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Abstract: Given the increasing interest in bioactive dietary components that can modulate gene
expression enhancing human health, three metabolites isolated from hemp seeds—cannabidiolic
acid, N-trans-caffeoyltyramine, and cannabisin B—were examined for their ability to change the
expression levels of microRNAs in human neural cells. To this end, cultured SH-SY5Y cells were
treated with the three compounds and their microRNA content was characterized by next-generation
small RNA sequencing. As a result, 31 microRNAs underwent major expression changes, being at
least doubled or halved by the treatments. A computational analysis of the biological pathways
affected by these microRNAs then showed that some are implicated in neural functions, such as axon
guidance, hippocampal signaling, and neurotrophin signaling. Of these, miR-708-5p, miR-181a-5p,
miR-190a-5p, miR-199a-5p, and miR-143-3p are known to be involved in Alzheimer’s disease and
their expression changes are expected to ameliorate neural function. Overall, these results provide
new insights into the mechanism of action of hemp seed metabolites and encourage further studies
to gain a better understanding of their biological effects on the central nervous system.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder leading to cere-
bral atrophy and dementia. It is biochemically characterized by the neural deposition of
amyloid β (Aβ) peptide as extracellular plaques and by the aggregation of hyperphospho-
rylated Tau protein as intracellular neurofibrillary tangles (NFTs) [1]. Aβ peptide derives
from the aberrant proteolytic cleavage of amyloid precursor protein (APP) by secretases,
leading to excess amyloid accumulation. Several microRNAs (miRNAs) are implicated in
AD [2,3]. Some of these affect Aβ deposition by modulating the expression of APP and
secretases, whereas other microRNAs have an impact on NFTs by regulating the expression
levels of Tau protein and the kinases/phosphatases acting on them. Furthermore, there
are miRNAs implicated in AD for their ability to modulate associated biological processes,
such as neuroinflammation, apoptosis, synaptic plasticity, and autophagy.

Several studies have shown that phenols, polyphenols, flavonoids, and other sec-
ondary metabolites of plants have anti-aging and cognition-enhancing properties that
may ameliorate neural function in AD [4–6]. Of these, investigations on Cannabis sativa
have revealed a marked neuroprotective action of cannabinoids with promising effects
in reducing amyloid plaque deposition and stimulating hippocampal neurogenesis [7–9].
Furthermore, hydroxycinnamic acid amides from Cannabis sativa fruits, and their lig-
nanamide derivatives, have been reported to exert neuroprotective effects. In particular,
N-trans-caffeoyltyramine showed antioxidant activity against the H2O2-induced apoptosis
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in PC12 cells [10], whereas N-trans-feruloyltyramine, also known for its antioxidant, anti-
inflammatory, anti-melanogenesis, and anticancer activities [11], induced abrogation of
Aβ-mediated generation of reactive oxygen species [12].

Several phytochemicals, such as curcumin, quercetin, resveratrol, betulinic acid, cap-
saicin, epigallocatechin gallate, genistein, and ellagic acid, can modulate microRNA ex-
pression in mammalian cells, possibly exerting their health-promoting effects by recruiting
these modulators of gene expression [13–17]. In this regard, the term “Nutrigenomics”
has recently been introduced to define a field of study that investigates the relationship
between bioactive dietary components and human gene expression [18].

Hemp seed is an interesting aliment both for its high content of essential polyun-
saturated fatty acids [19] and for the presence of specialized metabolites belonging to
precannabinoid and polyphenol classes [20,21]. Based on the recognized ability of phy-
tochemicals to affect human gene expression, we studied the effect of cannabidiolic acid
(CBDA), the main phytocannabinoid in hemp seeds, and of N-trans-caffeoyltyramine and
cannabisin B, which are isolated from defatted hemp seeds, on the miRNome of cultured
human neural cells, to evaluate any changes in the expression of AD-related miRNAs.

