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Abstract

Objective

In vivo functional changes in white matter during the progression of Alzheimer’s disease

(AD) have not been previously reported. Our objectives are to measure changes in white

matter functional connectivity (FC) in an elderly population undergoing cognitive decline as

AD develops, to establish their relationship to neuropsychological scores of cognitive abili-

ties, and to assess the performance in prediction of AD using white matter FC measures as

features.

Methods

Analyses were conducted using resting state functional MRI and neuropsychological data

from 383 ADNI participants, including 136 cognitive normal (CN) controls, 46 with significant

memory concern, 83 with early mild cognitive impairment (MCI), 37 with MCI, 46 with late

MCI, and 35 with AD dementia. FC metrics between segregated white matter tracts and dis-

crete gray matter volumes or between white matter tracts were quantitatively analyzed and

characterized, along with their relationships to 6 cognitive measures. Finally, supervised

machine learning was implemented on white matter FCs to classify the participants and per-

formance of the classification was evaluated.

Results

Significant decreases in FC measures were found in white matter with prominent, specific,

regional deficits appearing in late MCI and AD dementia patients from CN. These changes

significantly correlated with neuropsychological measurements of impairments in cognition

and memory. The sensitivity and specificity of distinguishing AD dementia and CN using

white matter FCs were 0.83 and 0.81 respectively.
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Conclusions and relevance

The white matter FC decreased in late MCI and AD dementia patients compared to CN par-

ticipants, and this decrease was correlated with cognitive measures. White matter FC is

valuable in the prediction of AD. All these findings suggest that white matter FC may be a

promising avenue for understanding functional impairments in white matter tracts during AD

progression.

Introduction

Alzheimer’s disease (AD) is the most common progressive neurodegenerative disorder, which

begins at a pre-symptomatic stage before subjects exhibit increasingly severe cognitive impair-

ments and ultimately, dementia [1, 2]. Histopathological evidence of degeneration during this

progression has been observed in human brains in both gray matter (GM) and white matter

(WM) [3, 4]. While there has been considerable emphasis on GM changes, pathological alter-

ations of WM post mortem have also been reported not only in late stages of AD (associated

with loss of axons and oligodendrocytes [5] and concomitant with vascular abnormalities [6,

7]), but also in earlier, pre-clinical stages, probably related to amyloid toxicity [8]. Moreover,

atrophy has been found to be even more prominent in WM than in GM in early stage disease

[3]. Consequently, appropriate measures of changes within WM may be valuable biomarkers

of neurodegeneration in AD. To date, structural changes of WM have been intensively investi-

gated [9–11], however, there have been no studies investigating functional changes in WM,

which presumably link structure and behavioral performance, in the progression towards AD

dementia (ADD).

Functional magnetic resonance imaging (fMRI) has been previously used to detect func-

tional alterations arising in AD [12–14] but to date such studies have been almost exclu-

sively focused on GM, with very limited exceptions [15, 16]. FMRI detects changes in MRI

images caused by variations in blood oxygenation (blood oxygenation level dependent

(BOLD) effects) that in GM correspond to changes in neural activity [17]. Temporal correla-

tion of BOLD signals arising from different GM regions reflects the functional synchroniza-

tion among these regions, defined as functional connectivity (FC), and has been widely used

in neuroimaging studies [18]. By contrast, BOLD signals in WM are expected to be much

smaller than those in GM and consequently are excluded from image analyses. However,

recently we demonstrated that BOLD fluctuations in WM share common features with

those from GM and they correlate significantly with BOLD signals from specific GM regions

to which they connect [19, 20]. Relationships between WM tracts and GM regions may be

summarized by a functional correlation matrix (FCM) of their pair-wise correlations at rest,

while different WM tracts can be inter-related using a similar approach. Those FCs reflect

synchronizations of the hemodynamics between WM tracts and GM regions or between

two WM tracts, which are hypothesized to be adversely influenced due to biological degen-

eration, e.g., tissue degeneration and cerebrovascular disorder, occurring during AD

evolution.

In this study, we extended these new findings and analyses, originally described in our pre-

vious work [19–22], to quantify changes in WM fMRI metrics during the progression to ADD.

We measured the differences in the FCMs for WM-GM correlations (FCMWG) and WM-WM

correlations (FCMWW) between a healthy group and each of five participant groups at different

stages of cognitive impairments. We also subsequently evaluated the correlations between
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these FC metrics and neuropsychological measures of cognition and memory. Finally, we

explored the use of machine learning to differentiate between the controls and patients at dif-

ferent AD stages to evaluate how well WM FC can predict AD progression.

Materials and methods

Participants

Data used in this study were all obtained from the database of the Alzheimer’s Disease Neuro-

imaging Initiative (ADNI) (adni.loni.usc.edu). The participants included in our study were

selected as following. First, the participants must have unprocessed images of both resting

state fMRI (rsfMRI) and T1-weighted (T1w) modalities at baseline available in ADNI 2 or

ADNI 3. If one participant had multiple datasets, then only the dataset acquired most recently

was selected. Second, the participants whose ages were less than 60 or more than 90 years old

were excluded. Third, the participants with only multiband rsfMRI were excluded due to the

inconsistent acquisition protocol.

