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Abstract: Electrical Impedance Tomography (EIT) is a non-invasive detection method to image the
conductivity changes inside an observation region by using the electrical measurements at the boundary
of this region. In some applications of EIT, the observation domain is infinite and is only accessible
from one side, which leads to the so-called open EIT (OEIT) problem. Compared with conventional
EIT problems, the observation region in OEIT can only be measured from limited projection directions,
which makes high resolution imaging much more challenging. To improve the imaging quality of OEIT,
a focusing sensor design strategy is proposed based on shape conformal theory. The conformal bijection
is used to map a standard EIT sensor defined at a unit circle to a focusing OEIT sensor defined at an upper
half plane. A series of numerical and experimental testes are conducted. Compared with the traditional
sensor structure, the proposed focusing sensor has higher spatial resolution at the near-electrode region
and is good at distinguishing multi-inclusions which are close to each other.

Keywords: open electrical impedance tomography; sensor design; conformal transformation; focusing
sensor; open domain imaging

1. Introduction

Electrical Impedance Tomography (EIT) is a noninvasive imaging method, which reconstructs
the conductivity distribution of the imaging field [1]. It applies an electrical excitation signal to the
target field through electrodes placed at the boundary of an observation area, and then obtains the
electrical responses reflecting the conductivity distribution within the observed field. This technology
has the advantages of portability, low cost and high time resolution. EIT has been widely applied
in the monitoring of many industrial and biomedical processes [2,3]. Conventional EIT aims at
reconstructing the conductivity distribution within a closed domain [4–6]. However, in practical
applications, the observed domain is not always closed or is big enough to be approximated to infinity
compared with the size of the EIT sensors. This leads to the open EIT (OEIT) problem.

OEIT usually takes an open area with an unclosed boundary as observation field for measurements.
OEIT was used in surface geophysics for surface geological exploration in an earlier time. Then it
was also used in structural damage detection, landmine detection and biomedical tissue imaging.
Youssef et al. [7] used OEIT to detect sinkholes in Saudi Arabia, and the results showed that the OEIT
was effective in detecting and mapping a known sinkhole in the study area. Church et al. [8] constructed
a prototype confirmatory landmine detector based on OEIT to image buried landmines. The results
demonstrated that it is possible to reliably reconstruct conductivity perturbations of a shallow buried
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antitank mine or similar object in a variety of soils. Baltopoulos et al. [9] using OEIT to map damage in
carbon fiber reinforced polymer plates. The methodology is validated based on experimental damage
scenarios, successfully identifying the induced damage. Allen et al. [10] used an electrical impedance
tomography-based sensing skin for quantitative imaging of damage in concrete. In the meantime,
OEIT has been extensively studied in clinical medicine. Mueller et al. [11] developed an OEIT sensor
with 4 × 4 electrodes for detecting conductivity changes during ventilation and perfusion. Time traces
of the reconstructed conductivity distribution demonstrated the detected changes in conductivity were
due to ventilation and perfusion. Borsic et al. [12] used a cylindrical probe based on EIT with an array
of electrodes on the front surface to detect prostate disease. They also developed a novel reconstruction
algorithm used for conductivity estimation. The simulation results demonstrated the feasibility of
imaging moderately contrasting inclusions at distances of three times the probe radius from the probe
surface. Cherepenin et al. [13] developed a 48-electrodes OEIT system combined with a vaginal probe
for early detection of cervical neoplasia. They checked their system on a saline solution tank containing
different small objects. The results showed the system could distinguish the size and location of single
targets and the type for different targets. Aristovich et al. [14] used a 30-electrodes OEIT array to
reconstruct images of fast neural-evoked activity in the rat cerebral cortex and developed a novel
noise-based image post-processing technique. The results indicated that the developed methods may
be expected to be reliably applied for imaging neural activity with planar arrays. Murphy et al. [15]
used an end-fired microendoscopic EIT probe for surgical margin assessment and developed a novel
regularization technique using the dual-mesh method. The results showed the feasibility of surgical
margin detection using microendoscopic EIT.

