
sensors

Article

A Discrete-Time Extended Kalman Filter Approach Tailored for
Multibody Models: State-Input Estimation

Rocco Adduci 1,2,∗ , Martijn Vermaut 1,2 , Frank Naets 1,2, Jan Croes 1,2 and Wim Desmet 1,2

����������
�������

Citation: Adduci, R.; Vermaut, M.;

Naets, F.; Croes, J.; Desmet, W. A

Discrete-Time Extended Kalman

Filter Approach Tailored for

Multibody Models: State-Input

Estimation. Sensors 2021, 21, 4495.

https://doi.org/10.3390/s21134495

Academic Editor: Giuseppe Ferri

Received: 21 May 2021

Accepted: 28 June 2021

Published: 30 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 LMSD Research Group, Mechanical Engineering Department, KU Leuven University, 3000 Leuven, Belgium;
martijn.vermaut@kuleuven.be (M.V.); frank.naets@kuleuven.be (F.N.); jan.croes@kuleuven.be (J.C.);
wim.desmet@kuleuven.be (W.D.)

2 DMMS Core Labs, Flanders Make, 3001 Heverlee, Belgium
* Correspondence: rocco.adduci@kuleuven.be

Abstract: Model-based force estimation is an emerging methodology in the mechatronic community
given the possibility to exploit physically inspired high-fidelity models in tandem with ready-to-use
cheap sensors. In this work, an inverse input load identification methodology is presented combining
high-fidelity multibody models with a Kalman filter-based estimator and providing the means for
an accurate and computationally efficient state-input estimation strategy. A particular challenge
addressed in this work is the handling of the redundant state-description encountered in common
multibody model descriptions. A novel linearization framework is proposed on the time-discretized
equations in order to extract the required system model matrices for the Kalman filter. The presented
framework is experimentally validated on a slider-crank mechanism. The nonlinear kinematics
and dynamics are well represented through a rigid multibody model with lumped flexibilities to
account for localized interaction phenomena among bodies. The proposed methodology is validated
estimating the input torque delivered by a driver electro-motor together with the system states and
comparing the experimental data with the estimated quantities. The results show the stability and
accuracy of the estimation framework by only employing the angular motor velocity, measured by
the motor encoder sensor and available in most of the commercial electro-motors.

Keywords: multibody dynamics; Kalman filtering; coupled states-inputs estimation; virtual sensors;
slider-crank mechanism

1. Introduction

In mechatronic systems, operational forces and moments are essential quantities in
the different stages of the development cycle and strongly impact the design, durability,
diagnostic, prognostic, maintenance, and advanced control strategies [1]. However, forces
and moments are also difficult, even impossible, quantities to measure. This is due to high
force sensor costs and the geometrical constraints (space limitations) that would make the
sensor integration impossible without influencing the overall system design and behavior.

In past decades, different test-driven and model-based inverse force methods have
been presented in the literature to overcome these limitations. Initially, the challenge of
inverse load identification was tackled in offline test-based strategies. One of the most
commonly used technique for mechanical applications relates to the field of Transfer Path
Analysis (TPA) [2].

TPA summarizes the family of test-based methodologies to study the vibration trans-
mission in mechanical systems where the Matrix Inversion and Mount Stiffness approaches
are the most commonly used to estimate inputs and transmitted forces respectively. De-
spite the wide variety of methods and extensive use in the industrial world, TPA still
remains quite expensive from an experimental point of view in terms of preparation and
execution time.
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The growing computational power of modern computers opened new opportunities to
exploit numerical model-based methods. These models can be exploited in virtual sensing
approaches [3] which enable the exploitation of low cost, accessible and non-collocated
measurements together with first-principle/physically inspired models to obtain state and
input estimates.

State estimation techniques such as the Kalman Filter (KF) methods allow the joint
estimation of unknown inputs and model states [4] in an efficient manner. By regularly
feeding back the measurements on a physical asset, KF techniques enable the compensation
of drift in the model while reducing the noise from the direct measurements.

Multibody (MB) modeling approaches are regularly used in the literature and industry [5–7]
for full scale rigid and flexible mechanical systems where conventional Finite Element (FE)-
based methods would be unnecessarily expensive. The MB methods establish a good trade-off
between model fidelity and computational cost. Moreover, MB models disclose 3D system-level
information, enabling dynamic interaction phenomena among bodies due to distributed and/or
localized flexibilities.

However, the link between MB models and estimation algorithms is nontrivial since
most estimators require an ordinary differential state-space representation of the system
dynamics. Instead, the MB model dynamics, depicted by the Equations of Motion (EOMs),
are generally described by a set of Implicit-Differential Algebraic Equations (I-DAEs) that
makes the state-space representation difficult to be met. On the other hand, Explicit-
Ordinary Differential Equations (E-ODEs) are well suited for a state-space representation
but specific MB formulations should be employed to obtain this structure (e.g., [8]), other-
wise, dedicated manipulations of the EOMs are demanded to achieve an ODE form.

In [9] the Matrix-R method was proposed to eliminate the constraint equations of the
MB model reducing the initial EOMs to an ODE form in independent coordinates. The aim
of this work was to combine an extended KF estimator with detailed MB models to obtain
an automotive real-time observer. Despite the high accuracy of the estimated quantities,
the real-time target was not achieved due to the costly solver iterations.

Similarly in [10–12] the Matrix-R method was used to deal with the DAE structure of
the EOMs. Here, different KF estimators are compared in terms of accuracy and perfor-
mance on a rigid 4 and 5-bar linkage mechanisms.

Alternatively, in [13] a kinematic state observer is presented. It combines the con-
strained kinematic MB equations with nonlinear estimators. Here, the dynamic equations
of the MB system are not considered therefore leading to an estimation which is less sensi-
tive to input and mechanical (properties) uncertainties. Moreover the system accelerations
are treated as random walk models and augmented to the kinematic discrete state vector
that imply the use of a more extensive number of measurement sensors.

In [14,15] an interesting approach based on the combination of deep learning and MB
dynamics information was proposed to achieve this transformation. It allows reducing a
generic MB model to minimal coordinates allowing the description of the EOMs through
E-ODEs while not requiring a specific formulation or access to the constraint equations.
However, the methodology depends on a reference numerical simulation as training data
which must cover the mechanism workspace; moreover only rigid MB systems can be
tackled by the technique.

In [16] an Augmented Discrete Extended Kalman filter (ADE-KF) approach tailored
for flexible MB models to construct a state-input estimator is presented.The methodology
demonstrates the advantages of using analytical expressions to cover the necessary lin-
earized and explicit EOMs. However, this approach relies on the use of a penalty constraint
formulation to achieve E-ODE type of equations. This leads to a relatively poorly condi-
tioned problem and introducing additional model parameters, namely the penalty factors,
in comparison to a Lagrange-multiplier approach.