The participants were grouped as cognitive normal (CN), significant memory concerns

(SMC), early mild cognitive impairments (eMCI), mild cognitive impairments (MCI), late

MCI (lMCI) and ADD. The full criteria for clinical classifications are described in the ADNI

manual [23].

MRI

3T rsfMRI and T1w data, acquired at multiple institutions with the same imaging protocol,

were preprocessed using the Data Processing Assistant for Resting State fMRI (DPARSFA)

[24], a package based on SPM (https://www.fil.ion.ucl.ac.uk/spm). First, the rsfMRI images

were corrected for slice timing and head motion. Twenty-four motion parameters [25] and

mean CSF signal were regressed out. The resulting rsfMRI data were filtered (passband = 0.01–

0.1Hz), coregistered to MNI space [26], detrended, and then normalized voxel-wise into a

time-course with zero mean and unit variance. Next, WM, GM, and cerebrospinal fluid (CSF)

were segmented using the T1w images [27] and their tissue probability maps were spatially

normalized to the MNI space.

Calculation of functional correlation matrix (FCM)

The calculations of correlations for each participant were restricted to 48 WM and 82 GM

regions of interest (ROIs, listed in Table 1) that were defined by the Eve atlas [28] (21 deep

WM tracts in each hemisphere and 6 commissure tracts, see S1 Fig) and PickAtlas [29] (41

Brodmann areas in each hemisphere) and were further constrained within masks generated by

thresholding the WM and GM probability maps at 0.8. The preprocessed time-courses were

averaged over the voxels within each ROI and for each pair of WM and GM ROIs they were

then cross correlated, excluding any time points with large motions (framewise displacement

[30]>0.5). The resulting 48x82 correlation coefficients formed an FCM of WM-GM pairs

(FCMWG). Similarly, the mean time-courses for each pair of WM ROIs were cross correlated

and the 48x48 correlation coefficients formed an FCM of WM-WM pairs (FCMWW). Mean-

while, we generated FCM of GM-GM pairs (FCMGG) to confirm the validity of our processing

pipeline. The possible influences of covariates, including age, gender, years of education and

acquisition-site, were regressed out from FCMWG or FCMWW element by partialling out pro-

cedure via a generalized linear model.
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Neuropsychological test

Neuropsychological scores included the Mini-Mental State Examination (MMSE) score,

Clinical Dementia Rating (CDR) global score, CDR Sum of Boxes (CDR-SOB), Global

Table 1. List of WM and GM ROIs.

White Matter (WM) ROIs Gray Matter (GM) ROIs

CST (l, r): Corticospinal Tract (left, right) BA1 (l, r): Primary Somatosensory Cortex 1 (left, right)
ML (l, r): Medial Lemniscus (left, right) BA2 (l, r): Primary Somatosensory Cortex 2 (left, right)
ICP (l, r): Inferior Cerebellar Peduncle (left, right) BA3 (l, r): Primary Somatosensory Cortex 3 (left, right)
SCP (l, r): Superior Cerebellar Peduncle (left, right) BA4 (l, r): Primary Motor Cortex (left, right)
CP (l, r): Cerebral Peduncle (left, right) BA5 (l, r): Somatosensory Association Cortex (left, right)
ALIC (l, r): Anterior Limb of Internal Capsule (left, right) BA6 (l, r): Premotor and Supplementary Motor (left, right)
PLIC (l, r): Posterior Limb of Internal Capsule (left, right) BA7 (l, r): Visuo-Motor Coordination (left, right)
RLIC (l, r): Retrolenticular Limb of Internal Capsule (left, right) BA8 (l, r): Frontal Eye Fields (left, right)
ACR (l, r): Anterior Corona Radiata (left, right) BA9 (l, r): Dorsolateral Prefrontal Cortex (left, right)
SCR (l, r): Superior Corona Radiata (left, right) BA10 (l, r): Anterior Prefrontal Cortex (left, right)
PCR (l, r): Posterior Corona Radiata (left, right) BA11 (l, r): Orbitofrontal Area (left, right)
PTR (l, r): Posterior Thalamic Radiation (include Optic Radiation) (left,

right)
BA13 (l, r): Insular Cortex (left, right)

SS (l, r): Sagittal Stratum (include inferior longitudinal fasciculus and

fronto-occipital fasciculus) (left, right)
BA17 (l, r): Primary Visual Cortex (V1) (left, right)