OEIT thus has broad application prospects, however, reconstructing images in the open-domain
geometry poses additional challenges compared with conventional EIT systems. In OEIT, the electrodes
are usually arranged on one surface of the observation field, thus the current density decreases
rapidly with the distance from the electrode surface. In the meantime, the incomplete boundary
conditions also increase the difficulty of solving the OEIT problem, making the imaging quality of
OEIT relatively low and sensitive to noise. Thus, there is still a large scope for the improvement for
OEIT. Improved imaging algorithms can improve the reconstruction quality of OEIT to a certain extent,
but algorithm improvement cannot fundamentally improve the spatial and temporal resolution of
OEIT. This is because the electric field distribution in the observation field is fixed under the premise of
not changing the electrode configuration and excitation strategy. The improvement of the imaging
algorithm can only increase the acquisition of measurement information, but cannot improve the
electric field distribution. However, different electrode configurations and data collection patterns
will affect the penetration depth of the electric field, thus affecting the spatial resolution and imaging
depth of OEIT. Perez et al. [16] designed a novel rectangular array of 20 active electrodes to inject the
external currents, and 16 passive electrodes to measure the induced voltages. The results showed
that this kind of electrode arrangement can avoid problems due to the unknown contact impedance.
The reconstructions have good spatial resolution in the xy-plane and are quite stable with respect to
the noise level in the data. Liu et al. [17] used a scanning linear electrode for the imaging of open
domains and proposed a novel measurement and stimulation pattern. This research is dedicated to
increasing the number of independent voltage measurements to improve the imaging quality of OEIT.
Aiming at the problem of poor image reconstruction quality and low reconstruction accuracy of OEIT,
Wang et al. [18] proposed a novel image reconstruction method based on conformal transformation.
By this method the imaging quality and accuracy of OEIT are improved, especially for the inclusions
located far from the electrode area.

For two-dimensional OEIT, the most used sensor is the uniform sensor that uses electrodes of the
same size and places the electrodes evenly at the boundary of the open field [17]. This simple electrode
configuration allows the observation of conductivity changes in the open field. However, previous
studies showed that the reconstruction quality of uniform sensors for inclusions near the electrode
region and those far from the electrode was relatively poor [18]. When the sensor array and the
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excitation strategy are fixed, the electric field distribution in the observation field is uniquely determined.
Therefore, the most fundamental solution to improve the poor quality of OEIT imaging is to optimize
the electrode configuration, as well as the excitation strategy.

In this research, a novel focusing sensor is designed based on shape conformal theory to improve
the imaging quality of OEIT in the near-electrode region. The conformal bijection is used to map a
standard EIT sensor defined at a unit circle to a focusing OEIT sensor defined at an upper half plane.
To evaluate the proposed focusing sensor, a series of simulation and experiment analyses are carried
out. The results from the novel OEIT sensor are compared with those of a conventional OEIT sensor.

2. Materials and Methods

2.1. Principle of OEIT

Figure 1 gives an illustration of an OEIT system with the conventional sensor structure discussed in
this paper. The EIT system includes an electrode array, data acquisition system and image reconstruction
unit (usually in a PC). The electrode array is uniformly fixed at the boundary Γ of the open domain
Ω. The excitation strategy of OEIT system is the conventional adjacent current stimulation and
adjacent voltages measurement [19]. At each measuring timepoint, one of the adjacent electrode pairs
is excited with currents, and voltage measurements are made between the other adjacent pairs not
involving the driven electrodes. The process will continue until all the electrodes have been excited.
For a system consisting of L electrodes, L × (L−3) voltage measurements are collected. Based on the
reciprocal theory, half of them are independent. Aiming at the sensor with 16 electrodes in this research,
there are 208 measurement datapoints in all, and the independent data is the half of this number.
When low-frequency currents are applied to the active electrodes, the electric potential ϕ(x, y) at Ω
satisfies the Gaussian equation:

∇ · [σ(x, y)∇φ(x, y)] = 0,
{
(x, y)

∣∣∣x ∈ (−∞,+∞) , y ∈ (0,+∞)
}
, (1)

where σ(x, y) is the conductivity distribution. Following the complete electrode model (CEM) [20],
the boundary condition of the OEIT forward problem can be written as follows:

σ(x, y) ∂φ(x,y)
∂y |y=0 = 0, x ∈ Γ\

L
∪

l=1
el

φ(x, y) + ρlσ(x, y) ∂φ(x,y)
∂y |y=0 = Ul, x ∈ el, l = 1, 2, . . . , L∫

el
σ(x, y) ∂φ(x,y)

∂y |y=0ds = Il, l = 1, 2, . . . , L
L∑

l=1
Il = 0

L∑
l=1

Ul = 0

(2)

where Γ ∈ (−∞,+∞) is the actual boundary of open domain, el denotes the electrode l, ρl is the contact
impedance between electrode l and internal medium, Ul is the voltage on the electrode l, Il is current
injected into field Ω from electrode l.
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Figure 1. Illustration of the OEIT system with conventional sensor structure.

