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Abstract

Mycobacterial cell envelope components have been a major focus of research due to their unique features that confer
intrinsic resistance to antibiotics and chemicals apart from serving as a low-permeability barrier. The complex lipids secreted
by Mycobacteria are known to evoke/repress host-immune response and thus contribute to its pathogenicity. This study
focuses on the comparative genomics of the biosynthetic machinery of cell wall components across 21-mycobacterial
genomes available in GenBank release 179.0. An insight into survival in varied environments could be attributed to its
variation in the biosynthetic machinery. Gene-specific motifs like ‘DLLAQPTPAW’ of ufaA1 gene, novel functional linkages
such as involvement of Rv0227c in mycolate biosynthesis; Rv2613c in LAM biosynthesis and Rv1209 in arabinogalactan
peptidoglycan biosynthesis were detected in this study. These predictions correlate well with the available mutant and
coexpression data from TBDB. It also helped to arrive at a minimal functional gene set for these biosynthetic pathways that
complements findings using TraSH.
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Introduction

The genus Mycobacterium includes bacteria known to cause

dreadful diseases like tuberculosis, leprosy and skin ulcers [1]. One

of the characteristic features of the members of this genus is the

presence of a low-permeability cell envelope with high proportion

of complex lipids that is organized into three superposed

compartments viz., the plasma membrane, the cell wall skeleton

and the capsule. Cell envelope components include mycolic acids,

arabinogalactan (AG), lipoproteins, lipomannan (LM) and lipoar-

abinomannan (LAM). The pathogenicity and survival of Mycobac-

terium species in varied environments has been attributed to the

variation in structural components of cell wall complex [2] and

hence the variation in the biosynthetic machinery. The mycolic

acid-arabinogalactan-peptidoglycan polymer is arranged to form a

hydrophobic layer with other lipids [3,4]. A variety of unique

lipids, such as LAM, trehalose dimycolate and phthiocerol

dimycocerate, anchor non-covalently with the cell membrane

and appear to play an important role in virulence [5]. The

enzymatic pathways that synthesize M. tuberculosis cell envelope

lipids are the target of presently available antituberculosis

antimicrobials and may be candidates for future antibiotic

development.

In this study we have carried out comparative genomics of the

biosynthetic machinery of cell wall components amongst 21-

mycobacterial genomes using metabolic pathway context, se-

quence similarity tools and phylogenetic profiling. Phylogenetic

profiling predicts functionally linked genes i.e., genes that are a

part of a same biological process or cellular system based on the

presence or absence of a protein in a set of reference genomes

[6,7]. Prediction of functional linkages helps in the annotation of

uncharacterized genes thereby reducing the gap between rate of

genome sequencing and annotation. Previous studies have

established the fact that the conserved co-evolution patterns of

gene-pairs across different genomes as suitable indicators of

functionally linked genes [8,9]. The predicted functional linked

genes obtained by our studies were mapped with the co-expression

data wherever available.

Methods

The 21 mycobacterial genomes/proteomes included in the

analysis were obtained from GenBank release 179.0 (Aug 15,

2010) [10] and are listed in Table 1.

Comparative genomics of the mycobacterial genomes with a

focus on genes involved in biosynthesis of cell envelope

components was carried out using methodologies viz., sequence

similarity, metabolic pathway reconstruction and phylogenetic

profiling. Similarity search was carried out using MPI version of

SSEARCH program available in FASTA3 package version 34

[23] with parameters E-value: e220, %identity: 50 and %query

coverage: 80. The query dataset used for the analysis is the

proteome of M. tuberculosis H37Rv.

Multiple sequence alignment of proteins was carried out using

parallel implementation of ClustalW-MPI version 0.13 [24].

Phylogenetic trees were reconstructed using parsimony (protpars)

available in Phylip package version 3.67 [25]. Prior to phyloge-

netic reconstruction, to assess the statistical significance of the
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topology obtained, the data was bootstrapped to generate 100 data

sets using seqboot program of Phylip. The trees were visualized

using MEGA version 4 [26].

Metabolic pathway reconstruction was carried out using

Pathway Tools version 14.0 [27] with MetaCyc version 14.1

[28] as a reference database. As the curated genbank formatted file

is the input for Pathway Tools, the genomes were curated with

respect to functional information like ‘Enzyme Commission

Number’ using the tool EFICAz2 version 13 [29] and UniProt

database [30]. Metabolic pathways like LAM biosynthesis are

unavailable in MetaCyc and were incorporated manually by

mining of literature and using tools such as MarvinSketch [http://

www.chemaxon.com/products/marvin/marvinsketch/] and Chem-

Spider [http://www.chemspider.com/] to add chemical struc-

tures of the metabolites involved. Pathway holes were filled

using the ‘Power User’ mode with a probability cutoff of 0.9.

Functionally linked genes were predicted using the methodology of

phylogenetic profiling. The strength of this methodology lies in the

fact that it takes into account the entire proteome and aids in the

annotation of hypothetical genes that in-turn are capable of filling

the pathway holes. Similarity profile matrix of all pairwise

combination of genes was determined using SSEARCH, which

implements the highly accurate and sensitive approach of dynamic

programming for database similarity searching. The E-values

obtained via SSEARCH were normalized [8] such that it enables

capture of sequence divergence as well as generates continuous

variables which are amenable to rigorous statistical treatment such

as estimating mutual information content using B-spline function.