2. Materials and Methods
2.1. Isolation of Pure Compounds from Hemp Seeds

Hemp seeds (Cannabis sativa cv. Futura 75) underwent ultrasound-assisted macera-
tion with a Branson UltrasonicsTM BransonicTM M3800-E operated in sweep-frequency
mode at 40 kHz. n-hexane and methanol were used sequentially as extracting solvents
at a drug/solvent ratio of 1:5 (g:mL). n-hexane extract was fractionated according to For-
mato et al. [22] to obtain pure cannabidiolic acid (CBDA). The methanol extract was dried
with a rotary evaporator, solubilized with water, and partitioned through discontinu-
ous liquid/liquid extraction using the extractant solution ethyl acetate:acetone (2:1, v:v).
The organic phase was then fractionated by C18 reversed-phase column chromatography,
followed by preparative thin-layer chromatography with a precoated silica gel 60 F254
(20 cm × 20 cm, 2 mm, Merck, Darmstadt, Germany). The organic lower phase of a
biphasic CHCl3:MeOH:H2O (13:7:3, v:v:v) solution served as the mobile phase, leading to
the purification of N-trans-caffeoyltyramine and cannabisin. Their identity was initially
assessed by the Shimadzu NEXERA UHPLC system using an Omega Luna C18 column
(50 mm × 2.1 mm, 1.6 µm) with reference to their relative pure commercial compounds
(N-trans-caffeoyltyramine, SMB00208, Sigma-Aldrich; cannabisin B, CFN95268, Chem-
Faces). Then, MS analysis was carried out using AB SCIEXTripleTOF®4600 (AB Sciex,
Concord, ON, Canada) equipped with a DuoSprayTM ion source, which was operated in
the negative electrospray ionization mode. The Q-TOF high-resolution mass spectrome-
try method involved a full scan TOF survey (dwell time 300 ms, 150–800 Da) and eight
information-dependent acquisition MS/MS scans (dwell time 50 ms, 100–750 Da). The
MS parameters were as follows: curtain gas (CUR) 35 psi, nebulizer gas (GS 1) 60 psi,
heated gas (GS 2) 60 psi, ion spray voltage (ISVF) 4.5 kV, interface heater temperature (TEM)
600 ◦C, declustering potential (DP) −80 V. The applied collision energy was −45 V with a
collision energy spread of 15 V. Analyst® TF 1.7 software controlled the instrument, while
PeakView® software Version 2.2 provided data processing.

2.2. Cell Cultures

Human SH-SY5Y (SH) cells were grown in Dulbecco’s modified Eagle’s medium with
high glucose supplemented with 10% fetal bovine serum (FBS), 50 U/mL penicillin, and
100 µg/mL streptomycin, at 37 ◦C in a humidified atmosphere containing 5% CO2. Cell
treatments for the RNA sequencing experiments were performed by incubating SH cells
with cannabis compounds at their relative IC50 concentrations, as determined by the MTT
assay, in FBS-free culture medium for 48 h.
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2.3. MTT Assay

Cells were seeded in 96-multiwell plates at a density of 1.5 × 104 cells/well. After 24 h
of incubation, cells were treated with CBDA at four dose levels (2.5, 5, 10, and 25 µM), and
with N-trans-caffeoyltyramine and cannabisin B at seven concentrations (2.5, 5, 10, 25, 50,
100, and 200 µM). After 48 h of incubation, cells were treated with 150 µL of 0.5 mg/mL
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT), having previously been
dissolved in FBS-free culture medium for 4 h at 37 ◦C in a 5% CO2 humidified atmosphere.
The MTT solution was then removed and 100 µL of DMSO was added to dissolve the
produced formazan dye. Finally, the absorbance at 570 nm of each well was determined
using a Victor3 Perkin Elmer absorbance reader. Cell viability was expressed as a percentage
of mitochondrial redox activity of the cells treated with pure compounds compared to the
untreated control. The IC50 value of each compound was determined from the relative
dose–response curve.