The conventional method to calculate the OEIT problem is to simplify the infinite observation
domain Ω to a finite domain Ω1 [17]. However, this method will lead to truncation errors not only
in the forward problem solution but also the inverse problem solution. In our previous research,
a transformation domain method was proposed to directly solve the OEIT problem in the infinite
observation domain Ω. According to the Riemann mapping theorem, the infinite upper half plane can be
transferred into a simple closed circular domain by bijective holomorphic mapping [21]. After conformal
mapping, the voltage potential function and the conductivity distribution function still satisfy the
Laplace equation and are related to the original equation before transformation. The boundary
condition can be calculated by CEM and it has the same form as (2). According to the conformal
transformation, the electrical field distribution of the infinite upper half plane can be evaluated by
calculating the electrical field distribution in the conformal circular domain. Thus, the process of the
imaging method based on conformal transformation has the follow steps:

(1) The boundary voltage measurement data is collected by the electrodes placed on the boundary of
the open field.

(2) The reconstructed image is obtained in the conformal circular domain according to the boundary
voltage measurement.

(3) The conductivity distribution image of the open field is mapped from the conformal circular
domain by the mapping relation [18].

2.2. Focusing Sensor Design

In previous studies, for two-dimensional OEIT, the most commonly used sensor is the uniform
sensor. As shown in Figure 1, electrodes of the same size are fixed at the boundary of the observation
domain. This simple electrode configuration allows the observation of conductivity changes in the
open field. However, in previous studies, we found that the reconstruction quality of uniform sensor
for inclusions near the electrode region and those far from the electrode was relatively poor [18].
Figure 2 shows the mapping of inclusions and electrode positions after conformal transformation based
on the conventional uniform sensor structure. Five inclusions of the same size are located at different
locations in the observation field. As the inclusions move away from the electrode, their mapping
moves to the right semicircular domain, and the relative size increases first and then decreases rapidly.
When the uniform sensor in the open field is mapped to the conformal circular domain, the electrode
position will be offset, resulting in a sparse electrode distribution on the boundary of the left semicircle
domain. When the inclusion near the electrode area is mapped to the conformal circular domain, it is
located in the left semicircular domain and the size is relatively enlarged. In this situation, the uniform
sensors do not provide a good reconstruction of the inclusions. Therefore, we focus on the high
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resolution reconstruction in the near electrode region and a focusing sensor optimization scheme based
on conformal transformation is proposed.Sensors 2019, 19, x FOR PEER REVIEW 5 of 22 
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According to the conformal transformation method, the point (x, y) of the infinite upper half plane Ω
can be mapped to the point (u, v) in unit circular domain D one by one, the transformation mapping is [22]:

w =
(1 + z)
(1− z)

i (3)

where z = x + yi and w = u + vi. In the meantime, the point (u, v) in unit circular domain can be
mapped to point (x, y) in the infinite upper half plane by:

z =
w− i
w + i

(4)

The realization of the proposed focusing sensor is to map the uniform sensor distribution in
the circular domain to the infinite upper half plane through the above mapping relations. Figure 3
shows the process of conformal transformation from the unit circular circle domain to upper half plane.
After conformal transformation, the electrode arrangement of focusing sensor expands from the center
to both sides, and the electrode spacing also expands.
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Since the sensor with uniform distribution in the circular region also has a higher sensitivity
distribution in the left semicircle, the proposed focusing sensor in the open region can improve the
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sensitivity to the change of conductivity in the near electrode region, which is conducive to the
realization of high-resolution reconstruction in the near electrode region.

2.3. Forward Problem Solutions

For the solution of EIT, the forward problem is to calculate the boundary voltages from a given
conductivity distribution. The forward model is established in EIDORS [23] and solved by the BEM
method [24,25]. For the uniform sensor, 16 × 6 mm wide electrodes are evenly placed at the range of
[−10, 10] of x-axis and the region of imaging is set to be [−10, 10] of x-axis and [0, 10] of y-axis. For the
proposed focusing sensor, according to the above mapping relation, different electrode widths are
calculated, and the electrodes are arranged at the center boundary of the open boundary. The region of
imaging is set to be the same as the uniform sensor.