Profile matrices were generated for both real as well as random

datasets. Randomization aids in the calculation of ‘relationship-

strength’ between gene-pairs that has occurred by chance and was

implemented using rand function available in MATLAB [http://

www.mathworks.com/]. Functionally linked genes were inferred

based on calculation of mutual information content using mis_calc

program [31], Pearson correlation coefficient and Hamming

distance (using an in-house developed perl script). A plot of the

above 3 parameters using both real and random data helped to

generate the cutoff criteria for analyses of significant linkages

(Figure 1 & Figure 2). Functionally linked genes in this study are

defined as the genes that satisfy thecutoff criteria of 0.9 for mutual

information content and 0.8 for Pearson correlation coefficient as

these values differentiated the real from random data. Such

stringent criteria were used as the comparison is between species

belonging to the same genus viz., Mycobacterium. Hypothetical

genes belonging to MTBH37Rv that exhibit conserved coevolution

patterns in terms of similar profile to a well-characterized gene

belonging to cell envelope biogenesis are analyzed in the present

study. Genes displaying . = 50 functional linkages are predicted

as ‘network-hubs’. The predicted functional linkages obtained

were further substantiated by mapping withe co-expression data

retrieved from TBDB [32] along with knockout mutants obtained

via TraSH analysis [33–35] wherever available. For data

management and efficient retrieval of ,7700000 records, MySQL

was used as DBMS. Anvaya, an in-house developed workflow

environment that includes pre-defined workflows for ortholog

identification, motif detection, phylogenetic reconstruction and

phylogenetic profiling was used to perform all the above analysis.

Results and Discussion

Comparative genomics of pathogenic and non-pathogenic

Mycobacteria has played an instrumental role in unraveling many

underlying factors responsible for virulence and host-specificity

[36]. Detailed analysis of the biosynthetic machinery of mycolic

Table 1. Details of the 21-mycobacterial genomes used for the comparative analysis.

Name RefSeq ID/[Reference] Abbreviation

Mycobacterium abscessus ATCC 1997 NC_010397/[11] MAbATCC

Mycobacterium avium 104 NC_008595 MAv104

Mycobacterium avium subsp. paratuberculosis K-10 NC_002944/[12] MAvK-10

Mycobacterium bovis AF2122/97 NC_002945/[13] MBoAF

Mycobacterium bovis BCG str. Pasteur 1173P2 NC_008769/[14] MBoBCG

Mycobacterium bovis BCG str. Tokyo 172 NC_012207/[15] MBoTokyo

Mycobacterium gilvum PYR-GCK NC_009338 MGlPYR

Mycobacterium leprae Br4 NC_011896/[16] MLpBr

Mycobacterium leprae TN NC_002677/[17] MLpTN

Mycobacterium marinum M NC_010612/[18] MMrM

Mycobacterium smegmatis str. MC2 155 NC_008596 MSgMC2

Mycobacterium sp. JLS NC_009077 MJLS

Mycobacterium sp. KMS NC_008705 MKMS

Mycobacterium sp. MCS NC_008146 MMCS

Mycobacterium tuberculosis CDC1551 NC_002755/[19] MTbCDC

Mycobacterium tuberculosis F11 NC_009565 MTbF11

Mycobacterium tuberculosis H37Ra NC_009525/[20] MTbH37Ra

Mycobacterium tuberculosis H37Rv NC_000962/[21] MTbH37Rv

Mycobacterium tuberculosis KZN 1435 NC_012943 MTbKZN

Mycobacterium ulcerans Agy99 NC_008611/[22] MUlAg

Mycobacterium vanbaalenii PYR-1 NC_008726 MVaPYR

doi:10.1371/journal.pone.0019280.t001

Comparative Genomics of Mycobacterium
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Figure 1. Distribution of Pearson correlation coefficient values for real and random datasets.
doi:10.1371/journal.pone.0019280.g001

Figure 2. Plot of Mutual information values for real and random datasets.
doi:10.1371/journal.pone.0019280.g002
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acid, arabinogalactan, lipomannan/lipoarabinomannan, phthio-

cerol dimycocerate and lipoproteins is provided.

Mycolate biosynthesis
Mycolic acids are alpha-alkyl, beta-hydroxy fatty acids and are

the signature lipids of the hydrophobic mycobacterial cell wall

[37]. The composition and quantities of mycolic acids are known

to affect the virulence, growth rate, colony morphology and

permeability of Mycobacteria [38–41]. Cells with reduced mycolate

content show a higher permeability for substance uptake into the

cells or excreted into the culture medium [42]. The biosynthesis

pathway involves 5 different steps viz., production of malonyl

CoA, fatty acid initiation (I, II and III) and fatty acid elongation

(FAS I and FAS II) followed by the actual biosynthesis of

mycolates. Altogether, 46 genes are known to participate in a

coordinated manner to generate mycolates in Mycobacteriaceae

members. Comparative analysis across the 21-mycobacterial

genomes revealed that the biosynthetic pathway is conserved

across all the species with differences arising due to redundant

genes in different species.

fabH
fabH gene is a pivotal link between Fatty acid biosynthesis I and

II pathways [37]. It elongates acyl-CoA primers derived from

FAS-I to form thioesters through condensation with malonyl-ACP.