EC (l, r): External Capsule (left, right) BA18 (l, r): Secondary Visual Cortex (V2) (left, right)
CGC (l, r): Cingulum (Cingulate) (left, right) BA19 (l, r): Associative Visual Cortex (V3-5) (left, right)
CGH (l, r): Cingulum (Hippocampus) (left, right) BA20 (l, r): Inferior Temporal Gyrus (left, right)
FXC (l, r): Fornix (Cres) (left, right) BA21 (l, r): Middle Temporal Gyrus (left, right)
SLF (l, r): Superior Longitudinal Fasciculus (left, right) BA22 (l, r): Superior Temporal Gyrus (left, right)
SFO (l, r): Superior Fronto-Occipital Fasciculus (left, right) BA23 (l, r): Ventral Posterior Cingulate Cortex (left, right)
UF (l, r): Uncinate Fasciculus (left, right) BA24 (l, r): Ventral Anterior Cingulate Cortex (left, right)
TAP (l, r): Tapetum (left, right) BA25 (l, r): Subgenual Area (left, right)
MCP: Middle Cerebellar Peduncle BA26 (l, r): Ectosplenial Portion of Retrosplenial Region (left, right)
PCT: Pontine Crossing Tract BA27 (l, r): Piriform Cortex (left, right)
GCC: Genu of Corpus Callosum BA28 (l, r): Ventral Entorhinal Cortex (left, right)
BCC: Body of Corpus Callosum BA29 (l, r): Retrosplenial Cingulate Cortex (left, right)
SCC: Splenium of Corpus Callosum BA30 (l, r): Part of Cingulate Cortex (left, right)
FX: Fornix BA32 (l, r): Dorsal Anterior Cingulate Cortex (left, right)

BA34 (l, r): Dorsal Entorhinal Cortex (left, right)
BA35 (l, r): Perirhinal Cortex (left, right)
BA36 (l, r): Ectorhinal Area (left, right)
BA37 (l, r): Occipitotemporal Area (part of fusiform gyrus and interior

temporal gyrus (left, right)
BA38 (l, r): Temporopolar Area (left, right)
BA39 (l, r): Angular Gyrus (left, right)
BA40 (l, r): Supramarginal Gyrus (left, right)
BA41 (l, r): Auditory Cortex 1 (left, right)
BA42 (l, r): Auditory Cortex 2 (left, right)
BA43 (l, r): Primary Gustatory Cortex (left, right)
BA44 (l, r): Pars Opercularis (left, right)
BA45 (l, r): Pars Triangularis (left, right)
BA46 (l, r): Dorsolateral Prefrontal Cortex (left, right)
BA47 (l, r): Pars Orbitalis (left, right)

https://doi.org/10.1371/journal.pone.0240513.t001
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Deterioration Scale (GDS), Functional Assessment Questionnaire (FAQ) total score, Wechsler

Memory Scale-Logical Memory II Subscale (WMS-LMII), Alzheimer’s Disease Assessment

Scale-Cognitive subscale (ADAS-Cog) and Hachinski scale, which are the most commonly

used scores for clinical assessment and AD studies.

Statistical analysis

The characteristics of the six subject groups were summarized, and the differences among

groups were tested by one-way ANOVA or chi-squared test.

The FCMs (FCMWG or FCMWW) within each clinical group were averaged to produce a

mean matrix (mFCM). Differences in the mFCM values, and the effect sizes of these differ-

ences [31] between the CN group and every other group were calculated. To assess the statisti-

cal significance of FC difference between groups, the permutation test (10,000 permutations)

was conducted for each FCM element across all participants within any two comparison

groups. The resulting P-values were corrected for multiple comparisons using a false discovery

rate (FDR, [32]). Each corrected P-value was denoted as PFDR. To estimate the FC within one

WM tract, the so-called WM-tract-wise FC, all the 82 FCMWG elements or 48 FCMWW ele-

ments corresponding to this WM ROI were averaged. The mean and standard deviation of

each WM-tract-wise FC across participants within each group were then calculated. The WM-

tract-wise FCs in the CN group were compared with every non-CN group using unpaired-

sample t-tests.

To measure the general trend of WM FC as AD progresses, all the elements of each partici-

pant’s FCMWG or FCM WW were averaged, defined by overall-FC, and then the group mean

and standard deviation of the overall-FC within each clinical group were evaluated, and finally

normalized by linear scaling. More specifically, normalization included converting the mean

value of CN group into 1 and the mean value of ADD group into 0, calculating the parameters

for this linear transformation and then applying the transformation to all the means and stan-

dard deviations. On the other hand, the mean and standard deviation of each neuropsycholog-

ical score within each clinical group were also calculated and normalized by the same linear

scaling procedure.

The association between each single FCM element and each neuropsychological score was

evaluated by calculating the linear correlation coefficient between the element and the score

across all participants. To gauge the integrated correlation of a WM tract’s connectivity with

the score, all the correlation coefficients corresponding to the same WM tract were averaged.

To further evaluate the associations between combined FCM elements and each neuropsy-

chological score, a random forest (RF) regression model was trained to predict the score after

feature selection from all FCM elements. The value of goodness of fit, R2 was calculated based

on comparing true and predicted scores. Subjects that did not have any neuropsychological

scores were excluded from the regression study.