2.4. Inverse Problem Solutions

The inverse problem is solved by FEM method [26]. As shown in Figure 4, the mesh of the
open image region is transformed from the uniform mesh in circular field according to the conformal
mapping relation. The imaging region is a part of open field, thus the mesh is also a part of the circular
field mesh. The color in the figure indicates the area of different grids. The total number of mesh is
850 grids. In this way, the mesh density in the near-electrode region can be greatly improved, which is
helpful to realize high-precision image reconstruction.
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The inverse problem is to estimate the conductivity distribution from boundary voltage
measurements. In EIT, absolute imaging and difference imaging are commonly used for image
reconstruction. In this research, the difference image approach is used, which helps to suppress the
effect of contact impedance. The reconstruction problem is not well-posed as there is not a single valid
solution and small changes in input mean big changes in the output. Also the physics of electric field
means that the inverse problem is also ill-conditioned [27]. In this condition, regularization methods
have been proved to work well towards these problems which usually have a formal minimization
objective function as:

‖Jh− b‖22 + λG(h) (5)

where J is the sensitivity matrix, b is the difference of the boundary voltage measurement vector
between the reference field and the object field, h is the conductivity distribution to be solved, λ
is the regularization factor. Tikhonov regularization algorithm [28] is a widely used non-iterative
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regularization algorithm. The penalty term of Tikhonov regularization is G(h) = ‖h‖22. According to
the Gaussian Newton method [29], the conductivity image h is estimated by the following
one-step reconstruction:

h =
(
JT J + λI

)−1
JTb (6)

where I is an identity matrix. The image reconstruction quality depends on the selection of the
regularization factor λ. The value is used to affect how much the penalty term controls the final
solution. Although there exists the theoretical optimal solution of λ, they are usually computational
intensive and cannot be used for the real-time imaging. Here, the selection of the regularization factor
λ is mainly based on the empirical method.

3. Results

The proposed focusing sensor is evaluated by both numerical simulation and experimental study.
Simulation is carried out using Matlab with EIDORS on a PC equipped with a 3.2 GHz Intel Core
i5 processor.

3.1. Numerical Simulation

3.1.1. Boundary Measurement Consistency in Transformation Domain

In order to simulate the open region, the forward model should be very large to satisfy the
potential distribution of an open area. Due to the limitation of the computational cost and the actual
application, the forward model can’t be infinite. Considered the simulation precision and calculation
cost, according to the previous research in [18], for the forward problem, the modeling region is set to be
[−40, 40] on the x-axis and [0, 40] on the y-axis. Figure 5 shows the boundary potential measurements
of the reference field based on the open modeling region and its conformal circular domain. The blue
line with circle dot is the boundary potential of reference field based on the open modeling field, while
the red dots are the boundary potential based on the conformal circular domain. It can be seen that
the boundary measurements of open field are almost consistent with the conformal circular domain.
It can be proved that the focusing sensor has same physical properties as its conformal circular domain.
At the same time, because the focusing sensor is mapped by the uniform sensor in the conformal
circular domain, its boundary potential measurements of each channel is consistent.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 22 

 

( )−Τ Τ= +
1

h J J λI J b  (6) 

where I is an identity matrix. The image reconstruction quality depends on the selection of the 
regularization factor λ. The value is used to affect how much the penalty term controls the final solution. 
Although there exists the theoretical optimal solution of λ, they are usually computational intensive 
and cannot be used for the real-time imaging. Here, the selection of the regularization factor λ is mainly 
based on the empirical method. 

3. Results 

The proposed focusing sensor is evaluated by both numerical simulation and experimental 
study. Simulation is carried out using Matlab with EIDORS on a PC equipped with a 3.2 GHz Intel 
Core i5 processor. 

3.1. Numerical Simulation 

3.1.1. Boundary Measurement Consistency in Transformation Domain 

In order to simulate the open region, the forward model should be very large to satisfy the 
potential distribution of an open area. Due to the limitation of the computational cost and the actual 
application, the forward model can’t be infinite. Considered the simulation precision and calculation 
cost, according to the previous research in [18], for the forward problem, the modeling region is set 
to be [−40, 40] on the x-axis and [0, 40] on the y-axis. Figure 5 shows the boundary potential 
measurements of the reference field based on the open modeling region and its conformal circular 
domain. The blue line with circle dot is the boundary potential of reference field based on the open 
modeling field, while the red dots are the boundary potential based on the conformal circular domain. 
It can be seen that the boundary measurements of open field are almost consistent with the conformal 
circular domain. It can be proved that the focusing sensor has same physical properties as its 
conformal circular domain. At the same time, because the focusing sensor is mapped by the uniform 
sensor in the conformal circular domain, its boundary potential measurements of each channel is 
consistent. 