Current work revealed that fabH is absent in M. leprae strains and

the domains are truncated either at C/N termini in MMCS, MJLS,

MKMS, MGlPYR and MSgMC2 and hence its functionality may be

affected in these organisms. However, few studies report that the

mycolate biosynthesis is not hindered, hence suggesting that there

may exist alternate genes or pathways, which circumvent this step

[43].

cmaA2, mmaA1 and umaA
Cyclopropanation of mycolic acids is one of the distinguishing

features of pathogenic Mycobacteria suggesting that this modifica-

tion may be associated with an increase in oxidative stress

experienced by the slow-growing species, and is catalysed by a

family of S-adenosyl methionine dependent methyltransferases

[44]. Even though the enzymes of this family share a conserved

fold, they display high specificity for cis/trans cyclopropane ring

formation in proximal/distal ends. These genes share a 50 to 70%

identity between them; hence a lot of ambiguity arises in

distinguishing these genes using sequence alignment tools alone.

In order to detect sequence-motifs responsible for the observed

specificity, we retrieved all the methyl transferase genes (totaling

170) from the 21 Mycobacteria and subjected them to multiple

sequence alignment (MSA).

The MSA (Figure 3) clearly depicted that ‘ADGAGDA’ motif is

unique to cmaA2 (RefSeq ID: NP_215017), which encodes the

enzyme responsible for trans-cyclopropanation at the proximal

end of meromycolate chain as reported earlier [45]. This

hydrophilic stretch is surface accessible inspite of being adjacent

to binding site residues (which are buried in the hydrophobic core)

and forms a loop away from the active site. Recent reports suggest

that cmaA2 carries out both cis and trans cyclopropanation at the

proximal position of the oxygenated mycolates [46].

Figure 3. MSA of cyclopropane synthases depicting the ‘ADGADAG’ motif in cma2 gene.
doi:10.1371/journal.pone.0019280.g003
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A protein of MLpTN with NCBI accession id NP_302570.1 is

annotated as a cyclopropane synthase. This protein may be re-

annotated as cmaA2 as it contains the cmaA2-specific ‘ADGAGDA’

motif. The study also revealed that cmaA2 gene is absent in fast

growing species, MAbATCC, MGlPYR, MVaPYR, MSgMC2, MJLS,

MKMS and MMCS as the corresponding orthologues do not

contain the ‘ADGAGDA’ motif (Figure 3). Hence in the above

listed organisms, trans cyclopropanation at proximal end may not

take place, as this reaction is specific to cmaA2. This further

reiterates the rationale for the implication of cmaA2 as one of the

major factors contributing to the pathogenicity of Mycobacteria as

mutants lacking this gene are known to evoke 5-fold increase in

host – immune response [47].

In order to gain further insight into the relationship amongst

the several cyclopropane synthases, a phylogenetic tree was

reconstructed using parsimony (Figure 4). An in-depth analysis of

the phylogenetic tree revealed that mmaA1 responsible for

methylation at the proximal end of mycolic acid [44] is present

in MTbH37Rv, MBoAF, MLpTN and MAv104 strains and forms a

distinct cluster. Methylation and cis-trans isomerization by

mmaA1 is succeeded by trans cyclopropanation by cmaA2. It is

interesting to observe that all organisms containing cmaA2 also

contain mmaA1 except MUlAg. However, it needs to be

mentioned here that the mmaA1 cluster is shared with another

node that contain umaA genes with significant bootstrap value (97

times out of 100) and MUlAg contains one such umaA gene (Locus

tag: MUL_4538). The mmaA1 cluster also includes a node with a

small cluster of genes without any specific functionality but

contain the cyclopropane synthase domain. These genes belong

to MSgMC2, MJLS, MKMS, MMCS, MGlPYR, MVaPYR and

MAbATCC.

mmaA2
mmaA2 has two distinct roles viz., cis cyclopropanation at distal

end in alpha mycolates and cis cyclopropanation at proximal end

in oxygenated mycolates [48]. Previous experiments have shown

that distal cyclopropanation helps in increasing the resistance of

Mycobacteria to hydrogen peroxide, a major factor contributing to

the oxidative stress experienced by the bacteria [49]. mmaA2 is

absent in non-pathogenic strains such as, MJLS, MKMS, MMCS,

MGlPYR, MSgMC2 and MVaPYR. In the phylogenetic tree, these

genes form a distinct cluster.

mmaA3
mmaA3 catalyses the addition of methyl moiety at the hydroxyl

group which is newly formed by mmaA4 at the distal end in

oxygenated mycolates [50,37,38]. It is interesting to note that

mmaA3 is absent in MLpTN, MLpBr, MAvK-10 and MAv104, hence

may affect the methoxy mycolate production in these organisms.