Machine learning classification

A support vector machine (SVM) with a radial-basis function kernel was used to classify the

CN group and different combinations of groups of impaired subjects (i.e., ADD alone; lMCI

and ADD; MCI, lMCI and ADD; eMCI, MCI, lMCI and ADD; and SMC, eMCI, MCI, lMCI

and ADD). We used all FCMWG and FCMWW elements as initial features and implemented an

RF algorithm to select those features that provided more accurate classifications, a similar pro-

cedure to our previous study [33]. In detail, the number of trees for the RF classifier was cho-

sen to be 200 as it was observed that increasing the number of trees further resulted in no

significant reduction of classification error. The splitting criterion for RF was based on the

PLOS ONE Functional connectivity of white matter as a biomarker of cognitive decline in Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0240513 October 16, 2020 5 / 18

https://doi.org/10.1371/journal.pone.0240513


GUIDE algorithm [34]. Individual feature importance was computed by measuring how much

the predictive accuracy of the RF classifier deteriorates when the feature’s values were ran-

domly permuted [35]. The idea is that altering the value of an important feature will degrade

the performance of a classifier. After the importance of each feature obtained individually, the

features that did not improve performance at all were at first removed from the set. The

remaining features were arranged in descending order of their importance. Features were

added sequentially, and classification error was noted for this cumulative feature set. The opti-

mal feature set was taken to be the one which provided the lowest classification error. A similar

method was used for feature selection in the case of regression analysis abovementioned.

There were 5064 WM FCs in this study, so the features arranged in descending order of impor-

tance, were added five at a time sequentially to reduce the computational load. In the case of

the classification task, SVM with a radial-basis function (RBF) kernel was optimized with

respect to C and Gamma, the two hyper-parameters. C regularized the classifier, and Gamma

denoted variance of the RBF kernel and controlled the width of the kernel. Mean squared

error of a 10-fold cross-validation (CV) was calculated to measure the classification error.

More specifically, the data were split into 10 subsets. The SVM model was trained on 9 subsets

and then evaluated on the remaining subsets. This process was repeated 10 times, with a differ-

ent subset as testing data each time. One error was estimated at each time and the final error

was the average of the 10 errors. Also, the penalty involved for misclassification of the disease

group versus control group was manually varied so that data imbalance between the groups

did not tilt the model accuracy towards one group [36]. Moreover, the receiver-operating char-

acteristic (ROC) analysis was performed and the area under curve (AUC), sensitivity and spec-

ificity were noted.

Results

Participant characteristics

Table 2 shows characteristics of all 383 participants, grouped into CN (n = 136), SMC (n = 46),

eMCI (n = 83), MCI (n = 37), lMCI (n = 46) and ADD (n = 35), in order of disease severity.

Table 2. Characteristics of participant groups.

Characteristics CN (n = 136) SMC (n = 46) eMCI (n = 83) MCI (n = 37) lMCI (n = 46) ADD (n = 35) P-value (ANOVA or chi-square)

Age, mean (SD), y 74.5 (7.1) 75.3 (5.8) 74.5 (7.0) 74.3 (7.2) 74.6 (6.8) 75.6 (6.8) 0.93

Female sex, No. (%) 82(60) 26(57) 42 (51) 15 (41) 21 (46) 16 (46) 0.22

Handedness, No. (%) 126 (92) 42 (91) 76 (92) 34 (92) 42 (91) 33 (94) 0.99

Education, mean (SD), y 16.8 (2.3) 16.8 (2.6) 16.0 (2.7) 16.3 (2.5) 16.4 (2.9) 16.2 (2.7) 0.23

Scanner vendor (S:G:P) 86:27:24 18:15:13 31:11:41 18:9:10 19:6:21 6:3:26 <0.001

Brain volume (SD) X105 10.6 (0.9) 10.7 (0.9) 10.6 (2.2) 10.4 (1.0) 10.4 (1.1) 10.2 (1.2) 0.41

MMSE score, mean (SD) 29.1 (1.7) 29.1 (1.0) 27.4 (2.9) 28.0 (1.5) 25.8 (5.6) 22.4 (3.2) <0.001

CDR global score, mean (SD) 0.0 (0.2) 0.1 (0.2) 0.4 (0.3) 0.5 (0.0) 0.6 (0.5) 0.8 (0.2) <0.001

CDR-SOB score, mean (SD) 0.3 (1.0) 0.1 (0.4) 1.7 (2.2) 1.2 (0.8) 2.6 (3.2) 4.7 (1.5) <0.001

GDS score, mean (SD) 0.8 (1.5) 1.3 (1.3) 1.8 (2.0) 1.5 (1.3) 1.8 (2.3) 1.5 (1.3) <0.001

FAQ score, mean (SD) 1.0 (3.7) 0.4 (0.8) 4.2 (6.5) 3.1 (4.4) 6.5 (8.7) 14.6 (6.2) <0.001

WMS-LMII score, mean (SD) 15.4 (3.3) 15.4 (3.0) 12.4 (5.1) 9.2 (3.8) 9.7 (5.0) 4.5 (3.1) <0.001