 
Figure 5. Boundary potential of reference field based on the open modeling region and its conformal 
circular domain. 

The distribution of sensitivity fields based on the focusing sensor and the traditional uniform 
sensor are illustrated in Figure 6. The sensitivity distribution indicates the sensitivity of the boundary 
voltage response to the variation of conductivity at every pixel in the imaging region. The sensitivity 

Figure 5. Boundary potential of reference field based on the open modeling region and its conformal
circular domain.

The distribution of sensitivity fields based on the focusing sensor and the traditional uniform
sensor are illustrated in Figure 6. The sensitivity distribution indicates the sensitivity of the boundary
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voltage response to the variation of conductivity at every pixel in the imaging region. The sensitivity
at a certain imaging pixel is defined as the Euclidean norm of the Jacobian values at this pixel [30].
The large values represent the change of conductivity at this pixel will cause a large change in boundary
voltage response, while the small values represent a low sensitivity to the conductivity variation.
As shown in Figure 6, the sensitivity distribution is mapped from the conformal circular domain. It can
be seen that the sensitivity distribution of the focusing sensor has higher sensitivity in the central region
near the electrodes, and the sensitivity is decreasing rapidly with respect to the direction away from
the electrodes. As for the sensitivity distribution of the uniform sensor, the area near the boundary on
both sides of the electrodes has high sensitivity. However, the sensitivity distribution in the region
near the central electrode is relatively low. According to the comparative result, the focusing sensor is
much more sensitive in the central region compared with the uniform sensor. That means the focusing
sensors make it easier to detect small changes in electrical conductivity near the central electrode
region. This has certain significance for improving the resolution of OEIT detection in the central
region near the electrodes.
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3.1.2. Quantitative Index

To characterize the performance of the focusing sensor compared with the uniform sensor, a series
of simulation test are carried out. Then a series of metrics were used to assess the quality of the
reconstructed images. The descriptions of these metrics are as follows:

• Resolution (RES) measures the ratio of the number of pixels in inclusions to the total number of
pixels, as shown in (7). In the reconstructed images, the reconstructed inclusions are segmented
from the reconstructed images by using a threshold of 75% maximum pixel amplitudes [31].
The total number of pixels represents the area of the region of interest for imaging. In this article,
RES is used to measure the relative resolution of the focusing sensor and conventional uniform
sensor. A smaller RES means the reconstructed image has high resolution for a similar inclusion:

RES =

√
Aq
An

, (7)

where Aq is the number of pixels in inclusions, An is the total number of pixels of the image region.
• Resolution ability (Ra) is defined as the measurement ability of distinguish between multiple

inclusions. Figure 7 illustrates the schematic diagram of Ra with two inclusions as an example.
The bottom row shows the reconstructed image, while the top row plots the amplitude across
a row through the center of the multiple simulation inclusions. Ra compares the relationship
between the amplitude at the midpoint of the centers of the two inclusions and the 75% maximum
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pixel amplitudes to measure whether the two inclusions can be clearly distinguished in the
reconstructed image. The definition of Ra is shown in (8):

Ra =
hm − 0.75hmax

hmin − 0.75hmax
, (8)

where hm is the amplitude value at the midpoint of the centers of the two inclusions, hmax and hmin

is the maximum and minimum value of the amplitude across the row through the center of the
multiple simulation inclusions. For a certain reconstructed image, a Ra greater than 0 indicates that
multiple inclusions can be distinguished; a Ra closer to 1 indicates a stronger ability to distinguish
inclusions; while a Ra less than 0 indicates that multiple inclusions cannot be distinguished.