In this work, a generalization of the methodology described in [16] is presented which
is compatible with a Lagrange multiplier approach for the constraint equations.



Sensors 2021, 21, 4495 3 of 24

The proposed methodology starts from a novel linearization approach of the EOMs that
includes the algebraic variables (Lagrange multipliers) to the system states. Consequently,
the resulting unconstrained discrete-time state-space model is employed in a constraint KF
scheme where the kinematic constraints are enforced trough the augmented measurement
equations, therefore eliminating the effort of selecting effective penalty factors.

The scientific contribution is structured as follows: in Section 2 a general overview
of the governing EOMs of the MB system dynamics is given; in Section 3 the implicit
constrained EOMs are linearized and made explicit through a first order Taylor expansion;
in Section 4 the system and measurement Kalman filter equations are introduced. Here,
the system and measurement matrices are analytically assembled thanks to the use of the
in-house Multibody Research Code (MBRC) [17]; finally, in Section 5 the methodology is
validated on an industrial relevant application comparing the estimated quantities with
the experimentally measured one.

2. Multi-Body Model and Time-Disretization

This section summarizes the derivation of the EOMs of flexible multibody systems, as
they will be employed in this work.

2.1. The Multibody Equations of Motion

The mathematical description of the system dynamics can be derived by means of the
Lagrange’s equations for constrained mechanical systems [18]:

d
dt

(
∂L(q̇, q, λ)

∂[q̇, λ̇]

)
− ∂L(q̇, q, λ)

∂[q, λ]
= ue(q, u), (1)

with the Lagrangian defined as:

L = T − V − φ(q)Tλ. (2)

L represents the Lagrangian functional, T the kinetic energy, V the potential energy,
φ(q)Tλ the constraint contribution with the Lagrange multipliers λ, and ue is the vector
of the external actions. MB models describe the dynamics of several rigid and/or flexible
interacting bodies linked together through the definition of kinematic joints which are
mathematically represented by the constraint equations φ(q) while J = ∂φ(q)/∂q represent
the Jacobian of the constraint equations. q ∈ Rnq is the generalized coordinates vector,
λ ∈ Rnλ is known as Lagrange multipliers and u ∈ Rnu is the input vector. Through the
definition of the assembled body coordinates and the motion parametrization Equation (1)
can be written in a residual form as a fully implicit real-valued non-linear function:

g(q̈, q̇, q, λ, u) = 0. (3)

2.2. The Differential-Algebraic form of the EOMs

A set of natural coordinates qn ∈ Rnqn was proposed in [18], where redundant degrees
of freedom are employed to define the system coordinates of the assembled bodies. More-
over, including the motion parameterization employed in the Flexible Natural Coordinate
Formulation (FNCF) [19] allows deriving a constant singular mass matrix M ∈ Rnqn×nqn .
Assuming this formulation, Equation (3) can be written in the so-called index-3 form:

{
g1 = Mn q̈n + fnl(q̇n, qn, u) + JTλ = 0q

g2 = φ(qn) = 0λ

. (4)

Here, fnl ∈ Rnqn is the non-linear generalized force vector expressed as:

fnl(q̇n, qn, u) = fv(q̇n, qn) + fint(q̇n, qn) + fext(q̇n, qn, u). (5)
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fv represents the quadratic velocity vector related to the gyroscopic forces of the bodies,
which is zero for FNCF formulation. fint is the internal force vectors which accounts for the
elastic energy stored by deformable bodies and if rigid bodies are assumed fint vanishes;
fext is the external force vector and can be spilt in the sum of two contributions, the
interaction forces among bodies fb (i.e., contact and friction forces) and the input forces fu.
They can be summarized as follows:

fext(q̇n, qn, u) = fb(q̇n, qn) + fu(qn, u). (6)

Here, fu can be written as fu(qn, u) = Ut(qn)u, where Ut is tangent input matrix
defined as:

Ut =
∂ fu

∂u
. (7)

Due to the structure of the EOM, Equation (4), for the FNCF formulation, derivatives
can be more readily obtained than for may alternative flexible multibody formulations.
Therefore, the above mentioned coordinates definition and motion parameterization will
be considered in this work. For the sake of brevity, we omit the subscript n referred to the
natural coordinate formulation for the remainder of this manuscript.

Despite the computational advantages of the above mentioned MB approach, the
methodologies that will be introduced in the next sections can be easily extended to
alternative MB formulation, such as the floating-frame of reference component mode
synthesis approach or the generalized component mode synthesis [5,20].

The I-DAEs form of Equation (4) are generally not suitable for estimation algorithms
such as the Kalman Filter family, since these have been designed to handle E-ODEs type
of equations.

In the next section, we present a new methodology to directly linearize the I-DAEs
starting from its discrete form but without employing any explicit constraint elimina-
tion technique.

2.3. EOMs: The Discrete Index-3 Form

To transform the second order differential equation into first-order differential equa-
tions, it is common to introduce the velocity variable q̇ = v, allowing to write Equation (4)
in a first-order form as:

g(v̇, v, q̇, q, λ, u) =


g1 = v− q̇ = 0v

g2 = M(q)v̇ + fnl(v, q, u) + JTλ = 0q

g3 = φ(q) = 0λ

. (8)

These equations represent a system of constrained-DAEs of index 3 [21]. Numerical
differentiation is generally employed [22] to convert Equation (8) into a discrete form.

In this work, a first order, constant time-step Backward Differentiation Formula
(BDF-1), also known as Backward Euler, is employed. This choice does not imply that other
differentiation schemes cannot be applied to discretize the EOMs in time. However, the
time-discretization must be consistent with the defined estimation sampling and particular
attention should be paid to choosing the differentiation schemes (e.g., forward or backward)
because it influences the achievement of the discrete-time E-ODE form of the EOMs, as
will be discussed in Section 3.