ADAS-Cog score, mean (SD) 9.6 (4.4) 8.2 (3.1) 12.0 (6.0) 12.3 (3.4) 14.0 (8.3) 22.7 (7.4) <0.001

Hachinski scale, mean (SD) 0.5 (0.7) 0.6 (1.0) 1.0 (1.2) 0.8 (1.2) 0.7 (0.9) 0.9 (0.9) 0.25

Note: S = Siemens; G = GE Medical Systems; P = Philips Medical System and Philips Healthcare.

https://doi.org/10.1371/journal.pone.0240513.t002
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Among these groups, no significant differences in age (P = 0.93), sex (P = 0.22), handedness

(P = 0.99), years of education (P = 0.23), brain volume (P = 0.41) or Hachinski scale (P = 0.25)

were observed. The scanner vendor breakdown, MMSE, CDR global, CDR-SOB, GDS, FAQ,

WMS-LMII and ADAS-Cog scores did differ significantly among groups (P<0.001).

WM functional connectivity deficits in progression to AD

Fig 1a presents the mean FCMWG (mFCMWG) for CN group, which reveals the general syn-

chronization pattern between whole-brain WM ROIs and GM ROIs during resting state. By

comparing this FCMWG to other non-CN groups, we found significant FC decreases

(PFDR<0.05) in lMCI and ADD patients relative to controls in a number of WM-GM pairs

(Fig 1b and 1c). The effect sizes of group difference for those WM-GM pairs were mostly larger

than 0.3, shown in Fig 1d and 1e. Furthermore, there were obvious horizontal patterns

observed in the difference matrices (Fig 1b and 1c), which appeared to correspond to specific

WM tracts. In turn, an in-depth comparison on WM-tract-wise FC, derived from FCMWG,

between groups was conducted and revealed that the WM-tract-wise FC decreased signifi-

cantly (p<0.05) in the lMCI group relative to CN group (Fig 1f) in the following WM tracts:

splenium of corpus callosum, pontine crossing fibers, bilateral superior longitudinal fasciculus,

bilateral fornix (cres), bilateral cingulum (cingulate), bilateral sagittal stratum, bilateral corti-

cospinal tract, left inferior cerebellar peduncle, right cingulum (hippocampus), right external

capsule, right posterior thalamic radiation, right posterior corona radiata, right retrolenticular

limb of internal capsule and right cerebral peduncle. Similarly, ADD patients had reduced FC

(p<0.05) (Fig 1g) in corpus callosum, bilateral superior longitudinal fasciculus, bilateral cingu-

lum (cingulate), bilateral external capsule, bilateral sagittal stratum, bilateral posterior thalamic

radiation, bilateral corona radiata, and right corticospinal tract.

Likewise, Fig 2a exhibits the mean FCMWW (mFCMWW) for CN group. The FC signifi-

cantly decreased (PFDR<0.05) in lMCI and ADD patients relative to CN group in a number of

WM-WM pairs (upper triangles in Fig 2b and 2c) and the effect sizes of group differences for

those WM-WM pairs were mostly greater than 0.3 (lower triangles in Fig 2b and 2c). In terms

of WM-tract-wise FC derived from FCMWW, significant declines (p<0.05) appeared in several

tracts in both the lMCI and ADD groups relative to the CN group (Fig 2d and 2e), including

corpus callosum, superior longitudinal fasciculus, fornix (cres), cingulum (cingulate and hip-

pocampus), external capsule, sagittal stratum, posterior thalamic radiation, corona radiata,

internal capsule, and corticospinal tract. There were also a number of WM tracts presenting

declined FC only in the ADD groups relative to the CN group, such as fornix, tapetum and

superior fronto-occipital fasciculus. The significances of all WM tracts with respect to the

decline of WM-tract-wise FC derived from both FCMWG and FCMWW are all summarized in

S1 Table.

By contrast, no significant changes in FCMWG or FCMWW between CN and any of the

early disease groups (i.e., SMC, eMCI and MCI) were observed at the same P-value threshold

(PFDR<0.05). Moreover, comparisons between mFCMWW and the group mean of GM-GM

FCM (mFCMGG, S2 Fig) show a generally lower level of WM-WM correlation, with a relative

decrease of 25–30% in overall average of FCM for every study group.

Correlation between WM FC and neuropsychological scores

The normalized group means of overall-FC presented in Fig 3a decreased gradually as AD pro-

gressed, which in general conforms to current hypothetical models of AD evolution [37]. The

normalized overall trends in 7 neuropsychological measures across groups (Fig 3b) show a

striking similarity with this overall-FC trend.
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Fig 1. Significant differences in mean FCMWG (mFCMWG) and WM-tract-wise FC between controls (CN) and patients with lMCI

or ADD. (a) mFCMWG of CN group. (b, c) Difference of subtracting mFCMWG of lMCI (b) or ADD (c) from mFCMWG of CN group.