2.4. RNA Isolation, Sequencing and Data Analysis

Total RNA purification from cell cultures was performed by miRNeasy Mini Kit (Qia-
gen) according to the manufacturer’s protocol. RNA concentration was determined with a
NanoDropOne spectrophotometer (Thermo Fisher, Waltham, MA, USA) and its quality was
assessed with the TapeStation 4200 (Agilent Technologies, Santa Clara, CA, USA). Indexed
libraries were prepared from 500 ng/each purified RNA using the NEXTFLEX Small RNA-
Seq Kit v3 (PerkinElmer). Libraries were quantified with the TapeStation 4200 (Agilent Tech-
nologies) and Qubit fluorometer (Invitrogen Co.), then pooled such that each index-tagged
sample was present in equimolar amounts. The pooled samples were then subjected to
cluster generation and sequencing using an Illumina NextSeq 550 Dx System (Illumina) in a
1 × 75 single-end format. The generated raw sequence files (.fastq files) underwent qual-
ity control analysis using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) (accessed on 22 September 2022). The sRNAbench tool [23] was then used to
remove adapter sequences and low-quality reads to obtain the miRNA expression profiles.
Finally, the Bioconductor package DESeq2 [24] in R was used to normalize the data using
the median of ratios method, and to perform the differential expression analysis between
the various experimental condition.

3. Results
3.1. Isolation of Bioactive Compounds from Hemp Seeds

Cannabidiolic acid (CBDA) is the most abundant precannabinoid in hemp seed and
its ability to modulate the release of proinflammatory cytokines and chemokines mediators
has recently been evaluated in HaCat cells [25]. Moreover, a hemp seed mixture mainly
consisting of phenylamides and lignanamides has been shown to negatively affect U-
87 glioblastoma cell line survival and migration [26]. Of these, two structurally related
compounds, N-trans-caffeoyltyramine and cannabisin B, have also raised interest because
of their antioxidant activity [10].

In this work, cannabidiolic acid was purified according to an established procedure
based on fractionation of an n-hexane extract of hemp seeds [22], whereas two other
major metabolites, N-trans-caffeoyltyramine and cannabisin B (Figure 1), were obtained by
an optimized procedure based on the C18 reversed-phase column chromatography of a
methanol extract of hemp seeds.

These major metabolites were identified by comparing their Ultraviolet Diode Array
Detection (UV-DAD) and TOF-MS/MS spectra with those of pure commercial reference
compounds (Figure 2). Briefly, according to the findings of Nigro et al. [26], the TOF-MS
spectrum of N-trans-caffeoyltyramine showed the peak of deprotonated molecular ion at
m/z 298.1084 and its fragmentation yielded the TOF-MS2 base peak at m/z 135.0457, as
expected for 4-vinylcatecholate. The deprotonated molecular ion of cannabisin B at m/z
595.2107 provided, in the TOF-MS/MS experiment, the fragment ion at m/z 485.1744, due to
the loss of a catechol unit at m/z 432.1473, which was the characteristic lignanamide loss of
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isocyanic acid and p-hydroxystyrene. Further loss of isocyanic acid and p-hydroxystyrene
yielded fragment ions at m/z 269.0831 and m/z 322.1093.
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Figure 1. Chemical structures of the three metabolites isolated from hemp seeds. Cannabisin B (a),
N-trans-caffeoyltyramine (b), and cannabidiolic acid (c) were isolated from Cannabis sativa seeds.

3.2. Cytotoxicity Assays

The three compounds then underwent cytotoxicity testing towards cultured SH cells
by the MTT assay. This was based on the mitochondrial redox activity of live cells that can
convert the water-soluble dye MTT into insoluble purple formazan crystals. Measurement
of the amount of formazan then gives an estimate of the number of cultured live cells.
Through this assay, it was found that CBDA inhibited redox mitochondrial activity in a dose-
dependent manner, with an IC50 of 8.7 µM (Figure 3). The phenylamide compounds showed
a milder toxicity profile with IC50 values for N-trans-caffeoyltyramine and cannabisin B of
59 and 27 µM, respectively.