The single step method BDF-1 can be written as{
v̇k+1 = 1

h (vk+1 − vk)

vk+1 = 1
h (qk+1 − qk)

, (9)

where h represents the constant time step size and k ∈ Z the k − th time instance. By
substituting Equation (9) into Equation (8) the discrete-time EOMs gd are obtained:
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gd1 = vk+1 − 1

h (qk+1 − qk) = 0v

gd2 = M(qk+1)
vk+1−vk

h + fnl(qk+1, qk, uk+1) + JT(qk+1)λk+1 = 0q

gd3 = φ(qk+1) = 0λ

. (10)

This can be summarized as

gd(vk+1, qk+1, vk, qk, λk+1, uk+1) = 0. (11)

Assuming the generalized coordinates qk and velocities vk at the time instance k to
be known and given the input uk+1 at the time instance k + 1, Equation (10) is solved for
qk+1 and λk+1 by substituting gd1 in gd2, and applying a Newton-Raphson-based iterative
algorithm with iteration gradient JNR:

JNR =

[
Kt + βCt + γMt JT

J 0λ,λ

]
. (12)

Here, Kt, Ct and Mt are the tangent stiffness, damping and mass matrices obtained
from the partial derivatives of the continuous g2 equations in Equation (8) evaluated at
time step k + 1:

Kt =
∂g2

∂q

∣∣∣∣∣
k+1

; Ct =
∂g2

∂v

∣∣∣∣∣
k+1

; Mt =
∂g2

∂v̇

∣∣∣∣∣
k+1

, (13)

and β and γ are matrix coefficients function of the defined integration rule, which are given
for the BDF-1 scheme by:

β =
∂vk+1
∂qk+1

=
∂v̇k+1
∂vk+1

=
1
h

Iq; γ =
∂v̇k+1
∂qk+1

=
1
h2 Iq; (14)

∂vk+1
∂qk

=
∂v̇k+1

∂vk
= −β;

∂v̇k+1
∂qk

= −γ. (15)

This time integration scheme will be exploited in the following section to set up a
suitable solver structure for use in an ODE-base estimation framework.

3. An Explicit Linearized Approximation for Use of the Multibody Model in
State-Estimation

The aim of this work is to combine MB models with a Kalman filter-based estimator
to concurrently estimate the system states and unknown forces of a mechanism. These
presented estimators, as will be discussed in Section 4, require the linearized time-discrete
model matrices. In this section, a new approach to linearize the EOMs of a MB model
starting from an ID-DAE form is presented. Subsequently, the linearized system matrices
are analytically assembled.

By introducing the state vector x ∈ Rnx for a time step k

xk =
[
vk qk λk

]T , (16)

the ID-DAE form of the EOMs in Equation (11) can be re-written as:

gd(xk+1, xk, uk+1) = 0x. (17)

In this work we assume the function gd of Equation (17) to be continuously differ-
entiable in all its variables. Therefore, an explicit discrete function fd locally exists by
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applying the implicit function theorem. Through a first order Taylor expansion, gd can be
approximated as

g0
d +

∂gd
∂xk+1

∣∣∣
0

(
xk+1 − x0

k+1

)
+

∂gd
∂xk

∣∣∣
0

(
xk − x0

k

)
+ . . .

∂gd
∂uk+1

∣∣∣
0

(
uk+1 − u0

k+1

)
+O(xk+1, xk, uk+1) = 0x; (18)

where (x0
k+1,x0

k ,u0
k+1) represents the linearization set point while g0

d = gd(x0
k+1,x0

k ,u0
k+1)

for convenience of notation. Manipulating Equation (18) and neglecting the higher order
terms, it can be made explicit as

xk+1 = x0
k+1 −

[
∂gd

∂xk+1

∣∣∣
0

]−1(
g0

d +
∂gd
∂xk

∣∣∣
0

(
xk − x0

k
)
+

∂gd
∂uk+1

∣∣∣
0

(
uk+1 − u0

k+1
))

. (19)

In compact form Equation (19) becomes:

xk+1 = fd(xk, uk+1) = x0
k+1 + f 0

d (xk, uk+1) + A0
k+1(xk − x0

k) + B0
k+1(uk+1 − u0

k+1). (20)

A0
k+1 = ∂ fd

∂x

∣∣∣0
k+1

and B0
k+1 = ∂ fd

∂u

∣∣∣0
k+1

are the linearized system and input matrices

around the linearization set point.
Starting from Equation (19) and differentiating Equation (10), the Jacobians for the

backward Euler implicit time-integrator can be computed as:

Gxk+1 =
∂gd

∂xk+1
=


∂gd1

∂vk+1

∂gd1
∂qk+1

∂gd1
∂λk+1

∂gd1
∂vk+1

∂gd2
∂qk+1

∂gd2
∂λk+1

∂gd3
∂vk+1

∂gd3
∂qk+1

∂gd3
∂λk+1

 =

 Iv −β 0v,λ
0q,v γMt + βCt + Kt JT

0λ,v J 0λ,λ

; (21)

Gxk =
∂gd
∂xk

=


∂gd1
∂vk

∂gd1
∂qk

∂gd1
∂λk

∂gd2
∂vk

∂gd2
∂qk

∂gd2
∂λk

∂gd3
∂vk

∂gd3
∂qk

∂gd3
∂λk

 =

 0v,v β 0v,λ
−βMt −γMt − βCt 0q,λ

0λ,v 0λ,q 0λ,λ

; (22)

Guk+1 =
∂gd

∂uk+1
=


∂gd1

∂uk+1
∂gd2

∂uk+1
∂gd3

∂uk+1

 =

0v,u
Ut

0λ,u

, (23)

where Ut represents the tangent input matrix of Equation (7).
The linearized system and input matrices can be computed for any working point at

the time step k + 1 as:
Ak+1 = −G−1

xk+1
Gxk ; (24)

Bk+1 = −G−1
xk+1

Guk+1 . (25)

These equations enable the evaluation of the linearized time-discretized explicit de-
scription of the EOMs suitable for estimation methods such as the extended Kalman filter.
Their deployment of this estimation scheme is discussed in the next section.

It is important to note that the invertibility of the matrix Gxk+1 is guaranteed thanks to
the choice of BDF-1 differentiation scheme and that in contrast, it would not be possible.
For completeness, the limitations of a forward differentiation scheme is demonstrated in
the Appendix A.
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4. State-Input Estimation for MB Models

The augmented discrete extended Kalman filter (ADE-KF) tailored for MB models is
discussed in this section. In this section we discuss all the required components to set up a
Kalman filter for assimilating the different multibody states and unknown inputs. More in
details, in Section 4.1, the general form of the discrete-time system and measurement model
equations are summarized. In Section 4.2, the measurement equations are augmented with
the constraint equations φ, to deal with the constrained nature of the MB EOMs, leading to a
constrained estimation problem. Moreover, in Section 4.3 the adopted approach to compute
the linearized measurement matrices C and D are presented since they are required in
the estimation framework and not directly available. Finally, in Section 4.4 the ADE-KF is
assembled to deal with the estimation of states and unknown inputs, and the Kalman filter
steps tailored for MB models are reported.