The P-value for each element was derived from permutation-test (10,000 permutations) across all participants within groups, and then

adjusted using an FDR. Those elements with PFDR>0.05 were set to be zero. (d, e) Effect size of the mFCMWG difference between CN

and lMCI (d) or ADD (e), thresholded by PFDR. (f, g) GM-averaged correlation coefficients of WM tracts, i.e., WM-tract-wise FC, in CN

group (blue) and lMCI group (red) (f) and in CN group (blue) and ADD group (red) (g). Mean and standard deviation of each WM-

tract-wise FC are shown, and � indicates p<0.05, �� indicates p<0.01 and ��� indicates p<0.001, calculated by unpaired-sample t-test.

https://doi.org/10.1371/journal.pone.0240513.g001
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Fig 2. Significant differences in mean FCMWW (mFCMWW) and WM-tract-wise FC between controls (CN) and

patients with lMCI or ADD. (a) mFCMWW of CN group. (b, c) Difference of mFCMWW between CN and lMCI or

ADD (upper triangle) and effect size of the mFCMWW difference (lower triangle). (d, e) WM-averaged correlation

coefficients of WM tracts, i.e., WM-tract-wise FC, in CN group (blue) and lMCI group (red) (d) and in CN group

(blue) and ADD group (red) (e). � indicates p< 0.05, �� indicates p<0.01 and ��� indicates p<0.001.

https://doi.org/10.1371/journal.pone.0240513.g002

Fig 3. Normalized overall-FC and neuropsychological scores for each clinical group in AD progression. (a)

Normalized group mean (gray square) and standard deviation of mean (gray bar) of the overall-FC for each clinical

group. The six clinical groups are CN, SMC, eMCI, MCI, lMCI and ADD groups. (b) Normalized mean (colored

square) and standard deviation (colored bar) of the neuropsychological scores for each clinical group.

https://doi.org/10.1371/journal.pone.0240513.g003
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Fig 4a–4d shows correlation coefficients between elements in FCMWG or FCMWW and

neuropsychological scores which are significantly different from zero (PFDR<0.05). No signifi-

cant correlations were found between any element in FCM and the Hachinski scale or GDS

score.

FCMWG and FCMWW elements within bilateral sagittal stratum, bilateral cingulum (cingu-

late), left cingulum (hippocampus), bilateral fornix (cres), splenium of corpus callosum, bilat-

eral posterior thalamic radiation, and bilateral cerebrospinal tract showed significant positive

associations with MMSE scores [38] (Fig 4a–4d), indicating that reduced WM FC corresponds

to more severe cognitive impairment.

The CDR-global [39] and CDR-SOB scores are indicators of dementia severity [40]. The

sum of negative correlations along WM tracts between FCM and CDR-global was strong in

bilateral sagittal stratum, bilateral cingulum (cingulate), bilateral fornix (cres), right supe-

rior longitudinal fasciculus, genu and splenium of corpus callosum, fornix, bilateral poste-

rior corona radiata, bilateral posterior thalamic radiation, left anterior limb of internal

capsule, and bilateral corticospinal tract (Fig 4a–4d). For the linkage between FCM ele-

ments and CDR-SOB score, clear negative correlations were found in bilateral sagittal stra-

tum, bilateral cingulum (cingulate), left fornix (cres), bilateral posterior thalamic radiation,

bilateral posterior corona radiata, genu and splenium of corpus callosum, left anterior limb

of internal capsule, right retrolenticular limb of internal capsule, and right corticospinal

tract.

Negative correlations were dominant in bilateral sagittal stratum, bilateral cingulum (cingu-

late), bilateral posterior thalamic radiation, bilateral posterior corona radiata, right superior

longitudinal fasciculus, left anterior limb of internal capsule, left posterior limb of internal cap-

sule, genu and splenium of corpus callosum between FCM and FAQ [41] that describes the

level of performance of daily function activities (Fig 4a–4d).

Bilateral cingulum (cingulate) showed the most significant negative correlations between

FCMWG and the ADAS-Cog [42] score, the overall degree of cognitive decline (Fig 4a–4d).

Genu and splenium of corpus callosum, fornix, bilateral posterior thalamic radiation, left pos-

terior corona radiata, left cingulum (cingulate), left sagittal stratum, showed significant corre-

lation between FCMWW and ADAS-Cog (Fig 4c and 4d).

Genu and splenium of corpus callosum, bilateral sagittal stratum, left anterior limb of inter-

nal capsule, right posterior thalamic radiation, and left cingulum (cingulate) showed stronger

positive correlations between FC and the WMS-LMII [43] score, a measure of episodic mem-

ory (Fig 4a–4d).

Correlation between combined WM FCs and neuropsychological scores

The correlation coefficients between the true and RF-predicted scores of ADAS-Cog,

CDR-Global, CDR-SOB, FAQ and MMSE were 0.39–0.47 with highly significant P-value

(<0.001) (Fig 4e). The R2 values in Fig 4e indicate that 15%-22% of the variances of those indi-

vidual scores could be explained by the variance of the combined WM FCs, and vice versa.