In the phylogenetic tree mmaA3 cluster share the same node with

mmaA4 cluster.

mmaA4
mmaA4 catalyses the addition of methyl and hydroxyl branch at

distal end in oxygenated mycolates [51,52]. Deletion of mmaA4

abolishes synthesis of both methoxy- and ketomycolates in

Mycobacteria [24,31]. The node containing mmaA4 also includes a

set of genes which do not have well defined function but contain

the methyltransferase domain. These ‘undefined methyltransferase

genes’ belong to non-pathogenic strains such as MJLS, MKMS,

MMCS, MGlPY and MVaPYR. It is interesting to note that these

organisms do not contain mmaA4. Hence it can hypothesized that

these undefined methyltransferase genes may have function similar

to mmaA4 as absence of mmaA4 leads to reduction in ketomycolate

production, causing increased permeability of the cell wall, with

the hypersensitivity to both ampicillin and RIF and impaired

growth at low temperature [41].

ufaA1
ufaA1 and other cyclopropane synthase containing proteins

cluster separately. MSA of ufaA1 genes helped to delineate the

motif ‘DLLAQPTPAW’ (Figure 5). The orthologues of this gene

are absent in MAbATCC, MVaPYR, MSgMC2, MJLS, MKMS,

MMCS, MGlPYR, MLpTN, MLpBr, MAvK-10 and MAv104 as the

motif ‘DLLAQPTPAW’ is absent. However, the affect of the

absence of ufaA1 in mycolate biosynthesis needs to be probed

further. This motif is however not conserved in ufaA1 orthologs of

MMrM and MUlAg. This observation can be attributed to the fact

that both these organisms have taxonomically distinct relationship

in comparison to other mycobacteria and are known to produce

stereochemically different mycolates [53].

pcaA
The cluster of pcaA that carries out the proximal cyclopropana-

tion of alpha-mycolates [39] is shared with MT-11. pcaA is uniquely

present only in pathogenic strains viz., MTbH37Rv, MTbH37Ra,

MtbCDC, MBoAF MboTokyo, MBoBCG, MKZN, MTbF11, MAv104,

MAvK-10, MMrM, MulAg, MLpTN and MLpBr. The phylogenetic

tree depicts that MAv104 (Locus tag: MAV_4679) and MTbCDC

(Locus tag: MT0486) are pcaA genes even though the same is not

annotated accordingly in public domain databases.

MT-11
Methyltransferase type-11 (MT-11) is involved in DNA

regulation. These genes have been picked up during the search

for ‘methyltransferase containing domains’. They however do not

have a direct evident role in mycolate biosynthesis and hence were

not analysed further. It is however interesting to note that MT-11

is present only in MVaPYR, MSgMC2, MJLS, MKMS, MMCS,

MGlPYR, MMrM, MAvK-10 and MAv104.

otsB2
otsB2 encodes trehalose-6-phosphate phosphatase which de-

phosphorylates trehalose-6-phosphate to yield trehalose-mono-

phosphate. The truncation of otsB2 at N’ in MSgMC2 was observed

during the comparative analysis, and may have affect on its

functionality. However, studies by Woodruff et al., [54] revealed

that this gene is functional.

Predicted functional linkages
Novel functional linkages could be identified for genes involved

in mycolate biosynthesis using phylogenetic profiling. These

linkages are said to be novel, as the present annotation does not

suggest any definite role of these genes in mycolic acid

biosynthesis. A total of 1661 unique protein pairs satisfied the

criteria for MI and CC (Table S1). Of these, 91 proteins have well-

defined function in public domain databases like Tuberculist

[http://tuberculist.epfl.ch/] and TBDB. Analysis of the proteins

with known function revealed that Rv0503c (cmaA2 involved in

trans cyclopropanation at proximal end of mycolate), Rv0470c

(pcaA involved in cis cyclopropanation at proximal end of

mycolate), Rv1273c (ABC transporter) and Rv3804c (fbpA

involved in cell wall biosynthesis via its mycolyltransferase activity)

display .230 functional linkages (Table 2). These genes can thus

serve as network hubs [55] and may be probable chokepoints. This

hypothesis is further substantiated by the crucial role played by

these genes in mycolate biosynthesis as deduced by several

Comparative Genomics of Mycobacterium
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experimental studies pertaining to knockout mutants[33–

35,39,56–58] and co-expression[TBDB] [33–35] For e.g.,

Rv0227c (a conserved hypothetical protein) shares significant MI

and PCC with mycolate genes like Rv3801c (fadD32) and Rv3799c

(accD4), and hence, Rv0227c may be functionally linked to mycolic

acid biosynthesis (Figure 6). It has also been proved to be essential

for growth by Sassetti et al, 2003 [33–35] and co-expression values

with fadD32 and accD4 is 0.43 and 0.61 respectively. Hence, it can

be hypothesized that this gene seems to have a vital role in

mycolate synthesis.

The hypothetical proteins which share significant MI (.0.9)

and PCC (.0.8) with genes involved in mycolate biosynthesis, and

their role is further substantiated by recent literature, were

summarized in Table 3. When the functional linkages displayed by

Figure 4. Phylogenetic tree of 170 cyclopropane synthases from Mycobacteria.
doi:10.1371/journal.pone.0019280.g004
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the hypothetical proteins predicted to be involved in mycolate

biosynthesis were analysed (Table 3), the following were the

observations. Rv3802c recently annotated as phospholipase

thioesterase [58], displayed maximum linkages (total: 121). Based

on these observations it can be hence hypothesized that this

enzyme may play a crucial role in mycolate biosynthesis and hints

at the possibility that the functionality encoded by this gene is

unique. Rv3722c a conserved hypothetical gene, shown to be

essential by Sasetti et al, 2003[34,35], displays significant co-

expression with mycolate biosynthesis genes, hence providing a

possible role of this gene in this pathway.

Please refer to the Table S1 for the complete list of hypothetical

proteins that share significant functional linkages with mycolate

biosynthesis genes, and hence may play a role either in transport of

the protein products or in the regulation of the genes.