3.3. Hemp Seed Metabolites Change the microRNA Expression Profiles of Neural Cells

Cultured human neural SH cells were incubated with three major metabolites isolated
from hemp seeds, cannabisin B, N-trans-caffeoyltyramine, or cannabidiolic acid (CBDA).
After 48 h, total RNA was extracted and the microRNA content was characterized by
next-generation small RNA sequencing. This was based on the construction of cDNA
libraries that underwent high-throughput sequencing, revealing the normalized number of
reads for each human microRNA in the sample. A comparison of the three samples with
a control of untreated cells revealed large microRNA expression changes, especially with
cannabisin B and N-trans-caffeoyltyramine (Figure 4).
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caffeoyltyramine (i) Total Ion Chromatogram (TIC); (ii) TOF-MS spectrum showing the [M-H]- and
[2M-H]- ions at m/z 298.1084 and 597.2254, respectively; (iii) TOF-MS/MS of the [M-H]- ion; (iv) pro-
posed fragmentation pattern; theoretical m/z value is below each chemical structure. (B) Cannabisin
B (i) Total Ion Chromatogram (TIC); (ii) TOF-MS spectrum showing the [M-H]- ion at m/z 595.2107;
(iii) TOF-MS/MS of the [M-H]- ion; (iv) proposed fragmentation pattern; theoretical m/z value is
below each chemical structure.
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Figure 4. Volcano plots of microRNA expression changes in cultured neural cells. SH cells were
treated with cannabisin B (A), N-trans-caffeoyltyramine (B), or cannabidiolic acid (C) for 48 h, then
microRNA expression changes were detected by next-generation small RNA sequencing. Plots were
prepared by the program VolcaNoseR [27]. Fields outside the vertical broken lines include miRNAs
showing a fold change > 1.5; fields above the horizontal broken line contain miRNAs with a highly
significant variation (p < 0.001); hsa, homo sapiens.
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The selection of microRNAs with expression changes of at least 1.5-fold yielded a
list of 68, 51, and 21 miRNAs for cannabisin B, N-trans-caffeoyltyramine, and CBDA, re-
spectively (Supplementary Tables S1–S3). The biological pathways potentially affected by
these miRNAs were then analyzed by considering their whole targetomes through miR-
Walk platform [28]. In particular, for each miRNA, we considered all the experimentally
validated targets reported by the miRTarbase tool and predicted targets identified by both
TargetScan and miRDB tools with a cut-off score ≥ 0.5 for miRNA–mRNA pairings, in both
the untranslated and coding sequences of target transcripts. Pathway enrichment analysis
of target genes was then performed using the program DAVID (https://david.ncifcrf.gov/)
(accessed on 1 March 2022); this consisted of an integrated biological knowledgebase and an-
alytic tools aimed at systematically extracting biological meaning from large gene/protein
lists [29]. In particular, we focused on the significantly enriched pathways using KEGG as a
reference database. This approach revealed that neural functions, such as “Axon guidance”,
“Hippo signaling”, and “Neurotrophin signaling” were among the top-ranking pathways
predicted to be affected by the de-regulated miRNAs (Figure 5).
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Figure 5. Biological pathways potentially affected by a miRNA-based mechanism. The whole
targetomes (predicted and validated) of microRNAs deregulated by cannabisin B (A), N-trans-
caffeoyltyramine (B), and cannabidiolic acid (C) were analyzed by the program DAVID and the
top-20 significantly enriched KEGG pathways were displayed. Biological pathways were considered
statistically significant if p-value was less than 0.05 (Benjamini-Hochberg procedure for multiple
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3.4. Comparison of the Effects of the Three Specialized Hemp Seed Metabolites

To obtain a more concise view of the expression changes, only those miRNAs that
showed at least doubled or halved expression were considered, thus retrieving a pool of
31 molecules (Figure 6). Under these conditions, cannabisin B dysregulated 25 miRNAs,
with eight showing variations very similar to those observed with N-trans-caffeoyltyramine
treatment. Only five miRNAs among the 13 affected by N-trans-caffeoyltyramine were
not similarly changed by cannabisin B. This similarity between the effects of cannabisin
B and N-trans-caffeoyltyramine is not surprising given the resemblance of their chemical
structures, such that both are provided with phenol and catechol moieties (Figure 1). In
this regard, it is noteworthy that the most upregulated miRNA, miR-708-5p, showing a
16-fold and 9-fold increase by cannabisin B and N-trans-caffeoyltyramine, respectively, has
also been reported to be strongly upregulated by bisphenol [30].
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Figure 6. Venn diagram of microRNAs from neural SH cells showing expression levels markedly
affected by cannabis compounds. Selection was limited to those microRNAs with an absolute value
of log2 fold change ≥ 1. MicroRNAs involved in Alzheimer’s disease are marked in bold; those
varying such as to expect an amelioration of neural function in AD are underlined.