4.1. Model and Measurement Equations with Uncertainty

The system of EOMs in Equation (4) described in the previous section are assumed
as deterministic. However, in practice, various noise sources will disturb the behavior of
the system. For the dynamic model equations, the process noise vector ν∗x,k+1 influences
the response:

gd(xk+1, xk, uk+1) = ν̃x,k+1, (26)

where ν̃x,k+1 is associated with the noise term νx,k+1 described by the following equation:

xk+1 = x∗k+1 + νx,k+1. (27)

Here, x∗k+1 is the deterministically varying state vector while νx,k+1 is a zero-mean
noise term with a (possibly time-varying) covariance Qk.

The estimation framework relies on combining the prior model information with
measurements y ∈ Rny on the physical process. To compare the prediction of the model
with these measurements, a set of measurement equations h are necessary which are
affected by measurement noise νy,k+1:

y = h(v̇k+1, xk+1, uk+1) + νy,k+1, (28)

where again νy,k+1 is assumed to be zero-mean with a (time-varying) covariance Rk. Similar
to the model measurement equations y, the concept of virtual sensor (VS) yvs ∈ Rnyvs

is introduced:
yvs = hvs(v̇k+1, xk+1, uk+1) + νvs. (29)

A virtual sensor represents model-based information; more specifically, it is a physical
quantity that can be expressed as a function of the system variables, such as joint forces,
body motion trajectories (e.g., linear and angular positions, velocities, and accelerations)
and body strains/stresses. A VS equation can be treated similarly to a measurement
equation but evaluated after the a posteriori Kalman filter step and hence to exploited in
the estimation process itself.

4.2. The Augmented Constraint Measurement Equations

In [23] different approaches have been proposed to deal with constrained state estima-
tion, although the authors deem it impossible to give a general guideline for constrained
filtering because each individual problem is unique and dependent on how the constraints
are handled.

In this work, the combination of hard and soft constraint methods is considered [23],
where the constraint measurement equations are implemented in the Kalman filter scheme
by augmenting the measurement equations y of Equation (28) with the constraint equations:

ỹ =

{
h(v̇k+1, xk+1, uk+1) + νy,k+1

φ(qk+1) + νφ,k+1
. (30)
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Here, νφ,k+1 is a small zero-mean noise term added to the idealized constraint equa-
tions φ(qk+1) if small constraints violation is allowed (soft constraints method). In the case
νφ,k+1 is assumed to be zero, the constraint equations are treated as perfect measurements
(hard constraint method).

4.3. An Efficient Strategy for the Measurement Sensitivities Computation

To evaluate the EKF equations at each filter step, the linearized measurement sensitiv-
ity matrices Ck+1 and Dk+1 are required and they are defined as:

Ck+1 =
∂ỹ
∂x

∣∣∣
k+1

=

[
dy
dx
∂φ
∂x

]
k+1

=

[
dy
dv

dy
dq

dy
dλ

0λ,v J 0

]
k+1

; (31)

Dk+1 =
∂ỹ
∂u

∣∣∣
k+1

=

[
dy
du

0λ,u

]
k+1

. (32)

Generally, the measurement equations can be expressed as a function of the generalized
accelerations, velocities, positions, Lagrange multipliers, and inputs, Equation (30).

However, due to the state-space description presented in Section 3, the explicit rela-
tionship of the sensor equations with respect to the generalized accelerations is lost. More
in particular, when considering acceleration sensors, their sensitivity with respect to the
generalized accelerations is non zero, thus it must be indirectly included. Acceleration
sensors are really common in the mechanical engineering community due to their non-
invasive and simple installation requirements. Within the estimation framework, they can
be used either in form of measurements or in form of VSs.

Similarly, the sensitivity of the measurement equations with respect to the system
inputs are not always available or nontrivial to obtain.

Therefore, an approach to explicitly obtain these dependencies is here derived by
means of the acceleration level constraints.

Introducing the auxiliary variables z ∈ R3nq+nλ

z =
[
q̈T q̇T qT λT]T

=
[
v̇T vT qT λT]T , (33)

for a generic measurement sensor y, the sensitivities ∂y
∂z with respect to the auxiliary variable

z can be analytically computed starting from their fundamental equations.

∂y
∂z

=
[

∂y
∂v̇

∂y
∂v

∂y
∂q

∂y
∂λ

]
. (34)

Applying the chain rule, the non-augmented linear measurement matrix dy
dx for a

generic time step can be written as

dy
dx

=
∂y
∂z

dz
dx

. (35)

And the full derivative dz
dx can be expressed as

dz
dx

=


∂v̇
∂v

∂v̇
∂q

∂v̇
∂λ

∂v
∂v

∂v
∂q

∂v
∂λ

∂q
∂v

∂q
∂q

∂q
∂λ

∂λ
∂v

∂λ
∂q

∂λ
∂λ

 =


∂v̇
∂v

∂v̇
∂q

∂v̇
∂λ

Iv 0v,q 0v,λ
0q,v Iq 0q,λ
∂λ
∂v

∂λ
∂q Iλ

. (36)
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To analytically compute the unknown terms of Equation (36), we introduce the ac-
celeration level constraints φ̈ defined as the second time derivative of the position level
constraints. Starting from the velocity level constraints φ̇:

φ̇ =
∂φ

∂q
dq
dt

= Jv, (37)

the acceleration level constraint equations are obtained as follows:

φ̈ = J̇v + Jv̇ =
nq

∑
i,j=1

vi
∂2φ

∂[qi, qj]
vj + Jv̇ = 0λ. (38)

By means of the continuous dynamic equations g2 of Equation (8) and the acceleration
level constraint of Equation (38), a new set of equations p ∈ Rnq+nλ can be constructed:

p(z, u) =


p1 = M(q)v̇ + fnl(v, q, u) + JTλ = 0q

p2 =
nq

∑
i,j=1

vi
∂2φ

∂[qi, qj]
vj + Jv̇ = 0λ

. (39)

Equations (39) represent the governing set of equations that implicitly determines the
relation between the different coordinates v, q, v̇ and the Lagrange multipliers λ.