Prediction of AD stages

The performance of the SVM classification using WM FC features was best for distinguishing

ADD from CN group with sensitivity of 0.83 and specificity of 0.81 (AUC = 0.87). The perfor-

mance of prediction reduced monotonically with addition of patients from earlier stages to the

ADD group (Fig 5).
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Fig 4. Correlations between WM FC and neuropsychological scores across all subjects. (a or c) Matrix of Pearson’s correlation coefficients between

single element in FCMWG or FCMWW and MMSE score, CDR-Global score, CDR-SOB score, FAQ score, ADAS-Cog score, or WMS-LMII score. Each

correlation coefficient with PFDR> 0.05 was set to be zero. (b or d) Average of correlation coefficients along each WM tract in a or c. See Table 1 for the

lists of WM and GM ROIs. (e) Group means and standard deviations of Z-scores of true neuropsychological scores and predicted scores using RF

regression model with all WM FC as initial features. The r, R2 and P in each plot are the Pearson’s correlation coefficient between true scores and

predicted scores across all subjects, R-square value and P-value, respectively.

https://doi.org/10.1371/journal.pone.0240513.g004
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Discussion

In conventional rsfMRI studies, correlations in BOLD signals between GM regions are inter-

preted as revealing FC. Extending this concept, we investigated the FC between WM and GM

regions or between WM regions for 383 ADNI participants from six clinical groups. We

mainly found that: 1) lMCI and ADD have significant deficits in regional WM FC relative to

CN, 2) regional WM FC was significantly associated with neuropsychological scores (i.e.,

MMSE, CDR, FAQ, ADAS-Cog and WMS-LMII), and 3) the sensitivity and specificity in pre-

diction of late stages of AD using FC as features reach a reasonable range. To the best of our

knowledge, this is the first investigation of FC degeneration in WM throughout the evolution

of AD pathology. Our findings indicate that FC of WM from MRI may serve as a novel in vivo

biomarker to understand functional impairments of WM in AD, especially for the patients at

late stages (i.e., lMCI and ADD).

Our first batch of findings focused on changes in WM FC as AD progresses. Significant

decreases in FC were observed in several localized WM tracts in lMCI and ADD patients com-

pared with elderly controls (Figs 1f, 1g, 2d and 2e, or S1 Table). These functional declined WM

tracts were mainly projection fibers, association fibers and commissural fibers and have been

demonstrated with microstructural degenerations in previous diffusion MRI literature on

ADD patients from ADNI [44]. Similar structural degeneration was also observed in brainstem

fibers such as corticospinal tract in our study, yet with less consistency across previous studies

[44, 45]. Meanwhile, the canonical neuropathological evidence provided by Braak et al. [4]

also explains the extensive WM hypofunction in the late stages of AD. As to the earlier stages

of AD (i.e., SMC, eMCI and MCI), although no significant changes (PFDR< 0.05) were

observed in FCMWG or FCMWW in these groups relative to controls, their mean effect sizes

were 0.14, 0.14, and 0.19, respectively, suggesting a progression towards non-trivial group dif-

ferences. Previous studies on brain microstructure reported alterations in a few selected WM

regions in MCI participants, involving cingulate bundle, inferior fronto-occipital fasciculus

and parahippocampal subgyral fibers [46, 47], where the FC deficits were found in our lMCI

and ADD groups.

From a pathophysiological perspective, the decreases in WM FC metrics observed in late

AD stages may be attributable to GM abnormalities, WM degeneration, metabolic changes

and/or cerebrovascular changes. GM abnormalities in AD include the appearance of neurofi-

brillary/senile plaques, neuronal loss, cell shrinkage, reduced dendritic density and synaptic

losses [48, 49]. The consequent neural dysfunction could lead to less engagement of WM in

Fig 5. ROC curves of SVM classifications and a summary of their CV errors, AUC, sensitivity and specificity. (a) ROC

curves of SVM algorithm for distinguishing patients from CN. Different color represents different cumulative group of

patients. (b) The errors of 10-fold CV and ROC related indices-AUC, sensitivity and specificity for the classifications.

https://doi.org/10.1371/journal.pone.0240513.g005
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transmission of neural information. WM degeneration during AD progression [50–52]

includes demyelination [53] and axonal damage [54], which may also weaken the ability of

WM to transfer neural signals between regions. WM degeneration has been reported as a

direct consequence of amyloid deposition and tau phosphorylation in GM, and of damage to

oligodendrocytes, possibly initiated by ischemia, excitotoxicity, oxidative stress and/or iron

overload in AD [55]. Cerebral hypometabolism is found in both MCI and ADD patients

throughout limbic structures, involving hippocampal complex, medial thalamus, mammillary

bodies and posterior cingulate, yet only in ADD patients in amygdala, temporoparietal and

frontal association cortex [56, 57]. Hypometabolism may have direct effects on BOLD signals

in GM and WM. Further studies to understand the relationship between the GM changes and

decreases in WM connectivity in AD are clearly needed and may reflect a combination of fac-

tors including direct causes and effects, comorbidities and mutual dependences.

