and by identifying the similarity of the features
of NK cell activity in patient blood (without cell isolation) through
machine learning. This method also provides a basis for classifica-
tion. As cell culture data was used for training, multivariate analyses
of cell-culture data provided an explainable basis. Such liquid
biopsy using OncoImmune probe platform-based SERS has poten-
tial to radically change the direction of cancer diagnosis for multi-
ple types of cancer on validation in large cohort studies. This work
sets the stage in advancing the knowledge of tumor-associated NK
cells and its use in liquid biopsy.

Methods
Clinical sample acquisition
This study was conducted in accordance with Ryerson Ethics Board of
Ryerson University (REB 2020-275). Informed written consent and
blood samples from cancer patients were obtained by Ontario Tumor
Bank (OTB). The buffy coat was extracted by density gradient cen-
trifugation. The Details on the clinical features, gender and demo-
graphic data are provided in Supplementary Table 4.

Cell culture
The primary NK cells (Stem cell technologies) and NK-92 cell line
(derived from non-Hodgkin lymphoma) were obtained fromAmerican
Tissue Type Culture Collection (ATCC, USA) and maintained in Alpha
minimum essential medium w/o nucleosides (catalog no 36453) with
0.2mM myo-inositol, 0.1mM 2-mercaptoethanol, 0.02mM folic acid,
12.5% horse serum and 12.5% fetal bovine serum. Tomaintain sufficient
proliferation IL-2 (catalog no 78036_c) was added at 150 IU/ml. Cancer-
cell lines were similarly obtained from ATCC for breast adenocarci-
noma (MDA-MB231), non-small lung carcinoma (H69 AR) and colon
adenocarcinoma (Colo 205). Breast-cancer-cell line was maintained
with DMEM with 10%FBS. The lung and colon cancer-cell lines were
maintained inRPMI 1640with 10%FBS. All cellswere cultured at 37 C in
5% CO2 atmosphere.

Synthesis of OncoImmune probe platform
Nickel sheetsmeasuring 2 (w)× 12 (l) ×0.019 (h) incheswerepurchased
from McMaster-Carr. The sheets were cut into 2 (l) × 1.5(w) inches
to fit in the laser system. The nickel sheets were supported on
stand for laser ablation. Femtosecond, Yb-doped fiber amplified;
Clark MXR IMPULSE laser was used for the synthesis of nanoparticles.
The following parameters were used: laser pulse width—214 fs, repe-
tition rate—25MHz, laser wavelength—1030 nm and power—14W.
EzCAD2 software was used to design the ablation area. The design
of the ablation from the software transferred to the nickel sheet
through piezoelectric scanner, with a scanning speed of 1mm/sec.
Nitrogen gas and oxygen gas were introduced separately in the abla-
tion area using six Masterflex tubes secured on square bracket. The
pressure was kept at 2 bar. The laser pulse interacts with nickel sub-
strate at 90 degrees and the ablation plume interacted with the
background nitrogen gas. The diagnostic probes then deposit on the
substrate.

Co-culture assays
NK-92 cellswere coculturedwith three cancer-cell lines using transwell
apparatus (0.4 μm pore size, corning, Lowell, MA). NK-92 cells were
seeded in the upper insert of 24 well transwell plate. The cancer-cell
lines were seeded in three separate lower chambers. CSCs were grown
separately prior to the assay in a serum-free media using ultralow low
attachment plates. Tumor spheroids were verified in microscope and
seeded in a set of other low chambers. After 24 h of co-culture, the NK-
92 cells were centrifuged and resuspended in water for SERS analysis.
NK cells grown separately without co-culture with cancer-cell lines
were used as control.

RT-qPCR
RNA was extracted from the cell pellets by the Trizol /chloroform
(Invitrogen) extraction method and resuspended in diethylpyr-
ocarbonate (DEPC)-treated water. RNA concentrations and ratios were
determined photometrically (Nanodrop). The expression levels of
BCL2 were assessed by RT-qPCR using one step PCR (New England
Biolab E3005G NEB). Primer sequence Forward GGATGCTTTAT and
reverse GCTTTATTTCATGAG. RT-qPCR reactions were performed on
96-well plates (Micro Amp® Fast Optical 96-well reaction plate with
barcode; ABI, Foster City, CA, USA). The relative expression levels of
target genes were expressed as fold-change against housekeeping
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gene GAPDH. Statistical analysis (one-way ANOVA) was done using
Prism graphpad (v.9.2.0) compare the gene expression levels.

Raman data acquisition
5μl of buffy coat (blood) and 10μl of cultured NK-92 cells were
dropped on the OncoImmune probe platform. After 1min (to allow
trapping of NK-92 cells in the sensor mesh), Raman spectral scanning
was done at 785 nm wavelength. A minimum of 10 spectra and 3
acquisitions were made with laser power at 5W. The spectra were
collectively saved and processed using Spectragryph soft-
ware (V.1.2.9).

Data analysis
The NK-92 cell-culture data were given as training data and the spectra
from buffy coat were given as validation data. Data was collected in
Excel files and Partial least squares regression analysis was done after
doing multivariate analysis. PLSDA analysis was done using PLS Tool-
box software (SOLO V 9.0). For the localization of cancer, data from
buffy coat of known patient samples were used to train the algorithm.
The statistical analysis for all the results is indicated in the figure
legends. All data are represented as mean ± S.D. For SERS analysis two
tailed Student’s t test was performed. P <0.05 was considered sig-
nificant. Experimental results were done at least three times, unless
stated otherwise in figure legends.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this study are available from the cor-
responding author upon reasonable request. Sourcedata areprovided
with this paper.
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