Therefore, the unknown terms of Equation (36) can be computed as[
∂v̇
∂v

∂v̇
∂q

∂v̇
∂λ

∂λ
∂v

∂λ
∂q

∂λ
∂λ

]
= −

[
∂p
∂v̇

∂p
∂λ

]−1[ ∂p
∂v

∂p
∂q

∂p
∂λ

]
=

−
[

M(q) JT

J 0λ,λ

]−1
 Ct Kt JT

2
nv

∑
j=1

∂2φ

∂[q, qj]
vj

nv̇

∑
j=1

∂2φ

∂[q, qj]
v̇j 0λ,λ

, (40)

where the third order partial derivative of the constraint equations φ(q) with respect to
the generalized coordinates q is zero for FNCF. Another important ingredient to fulfill the
Kalman filter requirements is the measurement input matrix dy

du of Equation (32). However,
this matrix is not directly available and it is computed similarly to Equation (35) but with
respect to input u:

dy
du

=
∂y
∂z

dz
du

+
∂y
∂u

. (41)

Here, the full derivative dz
du represents how the vector z varies when the input u is

perturbed obtaining:

dz
du

=
[

∂v̇
∂u

∂v
∂u

∂q
∂u

∂λ
∂u

]
=
[

∂v̇
∂u 0v,u 0q,u

∂λ
∂u

]
. (42)

From Equation (42) can be seen that only the sensitivities of the acceleration and
Lagrange multipliers are non-zero terms. A second order system is fully defined by the
position coordinates, velocity coordinates, and time. An external force only influences the
force balance of that system and thus the acceleration coordinates and Lagrangian multipli-
ers while only through time-integration the velocity and position coordinates. However,
these derivatives are evaluated at a single time instance. Therefore, in Equation (36), the
acceleration coordinates and Lagrangian multipliers depend on the position and velocity
coordinates, but not the other way around: the position and velocity coordinates do not
depend on the acceleration coordinates, Lagrangian multipliers, or the external forces.



Sensors 2021, 21, 4495 10 of 24

Subsequently, the remaining terms of Equation (42) can be computed as[
∂v̇
∂u
∂λ
∂u

]
= −

[
∂p
∂v̇

∂p
∂λ

]−1 ∂p
∂u

= −
[

M(q) JT

J 0λ,λ

]−1[ Ut
0λ,u

]
. (43)

In Figure 1 a schematic summary of the followed steps required for the computation
of the system and measurement matrices is reported.

Figure 1. Block diagram representation of the system and measurement matrices computation for a
generic integration step.

4.4. Augmented Discrete Extended Kalman Filter

The goal of this work is to estimate the unknown input forces, often referred to as
disturbances, d ∈ Rnd , concurrently with the system states x through the augmented state
vector x̃ ∈ Rnx+nd defined as:

x̃k+1 =

[
xk+1
dk+1

]
. (44)

As the estimation algorithm also needs a model for the unknown inputs, a random
walk model is associated with the unknown input:

dk+1 = dk + νd,k; (45)

with νd,k also being zero-mean, random noise with covariance matrix Qd,k.
In this work, the random walk model is chosen for the unknown disturbance. This

approach is chosen as in general no prior information on the input is assumed to be known.
However, if useful information is available, e.g., periodicity of the input, other input models
can be employed, as in [24].
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The augmented discrete-time state-space system of equations can be written combin-
ing Equations (26) and (45):

g̃d(x̃k+1, x̃k, uk+1) =

{
gd(xk+1, xk, uk+1) = ν̃x,k

dk+1 − dk = νd,k
. (46)

The linearized system matrixF refers to the augmented system of equations Equation (46)
at the time step k + 1 and it is assembled as

F =
∂ f̃d
∂x̃

∣∣∣
k+1

=

[
Ak+1 Bd

k+1
0x,d Id

]
; (47)

where f̃d is the augmented explicit ODEs associated with Equation (46), is obtained from
Equation (24), while Bd

k+1 is the linear disturbance matrix obtained similarly to Bk+1 in
Equation (25) but with respect to the unknown input d.

Subsequently, the linearized augmented measurement matrixH associated with the
augmented state vector x̃ is assembled as:

H =
∂ỹ
∂x̃

∣∣∣
k+1

=
[
Ck+1 Dd

k+1

]
, (48)

where the matrix Dd
k+1 is computed in a similar fashion as for Dk+1 in Equation (32) but

with respect to the unknown input d.
Starting from these model, measurement and tangent matrices, an extended Kalman fil-

ter (EKF) procedure can be set up in order to estimate both the states and the unknown input
forces. The application of this estimation approach is discussed in the following section.

4.5. The Adopted Extended Kalman Filter Scheme

In this work, we employ an extended Kalman filter (EKF) [25] to perform the state-
estimation. With the various model and measurement equations, and their respective
derivatives, defined for a MB model in the previous sections this EKF can be run efficiently.
As all terms have been defined analytically it is not necessary to resort to numerical
derivatives, which allows for an effective application of the EKF. Several researchers have
shown the applicability of the estimators even for the strongly nonlinear case of MB
systems [9,12,26].

In general, we can group the EKF scheme in two main steps: the a-priori and a
posteriori steps.

• A-priori step: Assuming that the augmented states x̃+k at the previous filter step and the
input uk+1 are known, the a-priori state prediction x̃−k+1 and generalized accelerations
v̇−k+1 can be computed solving the ID-DAEs of Equation (17):

gd(x̃−k+1, x̃+k , uk+1) = 0x. (49)

Knowing the estimated state covariance matrix P+
k for the previous timestep, the a-

priori covariance at the current time (k+ 1) step can be approximated from Equation (47)
as

P−k+1 = FP+
k F

T + Q̃k. (50)

where Q̃k is the process noise matrix of the augmented state-space model.
The predicted measurement ỹ−k+1 can then be evaluated from Equation (30) as:

ỹ−k+1 = ỹ(v̇−k+1, x−k+1, uk+1). (51)
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The Kalman filter gain K allows achieving a desireable trade-off between the confi-
dence in the model and the available measurements, and can be evaluated as:

Kk+1 = P−k+1H
T(HP−k+1H

T + R̃k)
−1, (52)

whereH is obtained from Equation (48) and R̃k is the measurement covariance matrix
of the augmented measurement equations.

• A-posteriori step: When the real measurement y∗k+1 becomes available together with
the predicted measurement ỹ−k+1, the a posteriori state vector x̃+k+1 is obtained as:

x̃+k+1 = x̃−k+1 +Kk+1(y∗k+1 − ỹ−k+1) (53)

The inclusion of the actual measurements also affects the posterior covariance matrix
P+

k+1 and can be evaluated as:

P+
k+1 = (Ix −Kk+1H)P−k+1. (54)

In Figure 2 a block diagram scheme summarizing a generic kth step of the recursive
ADE-KF is shown.

Figure 2. Block diagram representation of the recursive ADE-KF scheme for a generic filter step.
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With this scheme the entire state-input estimation can be performed for an arbitrary
(flexible) multibody model. In the following section we will validate it on an experimen-
tal setup.

In practical applications the performance of the estimation scheme will strongly
depend on the tuning of the model covariance Q̃ and measurement covariance R̃. Unfortu-
nately this tuning is also highly case dependent, which makes it difficult to set up general
guidelines. For the particular validation case considered in this work, a detailed discussion
on a possible tuning strategy is presented in the following section.