Arabinogalactan biosynthesis
Arabinogalactan tethers the mycolic acid layer to the peptido-

glycan [59,60]. The biosynthesis of AG has been reviewed

extensively and the same is included as a component of

‘mycolyl-arabinogalactan-peptidoglycan complex’ biosynthesis in

MetaCyc. Comparative analyses revealed that all the genes

involved in AG biosynthesis are conserved in the 21-mycobacterial

genomes with minor differences arising in genes with redundant

functionality. rmlC gene encodes dTDP-4-keto-6-deoxyglucose

epimerase, the third enzyme in the M. tuberculosis dTDP-L-

rhamnose pathway. rmlC is conserved in all organisms except

MGlPYR wherein it is present as a bifunctional protein (Locus tag:

Mflv_3297) possessing truncated reductase and epimerase do-

mains. Rv3779 is a glycosyltransferase responsible for direct

synthesis of polyprenyl-phospho-mannopyranose, an intermediate

in AG biosynthesis [61]. The orthologs of this gene are absent in

fast-growing species like MGlPYR, MVaPYR, MSgMC2, MJLS,

MKMS and MMCS and hence may be responsible for the observed

variations in cell growth and shape in these organisms.

Phylogenetic profiling
The number of predicted functionally linked protein pairs for

AG biosynthesis is 2086. These include, Rv1302 (rfe, involved in

AG biosynthesis), Rv1086 (short-chain isoprenyl diphosphate

synthase), Rv2361c (long-chain isoprenyl diphosphate synthase;

essential gene), Rv3265c (wbbL1, rhamnosyl transferase; essential

gene), Rv3464 (rmlB, dTDP-GLUCOSE 4,6-DEHYDRATASE;

essential gene), Rv3794 (embA, arabinosyl transferase; essential

gene) and Rv3809c (glf, galactose pyrannose mutase) and display

.230 functional linkages (Table 2). Mutant studies for the above

Figure 5. MSA of cylcopropane synthases depicting the ‘DLLAQPTPAW’ motif in ufaA1 gene.
doi:10.1371/journal.pone.0019280.g005
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proteins provide evidence for them to be ‘‘essential’’ for survival

[33–35]. The large number of functional linkages displayed by

these proteins when correlated with mutant studies suggest their

role as ‘hubs’ in protein interaction networks, which may further

translate into them being ‘‘choke points’’ in metabolic networks.

Thus, the high proportion of functional linkages correlate directly

with the mutant studies thus providing a rationale for the

hypothesis that number of linkages is directly proportional to the

essentiality of the gene.

The hypothetical proteins which share significant MI (.0.9)

and PCC (.0.9) with genes involved in AG biosynthesis, and their

role is further substantiated by recent literature, were summarized

in Table 4. Genes Rv1209c and Rv3031 are annotated as

‘hypothetical proteins’ and share significant mutual information

content and Pearson correlation coefficient with genes involved in

AG biosynthesis, hence suggesting a role of these genes in AG

metabolism (Table 4). Recent findings by Jackson et al., 2009 [62]

and Kaur et al., 2009 [59] support the same. Please refer to the

Table S2 for the complete list of hypothetical proteins that share

significant functional linkages with AG biosynthesis genes.

Lipomannan and lipoarabinomannan biosynthesis
Lipoarabinomannan and lipomannan phosphatidylinositol

mannosides (PIMs) are major phosphatidylinositol (PI)-based

lipoglycans/glycolipids of Mycobacterium. They play a major role

in phagocytosis, persistence of bacilli in phagocytic cells, CD-1-

restricted antigen presentation, initiation of innate immunity, and

in antibody-mediated immunity [2]. Recent work of Kaur D et al.,

2009 [59] has provided a thorough understanding of LM and

LAM biosynthesis. However the same is not included in public-

domain databases.

For comparative analysis, an exclusive list of genes catalyzing

the LM/LAM biosynthesis process is mandatory. In order to

facilitate ease-of-mapping across 21 genomes, we have recon-

structed the pathway manually via literature curation and Pathway

Tools software. Some of the interesting observations apart from

the variations reported earlier in Kaur D et al., 2009 [59] in genes

responsible for capping includes Rv2181, an integral membrane

protein. It is the alpha (1R2) ManT responsible for the synthesis of

the alpha (1R2) ManP-linked branches, characteristic of the

mannan backbone of LM and LAM; orthologous gene of which is

absent in MAbATCC as it may contain unusual alpha (1R3)

mannosyl side chains as in M. chelonae, [63] instead of alpha (1R2)

which is commonly found in all other mycobacterial species

[59,64,65]. Rv1635c is a transmembrane protein that carries out

mannose capping of LAM moieties in the periplasmic side of

plasmamembrane in MTbH37Rv [59]. The orthologs of this gene

are absent in MSgMC2, MKMS, MMCS, MJLS and MAbATCC, as

these species are devoid of ManLAM and contain alternate

capping of LAM moieties viz., PILAM and AraLAM [66–71,59].

473 genes were predicted to be functionally linked (via

phylogenetic profiling) with genes known to be involved in LAM

biosynthesis (Table 2). Rv2174 (mptA), a polyprenol-P- mannose

alpha 16 mannosyltransferase displayed the maximum linkages

(.230). The large number of linkages can be attributed to the fact

that disruption of this gene affects the optimal growth of the

Table 2. Genes with .50 functional linkages across the
biosynthentic pathways of cell wall components.