The second batch of our findings mainly revealed the association between WM FC declines

and cognitive impairments, manifest in the WM routes serving limbic network. For example,

correlations between WM FC and scores of MMSE, CDR as well as ADAS-Cog were mostly

found within sagittal stratum, cingulum, fornix and posterior thalamic radiation, which are

the major bundles connecting fronto-occipital pair, cingulate-entorhinal pair, hippocampus-

mamillary body pair, thalamus-parietal pair, respectively. Those neural circuits are well-

known for playing crucial roles in cognition functioning, such as memory and attention, and

suffering from impairment during AD [58–62]. Moreover, the structural damages of those

WM tracts were also strongly associated with scores of MMSE, CDR and ADAS-Cog [63, 64].

Similarly, the intrinsic FC between hippocampus and posterior cingulate cortex has been

reported to be closely associated with WMS-LM scores in elderly people [65]. In addition,

WM tracts in left hemisphere appear to correlate with WMS-LMII scores more widely and

strongly (Fig 4a–4d), consistent with previous findings that verbal memory tasks are more sen-

sitive to left hemisphere dysfunction [66] and damage to left temporal lobe has consistently

been associated with an impairment of verbal memory [67]. In summary, the consistency

between our function-behavior findings and previous structural-behavior evidence suggests

that the FC in WM adds a new dimension to connectivity measures and in turn assists in filling

the gap of our knowledge between structure in WM and neuropsychological performance.

The performances of our SVM classifications indicate that it is feasible to predict late stages

of AD using WM FC only. The performance decreased as patients at earlier stages of AD were

included sequentially (Fig 5), just as the sensitivities were lower for detecting FCM difference

at earlier stages of AD. However, this does not indicate WM FC is never able to reflect the

change in early stages. First, Pearson’s correlation coefficient is the most commonly used met-

ric to measure the FC among GM regions, but its accuracy has been proven to be limited [68].

Given the lower SNR in WM BOLD signals compared to GM signals and the difference in

hemodynamic response function between WM and GM [20, 69], the Pearson’s correlation

coefficient appears to be even less accurate to represent WM-GM FC. In future, it will be inter-

esting to find better metrics for detecting earlier stages of AD. Second, the FDR we used to

conduct multiple comparison turned out to be too strict due to the big size of the matrix (e.g.,

FCMWG: 48x82 = 3936), so the false negative rate might be non-negligible. Moreover, as artifi-

cial intelligence developed, such as deep learning algorithms [70], there will be certain method

(s) able to distinguish early AD stages from CN. Similarly, we recognize that, while the pro-

posed WM FC metrics allow for determination of neural substrates, currently it is not likely to

outperform neuropsychology tests, the primary criteria for staging the disease, in differentiat-

ing the study groups. Nevertheless, as our methodology continues evolving, along with

advances in MRI technologies, greatly improved performance can be anticipated.
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In our analyses, we constrained ROIs to GM or WM only in order to avoid partial volume

averaging effects which potentially could overestimate the correlation of time-courses

between regions. These correlations of WM with GM or other WM volumes are unlikely

caused by drainage effects from adjacent GM because GM drainage occurs outwards, towards

the brain surface while deeper WM veins drain inwards to sub-ependymal veins near the lat-

eral ventricles, so there is no direct vascular communication between them [71]. In our analy-

sis we did not regress out global signals because there is growing evidence that they may

contain valuable information [72, 73]. Other physiological noises (such as that caused by var-

iations in heart rate and respiration) were, however, regressed out. With these factors in

mind, we believe that the WM FC we measured is neither noise effect nor simply a reflection

of GM changes.

Conclusions

The present study indicates that WM FCs 1) decline regionally in lMCI and ADD groups rela-

tive to a CN group, 2) are significantly related to cognitive scores, and 3) can serve as machine

learning features to predict lMCI and ADD with a reasonable sensitivity and specificity. These

findings suggest the potential of WM FC, which has been largely overlooked to date, as a novel

neuroimaging biomarker to assess AD progression.

Supporting information

S1 Fig. Visualization of WM ROIs. The colored WM ROIs are overlaid on the T1 template.

(TIF)

S2 Fig. Means of GM-GM and WM-WM functional correlation matrices (mFCMGG and

mFCMWW, respectively) for each clinical group in AD progression. (a-f) mFCMGG (lower

triangle) and mFCMWW (upper triangle) for group of CN (a), SMC (b), eMCI (c), MCI (d),

lMCI (e) and ADD (f). Each element in mFCMGG or mFCMWW is the group mean of correla-

tion coefficient of the averaged BOLD time courses between two GM regions or two WM

regions. See Table 1 for the list of GM ROIs and WM ROIs.

(TIF)

S1 Table. Summary of significance of difference in WM-tract-wise FC between CN group

and lMCI or ADD group. � p<0.05, �� p<0.01, ��� p<0.001.
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