5. Validation: Joint State-Input Estimation

In this section, the presented joint state-input estimation methodology is experimen-
tally validated on a slider-crank mechanism.

5.1. The Slider-Crank System

The slider-crank system in Figure 3 is a mechanism widely used in industry to trans-
form a rotational motion in a linear motion as for instance in pick and place operations or
in car engines.

Figure 3. The slider-crank: experimental setup.

Figure 4 represents the multibody model of the experimental setup shown in Figure 3
consisting of 14 bodies: base block (BB), motor housing (MH), motor rotor (MR), motor
support (MS), crank (C), crank shaft (CSh), crank support (CS), connecting rod (CR), crank-
rod bearing (BC−CR), slider (S), rod-slider bearing (BCR−S), slider accelerometer (SA), track
rail (TR) and track support (TS).

Figure 4. The slider-crank: multibody model.

The mechanical properties of the various bodies are listed in Table 1.
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Table 1. Mechanical properties expressed with respect to the center of gravity of each individual body.

Body m [kg] Jxx [kg· m2] Jyy [kg· m2] Jzz [kg· m2]

BB 3.2175× 103 2.9225× 102 6.274× 102 8.714× 102

MH 1.420× 101 2.48647× 10−2 9.366× 10−2 9.366× 10−2

MR 6.670× 10−1 2.947× 10−3 2.001× 10−3 2.001× 10−3

MS 1.350 6.052× 10−3 3.897× 10−3 2.346× 10−3

C 1.830× 10−1 5.742× 10−4 4.930× 10−4 1.522× 10−5

CSh 4.960× 10−1 1.644× 10−4 7.068× 10−4 7.068× 10−4

CS 8.4058× 10−1 2.678× 10−3 1.954× 10−3 8.047× 10−4

BC−CR 2.820× 10−1 - - -
CR 2.540× 10−1 1.185× 10−2 1.1840× 10−2 3.654× 10−5

BCR−S 2.820× 10−1 - - -
S 2.562× 10−1 2.665× 10−4 1.131× 10−4 3.29510−4

SA 2.200× 10−2 - - -
TR 1.206 2.800× 10−1 9.424× 10−3 2.800× 10−1

TS 4.206 1.392× 10−2 1.256× 10−2 4.963× 10−3

Even though the presented slider-crank mechanism is an academic example it com-
bines several challenging phenomena such as non-linear kinematics and complex slider-
track interaction phenomena. The various bodies are connected trough fixed, revolute,
spherical, and universal joints to allow the desired kinematics. The slider and track bodies
are connected through a contact stiffness kc along the perpendicular directions to the
sliding trajectory. The Pacejka friction model [27] defines the friction coefficient µ as a
function of the sliding velocity ∆v:

µ = dsin
[
ctan−1

(
b∆v− e

(
b∆v− tan−1(b∆v)

))]
, (55)

where the friction force f f is evaluated as

f f = µ fn = µ(kcδ + cc δ̇), (56)

where fn is the resultant normal force acting on the slider and, δ is the local compliance
between the slider and track rail interfaces projected onto the normal direction to the
sliding direction. The adopted (identified) Pacejka friction model parameters are listed in
Table 2.

Table 2. Pacejka friction model parameters.

kc [N/m] cc [Ns/m] b [s/m] c[−] d[−] e[−]

9.7854× 106 1.196 5.036× 102 1.5708 2.653× 10−2 −9.8534

The system motion is driven by a brushless servomotor “MAC3000”’ with integrated
controller MAC00-B4 from JVL (www.jvl.dk, accessed on 1 March 2021). It includes
a motor encoder sensor allowing the measurement of the rotation angle and velocity
of the motor shaft, indicated by θ and θ̇ respectively.As can be seen in Figures 3 and 4,
the slider is equipped with a mono-axial MEMS accelerometer (3711D1FB200G) from
PCB (www.pcb.com) to measure its translational acceleration along the sliding direction
indicated by Ÿ. The entire system is controlled via the motor using a closed-loop PID
controller targeting a desired rotational motor velocity while adapting the determined
motor torque T.

5.2. Results

After the setup of the MB model of the slider-crank mechanism, it is embedded into
the ADE-KF estimation framework presented in Section 4.

www.jvl.dk
www.pcb.com
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The input torque delivered by the motor is assumed unknown, and jointly estimated
with the model states as introduced in Section 4.4. It is assumed that all model uncertainties
is dominated by the augmented state, representing the unknown input, while the model is
considered perfect.

The a posteriori Kalman filter step is computed using the augmented measurements
discussed in Section 4.2. These combine the angular motor velocity θ̇ together with the
model constraint equations φ. The angular motor velocity is directly available on many
mechatronic drives since they are equipped with relatively accurate encoders for control or
monitoring purposes.

For the validation of our estimation framework, summarized in Figure 5, we compare
the estimates (virtual sensors) of the motor position θ, motor velocity θ̇, slider acceleration
Ÿ and motor torque T with measurements directly obtained from the experimental setup.
Besides the motor encoder, an accelerometer on the slider is employed and motor torques
can be directly extracted from the drive unit.

Figure 5. Diagram of the coupled state-input estimation scheme and signal comparisons. θ and θ̇ are
the motor angle and angular motor velocity respectively; Ÿ is the translational slider acceleration; T
is the motor torque.

The performed experiments span 9.4 s and are executed for three levels of desired
angular motor velocity, which are provided to the motor controller as desired set points:
40, 50 and 60 rad/sec. Note that, due to the non-ideal behavior of the system and the
limitations of the PID controller, the desired set point results in practice in a varying angular
velocity.

The measured and the estimated motor angle θ, rotational velocity θ̇, and the slider
translational acceleration Ÿ are compared in Figure 6.

Three subsets of this full timespan are shown in Figure 7 to better appreciate the
transient effects during the start-up and the two velocity transitions.

It is clear from Figures 6 and 7 that the ADE-KF with the MB model tracks these
various (derivative) states very well, underlining the well represented system kinematics.

In Figure 8 the estimated motor torque is compared to the measured motor torque.
This comparison shows a good prediction over the full time series (on the left)

and on the angular velocity transitions (zoom-in figures on the right) thanks to the pro-
posed methodology.
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Figure 6. Comparison of the measured and estimated motor angle θ (top), motor angular velocity θ̇

(middle) and translational slider acceleration Ÿ (bottom) for the full time series.

Figure 7. Comparison of the measured and estimated motor angle θ (top row), motor angular velocity
θ̇ (middle row) and translational slider acceleration Ÿ (bottom row). Zoom-in per column on the
velocity transitions.