Pathways Genes Number of functional linkages

Mycolate biosynthesis Rv3804c 242

Rv1273c 241

Rv0503c 240

Rv0470c 239

Rv3280 99

Rv3802c 95

Rv3801c 94

Rv3799c 93

Rv2509 92

Rv1484 65

Rv0644c 51

Rv0643c 50

Arabinogalactan
biosynthesis

Rv3809c 248

Rv3794 246

Rv3464 243

Rv3265c 242

Rv2361c 240

Rv1086 237

Rv1302 236

Rv2152c 113

Rv1315 111

Rv2682c 95

Rv2155c 65

LAM biosynthesis Rv2174 242

Rv2188c 112

Rv2610c 112

PDIM biosynthesis Rv1528c 99

Rv2941 98

Rv3820c 98

Rv2930 96

Rv3824c 95

Rv2942 93

Rv2933 91

doi:10.1371/journal.pone.0019280.t002

Figure 6. Predicted functional linkages of Rv0227c. Nodes in red
colour are genes with known function in mycolate biosynthesis while
those in blue colour are hypothetical genes. Black line shows direct
linkage of Rv0227c.
doi:10.1371/journal.pone.0019280.g006
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mycobacterium [34,35] as revealed by the TraSH analysis of this

gene. Rv2188c, pimB, an alpha-D-Mannose-alpha 1R6-phospha-

tidyl-myoinositol mannosyltransferase and Rv2610c (pimA) display

112 linkages each, thus providing a rationale for their inclusion as

potential candidates for therapeutic development.

The hypothetical proteins which share significant MI (.0.9)

and PCC (.0.9) with genes involved in LAM biosynthesis, and

their role is further substantiated by recent literature, were

summarized in Table 5. Few studies have found evidence that

Rv2613c encodes GT4 family glycosyl transferase [72] and

Rv2257c encodes a homologue of pbpX of MSgMC2, which has

a role in antibiotic resistance [73]. Table S3 catalogs the complete

list of hypothetical genes that may have a possible role in LAM

biosynthesis.

Phthiocerol dimycocerosate (PDIM) biosynthesis
PDIM has a prominent role in evoking adaptive immune

response as well as in combating oxidative stress by scavenging the

oxygen free radicals [74]. PDIM biosynthesis involves four main

steps viz., priming of long-fatty acids and synthesis of diol

component of phthiocerol, biosynthesis of phthiocerol ppsE

protein, enzymatic synthesis of mycocerosic acid and transester-

ification of mycocerosic acid onto the diol component of

phthiocerol [75]. It is now understood that the complete PDIM

molecules are synthesized in the cytoplasm of M. tuberculosis before

being translocated into the cell wall [76]. Previous studies have

reported the presence of PDIM in pathogenic Mycobacteria with the

exception of M.gastri [74]. PDIM biosynthetic pathway has been

reconstructed in-house using Pathway Tools. The biosynthesis of

PDIM is carried out by genes ppsA-E, which encode a type I

modular polyketide synthase responsible for the synthesis of

phthiocerol and phenolphthiocerol by elongation of a C20–C22

fatty acyl chain or an acyl chain containing a phenol moiety with

three malonyl-CoA and two methylmalonyl-CoA units [77]. mas

encodes an iterative type I polyketide synthase that produces

mycocerosic acids after two to four rounds of extension of C18–

C20 fatty acids with methylmalonyl-CoA units [78]. papA5

catalyzes diesterification of phthiocerol and phthiodiolone with

mycocerosate [79] along with fadD26, a fatty acyl- AMP ligase

involved in the activation and transfer of long-chain fatty acids

Table 3. Hypothetical proteins predicted to be functionally linked with mycolate biosynthesis.

Hypothetical
protein

Mycolate
pathway genes MI co-expression PCC

Predicted domain in
hypothetical protein Mutant studies Supporting literature

Rv2141c Rv0636 0.992774 0.41302 0.872206 Peptidase family M20/
M25/M40

Non-essential Probable dapE2 Soluble protein [90]

Rv1784 Rv0503c 0.934068 0.45765 0.909174 FtsK/SpoIIIE family no data available Rv1784 is a split gene; supposed to be
a complete gene by adding 1784 and
1783 Rv numbers.[92]

Rv3722c Rv3799c 0.992774 0.50171 0.971905 N/A Essential co-transcribed with sRNA [87]

Rv3031 Rv3804c 0.934068 0.50882 0.951319 Glycosyl hydrolase family
57/Domain of unknown
function (DUF1957)

Essential (Rv3031) likely to be involved in the
formation of the alpha-(1R6)-
glycosidic bond [59]

Rv3908 Rv0636 0.992774 0.5198 0.929026 NUDIX domain Non-essential nudix ptotein shows a role as
antimutator in M.smegmatis [88]

Rv2953 Rv3799c 0.992774 0.53548 0.965918 Saccharopine
dehydrogenase

Non-essential Putatively encodes an enoyl
reductase. [89,93]

Rv3802c Rv0957 0.992774 20.33797 0.979063 cutinase Essential Rv3802c is involved in joining the
mero and a mycolate into a mature
mycolic acid [58]

Rv3802c Rv0724 0.992774 0.57179 0.992004 cutinase Essential Rv3802c is involved in joining the
mero and a mycolate into a mature
mycolic acid and transferring it to
trehalose or arabinogalactan are
located in a gene cluster from
Rv3799c to at least Rv3804c [58]

doi:10.1371/journal.pone.0019280.t003

Table 4. Hypothetical proteins predicted to be functionally linked with AG biosynthesis.