4. Discussion

The most upregulated miRNA revealed by this study, miR-708-5p, appeared to be nega-
tively correlated to AD, since its content in the cerebrospinal fluid of AD patients was found
to be markedly lower than in neurologically normal controls [31]. Additionally, miR-199a-
5p was affected by the cannabis compounds, being downregulated by cannabisin B and
N-trans-caffeoyltyramine by 56% and 50%, respectively (Supplementary Tables S1 and S2).
This miRNA is known to be associated with AD because it targets neuritin, a neurotrophin
that is involved in neural development and plasticity and is downregulated in AD [32].
MicroRNA-181a-5p is mainly affected by cannabisin B, which increases its cellular content
by 2-fold (supplementary Table S1). This miRNA has previously been shown to play a
protective role in AD by targeting FOXO1, a transcription factor involved in insulin sig-
naling and apoptosis. In this regard, lentiviral-mediated expression of miR-181a-5p in
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the brain of mice ameliorates plaque deposition and cognitive function [33]. MicroRNA
190a-5p is the only miRNA undergoing similar expression changes upon treatment with
the three cannabis compounds (Figure 6). Its downregulation may be a desired effect in AD
since the content of miR-190a-5p in neural-derived small extracellular vesicles from AD
patients is known to be significantly upregulated when compared with controls [34]. The
only miRNA specifically modified by CBDA is miR-143-3p, with an expression level that is
reduced by 51% (Figure 6). This miRNA is upregulated in the serum of AD patients [35]
and a study on a cell model of AD has shown that its downregulation promotes neuronal
survival by upregulating its target neuregulin-1, an EGF-like protein playing a crucial
role in brain development, neuronal migration, differentiation and synapse formation [36].
With regards to the possible mechanisms of modulation of microRNA expression by the
three compounds tested in this study, it should be considered that miRNA precursors are
transcribed by RNA Polymerase II. The activity of this enzyme critically depends on the
specific combination of transcription factors that are active in the nucleus. Both activators
and repressors of transcription may then affect microRNA expression, depending on the
biochemical pathways that are activated in response to extracellular signal compounds.
Within this network, bioactive compounds may affect microRNA expression by interacting
with membrane receptors, thus inducing agonistic or antagonistic effects on the expression
of specific genes.

5. Conclusions

This study shows that three metabolites from edible hemp seeds, cannabisin B, N-
trans-caffeoyltyramine, and CBDA, can modify the miRNome of cultured human neural
cells with effects on specific microRNAs that are implicated in neural functions. This
pilot transcriptomic analysis may provide the basis for functional in vivo studies aimed
at a direct evaluation of the effects of the three compounds on specific microRNAs and
related biochemical pathways. One possible biomolecular approach may involve the oral
administration of the three metabolites to mice, followed by the quantitation of miR-708-5p,
miR-181a-5p, miR-190a-5p, miR-199a-5p, and miR-143-3p in the brain by real-time qPCR.
If their expression changes are confirmed, the neural expression of the genes targeted by
these microRNAs, such as neuritin, FOXO1, and neuregulin-1, may be assessed. How-
ever, a balanced evaluation of the beneficial effects of the three metabolites on microRNA
expression should also take into account their mild cytotoxic activity (Figure 3). In this
regard, treatments at low metabolite concentrations might well be conceivable given the
large variation in microRNA expression registered in this study.
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neural SH cells; Table S3: Effect of cannabidiolic acid on miRNA expression in neural SH cells.
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