Figure 8. Comparison of the measured and estimated motor torque; on the left, full time series; on
the right, the zoom-in on the velocity transitions are shown.
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In Table 3 the root mean square error of the estimated virtual sensors and input
torque are reported, underlying the relatively high accuracy of the estimated quantities.

It is defined as ErrorRMS =
√

∑k [χm(k)−χe(k)]2
nk

, where χm and χe are the measured and
estimated variables respectively, while nk is the total number of data samples.

Table 3. Accuracy of the estimated quantities in terms of root mean square error.

θ [rad] θ̇ [rad/s] Ÿ [m/s2] T [Nm]

ErrorRMS 0.005 0.051 13.651 0.334

The choice of performing the experiments for a relatively long timespan was made to
demonstrate the filter stability in terms of both mean value and covariance prediction. For
these kind of applications, where the uncertainty is dominated by difficult to model load
effects (friction, etc.), the choice of focussing the model covariance on the input load allows
effectively propagating the uncertainties. The dashed blue curves in Figure 8 represent the
estimated expected variation of the augmented average state estimate within the 70% of

confidence. It is expressed in terms of the standard deviations σd =
√
P+

d computed for

each kth filter step where P+
d is the diagonal term of the a posteriori estimated covariance

associated with the augmented state (disturbance). It is important to notice that the
experimental motor torque (in red) remains bounded by the estimated input uncertainty
therefore being an accurate estimation of the real covariance.

These results for the estimated torques show a significantly larger error than those
obtained for the (derivative) states. For multibody problems in general, the state-estimates
can be expected to be dominated by the kinematics of the system, which are generally well
known. For the load estimates however, the dynamics of the system will play a crucial
role. Besides key dynamic quantities such as the system inertia which can be modelled
very accurately, other effects such as friction forces also influence this outcome. In this
work we employed the friction model from Equation (56), but any error on this model
is also propagated to the torque estimates. Due to the complex nature of the interface
conditions for the slider and the rail (and the other bearings in the system), some errors
are to be expected here. Key for future research will therefore be to examine how these
complex load phenomena can be accounted for as effectively as possible. Moreover, by
only employing one physical measurement (θ̇) in the ADE-KF scheme, it is guarantied that
the accuracy of the estimated input torque would be less accurate for a poorly identified
model. This can be observed in [15] where the same validation case was considered. Here,
Angeli et al. proposed a deep learning methodology to reduce the initial MB equations
from redundant to minimal coordinates where the resulting equations are then employed
in an augmented extended Kalman filter scheme. Alternatively to what is presented in
the current contribution, the supposed unknown motor torque is estimated employing the
slider acceleration (Ÿ) and no slider-track friction model was considered which has led to
slightly less accurate input and virtual sensors estimation as compared to the currently
proposed approach and model.

An important aspect in estimation problems is the choice of the Kalman filter pa-
rameters such as the process and measurement noise covarince matrices, Q̃k and R̃k. It is
recurrent while dealing with KF-based estimators that the accuracy of the estimated quan-
tities is highly influenced by the selection of those parameters. However, general rules are
not available since the filter parameters and influence strongly depend on the application
case. Therefore, it is common to resort to a tuning step as the process of investigating and
selecting these parameters. In the context of this work, the adopted strategy is described in
the following section.
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5.3. Kalman Filter Tuning

To attain the best accuracy from the presented estimation scheme, the model and
measurement covariances need to be judiciously selected. In this work we have started
with the selection of the measurement covariance matrix R̃k associated with the augmented
measurement equations ỹ. In lack of other information, We assume this measurement
covariance constant over time. The covariance results from the combination of two main
measurement contributions: the (motor) angular velocity θ̇ and the augmented constraint
measurements φ, which reads as

R̃k =

[
Rθ̇ 0T

λ
0λ Rφ

]
, (57)

where Rθ̇ is generally tuned based on reference noise measurements while for this ap-
plication, since no noise reference was available, the author has chosen a value which is
representative of the encoder measurement noise: Rθ̇ = 10−2 (rad2/s2). Moreover, the
authors have experienced that the influence of the measurement noise parameter Rθ̇ is
relative to the value of the process noise covariance Q̃k.

Rφ instead is linked to the mathematical and physical meaning of the constraint
equations. In MB applications, we can distinguish two types of constraint equations: the
ones that come from the inherent coordinates formulations, i.e., φc (e.g., Euler parameters
should be unit vector and rotation matrix should be orthogonal), and the ones that come
from joints definition, i.e., φj, as for instance the spherical and/or revolute joints. In this
work, for the latter a small noise term is allowed (i.e., all diagonal terms of Rφj are set
to 10−9 while the off-diagonal terms are set to zero) representing the joint imperfections
typical of real systems, whereas for the former, they are treated as perfect measurements
(i.e., Rφc = 0), otherwise the kinematics and the mathematical principles that are used to
describe the MB system are no longer valid.

Similarly to the augmented measurement covariance R̃k, the augmented process noise
matrix Q̃k is assumed constant for all filter steps and it can be written as combination of
the system and augmented states contributions as

Q̃k =

[
Qx 0
0 Qd

]
. (58)

As we assume the model to be practically perfect compared to the high uncertainty on
the unknown inputs, the process noise matrix Qx associated with the system states is set
to zero.

The remaining parameter Qd associated with the unknown input torque (disturbance)
is obtained in a brute-force optimization fashion. Since in this case there is only a single
value to be chosen, an exhaustive search is therefore not computationally prohibitive. In this
regard a grid of Qd values have been selected, going from 10−5 to 105 sampled exponentially
in eleven increments, leading to a corresponding eleven performed estimations. The choice
of the Qd is based on the L-curve method proposed by [28] where its nearly optimal value
(Not optimal in absolute sense due to discrete evaluation points Qd and the user defined
Rθ̇) is such that the best trade-off is achieved between the Error norm and Smoothing error.
These norms are defined as

Error norm =
nk

∑
k=1
||y∗k − ỹ−k ||2 (59)

and,

Smoothing norm =
∑nk

k=1 ||d(k)||2
∑nk

k=1 ||T(k)||2
(60)
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where d(k) and T(k) are the estimated (disturbance) and measured torque respectively,
while nk is the total number of sampling point k. On the left side of Figure 9 the L-curve
for the evaluated Qd grid points is shown where the blue marked point is the chosen value
corresponding to Qd = 100. This value have been used for the results shown in Figures 6–8.
As expected, it is observed that the error norm decreases with an increasing smoothing
error which corresponds to an increasing Qd till a saturation is reached. This occurs when
a further increase of process noise value does not show significant improvements to the
estimation results (Qd > 100).