Hypothetical
protein

AG biosynthesis
genes MI Co-Exp PCC

Predicted Domain in
hypothetical protein

Mutant
studies Supporting Literature

Rv1209 Rv3265c 0.934068 0.47394 0.965525 N/A Non-essential probably involved in cell wall
arabinogalactan linker formation uses DTP
rhamnosyl residue into cell wall[59,62]

Rv3031 Rv3265c 0.934068 0.39593 0.962174 Glycosyl hydrolase family
57/Domain of unknown
function (DUF1957)

Essential (Rv3031) likely to be involved in the
formation of the alpha-(1R6)-glycosidic
bond linking the first and second D-Glcp
residues at the reducing end of the
molecule.[59]

doi:10.1371/journal.pone.0019280.t004
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[80]. drrC and mmpL7 are necessary for the proper localization of

DIM [76].

Comparative studies revealed that FadD26 is present in all 21

mycobacterial species. ppsA-E genes are absent in MAv104, MAvK-

10, MSgMC2, MAbATCC, MKMS, MJLS and MMCS. ppsC-E genes

are absent in MVaPYR and papA5 is absent in MAv104, MAvK-10

and MSgMC2. The gene mas is absent in MVaPYR and MGlPYR.

These findings hints at the absence of PDIM production in the

organisms listed above. The transport proteins of PDIM viz.,

mmpl7 is absent in MAv104, MAvK-10, MSgMC2, MKMS, MJLS,

MMCS, MGlPYR and MVaPYR; drrC is however present in all the

21 Mycobacteria. This suggests that the daunorubicin resistance,

which is one of the activities of drrC apart from its role in PDIM

translocation, is present is these organisms inspite the absence

PDIM production.

Phylogenetic profiling for PDIM biosynthesis
A total of 677 unique protein pairs satisfied the criteria for MI

and CC and were predicted to be functionally linked (via

phylogenetic profiling) with genes known to be involved in PDIM

biosynthesis (Table S4). Rv1528c (polyketide synthase associated

protein PapA4) displayed the maximum number of linkages (99).

Analysis of the proteins with known function revealed that Rv2933

(rfe, involved in PDIM biosynthesis), Rv2930 (acyl-CoA synthe-

tase), Rv2941 (acyl-CoA synthetase), Rv2942 (transmembrane

transport protein MmpL7), Rv3820c (polyketide synthase associat-

ed protein PapA2) and Rv3824c (polyketide synthase associated

protein PapA1) displayed .90 functional linkages (Table 2).

The hypothetical proteins which share significant MI (.0.9)

and PCC (.0.8) with genes involved in PDIM biosynthesis, and

their role is further substantiated by literature, are summarized in

Table 6. Rv0748, Rv1301 and Rv2681, annotated as ‘conserved

hypothetical proteins’ may have a role to play in in this pathway as

they share significant MI and PCC with PDIM genes and have

also been shown to be essential by mutant studies. Rv1461, a

conserved hypothetical protein, shown to be essential by Sasseti et

al., 2003, displays significant co-expression with Rv2930 (acyl-

CoA synthetase). Previous studies report that Rv1461 (ppS1) to be

an ortholog of SufB, a highly conserved component of the [Fe-S]

cluster, assembly and repair SUF (mobilization of sulfur)

machinery, crucial for survival [81]. This clearly shows the crucial

role of this enzyme in PDIM biosynthesis and hints at the

possibility that the functionality encoded by this gene is unique.

Rv2681, a conserved hypothetical protein, shows significant co-

expression with Rv2933 and Rv2942, hence providing a possible

role of this gene in this pathway [82]. Please refer to the Table S4

for the complete list of hypothetical proteins that share significant

functional linkages with PDIM biosynthesis genes.

Identification of putative drug targets
The worldwide increase in multi-drug resistant Mycobacterium

tuberculosis strains poses a great threat to human health and

highlights the need to identify new anti-tubercular agents. The

construction and analysis of molecular interaction networks

provides a powerful means to understand the complexity of

biological systems and to reveal hidden relationships between

Table 5. Hypothetical genes predicted to be functionally linked with LAM biosynthesis.

Hypothetical
protein

LAM
biosynthesis
genes MI Co-Exp PCC

Predicted Domain in
hypothetical protein

Mutant
studies Supporting Literature

Rv2613c Rv2610c 0.992774 0.5078 0.981656 HIT domain Essential Belongs to the large GT4 family of glycosyl
transferases, [72]

Rv0263c Rv2610c 0.992774 20.46628 0.972042 Allophanate hydrolase
subunit 2

Non-essential putative carboxylase catalyzing urea
degradation [91]

Rv2257c Rv2611c 1 0.47046 0.982687 Beta-lactamase Non-essential homologue of pbpX (M.smegmatis) which
play a role in encoding beta-lactam
antibiotic-resistant enzymes [73]

doi:10.1371/journal.pone.0019280.t005

Table 6. Hypothetical genes predicted to be functionally linked with PDIM biosynthesis.

Hypothetical
protein

PDIM
Biosynthesis

Mutual
information Co-Exp PCC

Predicted Domain in
hypothetical protein Mutant study

Function of gene involved in
PDIM biosynthesis

Rv2681 Rv2933 0.992774 20.30528 0.92159 39-59 exonuclease/HRDC
domain

slow growth
mutant

phenolpthiocerol synthesis type-I
polyketide

Rv1461 Rv2930 0.934068 0.33547 0.968496 Hom_end-associated Hint/
Uncharacterized protein family
(UPF0051)

essential acyl-CoA synthetase

Rv2681 Rv2942 0.992774 0.38414 0.923044 39-59 exonuclease/HRDC
domain

slow growth
mutant

transmembrane transport
protein MmpL7

Rv1301 Rv2933 0.992774 0.47968 0.876667 yrdC domain essential phenolpthiocerol synthesis type-I
polyketide

Rv0748 Rv3824c 0.934068 0.48618 0.910001 Ribbon-helix-helix protein,
copG family

non essential polyketide synthase associated
protein

doi:10.1371/journal.pone.0019280.t006
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drugs, genes, proteins, and diseases [83]. We have used the

knowledge gained from the above analyses for rational identifica-

tion of putative drug targets and estimated their appropriateness

by sequence analysis. Many currently unexploited MTbH37Rv

receptors may be chemically druggable and could serve as novel

anti-tubercular targets. Those genes in the above analysis that

were classified as essential, automatically form a first list of putative

targets for anti-tubercular drugs, since their total inactivation may

result in loss of production of cell wall components and hence the

viability or the pathogenicity of the bacteria. However, it is

reasoned that an ideal target should be essential not only in terms

of the reaction it can catalyse, but also as the only protein coded by

the genome that can perform the same task. Moreover, an ideal

target should also have no recognisable homologue in the host

system, which can in principle compete with the same drug,

leading to adverse effects in the host system [84,85]. Sequence

analysis of MTbH37Rv with human proteomes was therefore

carried out for each of the identified targets and the results are

summarised in Table 7.

Of the six proteins classified to be essential as well as

functionally linked with cell wall components, (Table 7), no close

homologues were observed in human proteome. Literature survey

revealed that studies have listed all the genes except Rv0227 to be

plausible targets for drug design [86,84]. Hence this is the first

study to report Rv0227c as a novel target for MtbH37Rv.

Conclusions
Comparative genomics of genes involved in cell envelope

biosynthesis amongst the 21 mycobacterial species at different

levels of biocomplexity viz., sequence similarity, metabolic

pathway context and phylogenetic profiling provide a rationale

for the observed variation in components of cell wall according to

their niche occupancy. Our findings suggest that the genes

involved in mycolate biosynthesis are highly conserved with

variations observed in genes, which form cylcopropane rings. AG

biosynthesis is conserved in all the 21 Mycobacteria. LM/LAM

biosynthetic machinery is conserved with known-variations in

capping. PDIM-specific polyketide synthases are present only in

pathogenic strains. The predicted functional linkages augment the

search space responsible for the biosynthesis of the crucial

components of cell wall apart from providing a rationale for the

analyzing of network hubs and understanding the subtle

relationships between various pathways. Experimental data can

further validate the specific function encoded by proteins predicted

through phylogenetic profiling studies in different metabolic

pathways. Moreover, the shortlisted probable drug targets provide

a hypothesis for use in tuberculosis drug design and needs to be

tested experimentally. The methodology addresses several issues

related to annotation discrepancies amongst closely related

organisms apart from providing broader network of genes involved

in any metabolic process. The conserved genes complement the

TraSH data to arrive at a catalogue of ‘minimal gene set’ that

Mycobacteria require for their survival and hence pathogenicity. The

variant gene-set suggest the existence of alternate routes for

biosynthesis of the cell envelope components. The methodology

used is robust and is applicable for analyses of hundreds of

prokaryotic genomes that are being sequenced due to the advent

of NGS technologies.

Supporting Information

Table S1 Complete list of predicted functionally linked genes

involved in mycolate biosynthesis.

(XLS)

Table S2 Complete list of predicted functionally linked genes

involved in Arabinogalactan biosynthesis.

(XLS)

Table S3 Complete list of predicted functionally linked genes

involved in Lipomannan and lipoarabinomannan biosynthesis.

(XLS)

Table S4 Complete list of predicted functionally linked genes

involved in Phthiocerol dimycocerosate biosynthesis.

(XLS)
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Table 7. Functionally linked genes with cell wall components and their homolog information in humans.

Functionally
linked genes
with cell wall
components Paralogs of MtbH37Rv Homologs in Human

Rv_number Hit found
E-value
,0.0001

Identity
,40(%)

Query coverage
,30(%) Hit found

E-value
,0.0001

Identity
,40(%)

Query coverage
,30(%)

Rv3802c No hit found N/A N/A N/A No hit found N/A N/A N/A

Rv3722c No hit found N/A N/A N/A No hit found N/A N/A N/A

Rv3031 No hit found N/A N/A N/A No hit found N/A N/A N/A

Rv2681 No hit found N/A N/A N/A NP_002676.1 4e-08 25 11

Rv2681 No hit found N/A N/A N/A NP_001001998.1 5e-08 25 11

Rv0227c No hit found N/A N/A N/A No hit found N/A N/A N/A

Rv2613c NP_215778.1 2e-06 28 12 NP_002003.1 5e-09 32 16

Rv1461 NP_215978.1 1e-17 28 8 No hit found N/A N/A N/A

doi:10.1371/journal.pone.0019280.t007
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