On the right side of Figure 9 the estimated torque with the chosen Qd (marked in blue)
is compared to a sub-optimal value (marked in orange) on the velocity transitions zones
while in Figure 10 the full time series are compared.

Figure 9. The L-curve plot for different process variance Qd (left figure) and zoom-in comparison
on the velocity transition of the measured and estimated motor torque using two different values of
process variance Qd (right figure).

In Figures 9 and 10, it can be seen that despite a relatively similar tracking of the input
(more delayed), at low rotational speed using a smaller covariance than the “optimal” one,
the estimation accuracy degrades over time with a worse tracking of estimated torque.

Figure 10. Comparison of the estimated motor torque using two different values of process covariance
Qd of the augmented state.
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Although this study does not address the full scope of noise covariance tuning, the
author deemed it sufficient to explain the methodological developments considered in this
contribution. Further research on covariance tuning might be necessary to obtain a more
holistic approach.

6. Discussion and Conclusions

This work presents a new estimation methodology tailored for MB models to enable
the definition of virtual sensors for various system states and inputs.

Through the choice of a general MB modeling approach various key physical effects
can be accurately accounted for, ranging from nonlinear kinematics to complex dynamic
effects. The developed framework allows using these multibody models in an estimation
framework without particular additional modeling assumptions or reformulations. More
specifically, no constraint elimination methods are required to employ the defined MB
model into the estimation framework, reducing the preparation time and the user effort
to setup the estimation problem while ensuring the correct physical and mathematical
interpretation of the system under investigation. As the proposed methodology has no
particular assumptions with respect to the multibody model formulation it can be easily
extended to any of the commonly available (flexible) MB approaches, e.g., FNCF, FFR-CMS,
or GCMS. However, to fully benefit from the proposed approach the equations of motion
and tangent stiffness matrices of the system should be analytically available to efficiently
assemble the linearized system and measurement matrices.

In the present work, we exploited the FNCF MB approach, as this methodology
inherently enables an easy and efficient evaluation of the different tangent model matrices
required for the estimation framework.

Finally, the developed methodology has been experimentally validated on a slider-
crank mechanism. Very high accuracy is obtained for the estimated states with respect
to the available measurements. Good accuracy is also obtained for the estimated input
torque, but due to the larger dynamic model errors in e.g., friction effects the resulting
errors are higher than those obtained for the states. The validation has been performed
over a relatively large time-span which also demonstrates the capability of the presented
framework to obtain long-term stable estimates with a bounded uncertainty, in the form of
a bounded covariance.

The presented methodology has some drawbacks since a large number of states (in-
cluding the Lagrange multipliers) and measurements (including the constraints equations)
are employed. These lead to a computationally less efficient approach as compared to other
state of the art techniques (e.g., using minimal coordinates [15]). A possible solution to mit-
igate this issue might come from a wise selection of the number of bodies and constraints
equations to construct the high-fidelity model. For instance, in this contribution, the choice
of redundant number of bodies and constraints was made in purpose to stress the potential
of the proposed methodology while dealing with redundant set of DAEs equations. More
precisely, not all bodies and hence constraints were required to achieve the estimated motor
torque with the same level of accuracy (e.g., the motor housing and the different supports).
Nevertheless, if computational efficiency is not a limiting factor, i.e., if an online estimation
is not required, this approach has the potential to enable a very generic deployment of
(flexible) multibody-based state-input estimation.

Future work will focus on how these methodologies can be employed to obtain more
accurate descriptions for key dynamic effects such as the friction present in these multibody
systems.
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a ∈ Rna column vector[
aT

1 aT
2
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�k = �(t = tk) kth time step
�n natural coordinates
�̇ = d�
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Appendix A. Influence of the Forward Differentiation Scheme to the Linearization of
the EOMs

In Section 3, the single step backward differentiation formula (BDF-1) was introduced
to derive the fully explicit discrete-time linearized form of the EOMs (Equation (19)). In
this appendix, the influence of another differentiation scheme, namely the single step
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forward differentiation scheme, is reported, demonstrating the limitations introduced by
such differentiation formula to the proposed linearization approach.

The single step forward differentiation scheme can be written as{
v̇k =

1
h (vk+1 − vk)

vk =
1
h (qk+1 − qk)

, (A1)

with h representing the constant time step size as shown in Figure A1.

Figure A1. Graphical interpretation of the forward and backward linearization for a generic state-time
evolution x.

By substituting Equation (A1) into Equation (8) the discrete-time EOMs g′d are obtained:
g′d1 = vk − 1

h (qk+1 − qk) = 0v

g′d2 = M(qk)
vk+1−vk

h + fnl(qk) + JT(qk)λk = 0q

g′d3 = φ(qk) = 0λ

. (A2)

Similarly to Equation (21) the Jacobian for the forward Euler time-integrator can be
computed as:

G′xk+1
=

∂g′d
∂xk+1

=


∂g′d1

∂vk+1

∂g′d1
∂qk+1

∂g′d1
∂λk+1

∂g′d1
∂vk+1

∂g′d2
∂qk+1

∂g′d2
∂λk+1

∂g′d3
∂vk+1

∂g′d3
∂qk+1

∂g′d3
∂λk+1

 =

 0v,v −β′ 0v,λ
β′M′t −γ′M′t + β′C′t 0q,λ
0λ,v 0λ,q 0λ,λ

; (A3)

Here, C′t and M′t are the tangent damping and mass matrices obtained from the partial
derivatives of the continuous g2 equations in Equation (8) evaluated at time step k:

C′t =
∂g2

∂v

∣∣∣∣∣
k

; M′t =
∂g2

∂v̇

∣∣∣∣∣
k

, (A4)

and β′ and γ′ are matrix coefficients function of the defined integration rule, which are
given for the forward Euler scheme by:

β′ =
∂vk

∂qk+1
=

∂v̇k
∂vk+1

=
1
h

Iq; γ′ =
∂v̇k

∂qk+1
=

1
h2 Iq; (A5)

∂vk
∂qk

=
∂v̇k
∂vk

= −β′;
∂v̇k
∂qk

= −γ′. (A6)

As it can be seen from Equation (A3), the matrix G′xk+1
is singular and therefore not

invertible to compute the linearized system matrix A of Equation (24) required for the
KF-based estimation framework. Based on the above demonstration, the forward Euler
differentiation scheme is not applicable to the proposed linearization approach.
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This can be better understood looking at the fundamental assumptions behind the
choice of the differentiation scheme. If a forward differentiation scheme is chosen, it
practically means that Equation (19) will be derived starting from xk looking forward in
time to xk+1 as graphically depicted in Figure A1, but due to the implicit nature of the
problem there are not enough information in xk to invert the problem with respect to xk+1.
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