• Average gradient (Ag) is defined to measure the steepness of the multiple reconstructed inclusions
boundary. As shown in Figure 7, Ag calculates the mean of the absolute value of gradient of the
reconstructed pixels between the centers of the multiple simulation inclusions. The definition of
Ag is shown in (9):

Ag = ave

 t∑
s=1

∣∣∣∣∣∣h(c1 + s∆c) − h(c1 + (s− 1)∆c)
∆c

∣∣∣∣∣∣
, (9)

where t = c2−c1
∆c . ∆c is the length between adjacent pixels. A large Ag means a large relative

steepness of the reconstructed inclusion boundary.
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In the meanwhile, the relative image error (RE) and the correlation coefficient (CC) between the
true conductivity distributions and reconstructed images are also determined. The definitions of the
RE and CC can be seen in (10) and (11), respectively [32]:

RE =

∥∥∥hq − h
∥∥∥

‖h‖
× 100%, (10)

CC =

P∑
i=1

(hi − h)(hqi − hq)√
P∑

i=1
(hi − h)

2 P∑
i=1

(hqi − hq)
2

, (11)
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where hq is the normalized conductivity vector of reconstructed distribution, hqi is the i-th element in
the vector hq; and h is the normalized conductivity vector of a true distribution, hi is the i-th element in
the vector h; P is the length of the conductivity vector. For a good reconstruction performance, RE
should be low and CC should be relatively high.

3.1.3. Reconstruction Analyses of Multiple Positions

During the simulation tests of a single target, highly conductive circular inclusions with diameter
of 2–10% of the region width are simulated. The evolutions of the target inclusion with respect to the
vertical, horizontal and oblique positions are shown in Figure 8a. In each direction, the inclusions of
each size traversed 50 different positions. Direction 1 is the evolution of the horizontal direction near
the electrode region and the central coordinate change range is from (0, 1) to (8.5, 1). Direction 2 shows
the evolution along the diagonal direction of the field domain and the end of the central coordinate is
(−8.5, 1.5). Direction 3 is the evolution keeping away from the center electrode along the vertical direction,
and the central coordinates of the inclusions change from (0, 1) to (0, 8.5). During the simulation of double
targets, two high conductivity circular inclusions with diameter of 6% of the region width are simulated.
The evolution of the target inclusions is along the horizontal direction, and 40 positions are simulated along
that direction, as shown in Figure 8b. At each location, the distances between the centers of two inclusions
were selected as 0.7, 1.1, and 1.5, respectively, and the degrees of differentiation of the two inclusions
measured by different sensors were calculated at each location along with the distance of the inclusions.
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Figure 9 shows the evolutions of minimum RES with respect to the inclusion positions in the
single target simulations. The minimum RES means the resolution of the smallest inclusions that can be
reconstructed by two sensors for different sized inclusions for the same location. A small RES indicates
that the sensor is better at recognizing small sized inclusions. The red lines show the minimum RES
performance of the uniform sensor, while the blue lines are the performance of the proposed focusing
sensor. The green dotted line indicates the 10% resolution, which is usually considered as the normal
resolution for EIT. The solving process uses the Tikhonov regularization algorithm. The regularization
parameters are determined by an empirical method and they are invariant during each evolution
process. As shown in Figure 9, in Direction 1, along with the position of the target moving to the side
boundary of the region, the performance of the focusing sensor has more stable and smaller RES, it is
better than the uniform sensor in almost all cases. When the inclusions are located in the central region,
the resolution of the uniform sensor for the small inclusions is almost stable at 10%, while the minimum
resolution of the focusing sensor is up to 2%. During the traversal process of Direction 1, the minimum
RES of the focusing sensor is significantly smaller than that of the uniform sensor, and is less than 10%
at most positions. This indicates that the focusing sensor can realize high resolution reconstruction of
small size inclusions in the near-electrode region, that is, smaller size inclusions can be reconstructed
by the focusing sensor. As the inclusion moves from the center to the boundary and gradually away
from the electrode with respect to the oblique direction, as shown in Direction 2, a similar conclusion
can be reached. When the inclusions are close to the electrode area, the minimum resolution of the
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focusing sensor has a significant advantage, which is basically less than 10%. However, as the inclusion
moves away from the electrode and is located near the side of the imaging area, the focusing sensor
gets worse results than the uniform sensor. That means the focusing sensor has poor resolution for
inclusions far from the electrode. During the evolution of Direction 3, it can be seen that the focusing
sensor has smaller RES than the uniform sensor when the inclusion is near the electrode, which means
the focusing sensor can reconstruct smaller inclusions in this situation. When the inclusion moves
away from the central electrode, the difference in RES between the two sensors is decreasing. To sum
up, the proposed focusing sensor has significant advantages in the reconstruction of small inclusions
near the electrode area compared with the uniform sensor. In the simulation tests, the minimum RES
of the focusing sensor can up to 2%, which is a significant improvement over conventional uniform
sensors. Meanwhile, as shown in Figure 9, when the position number is lower than 15, it can be
seen the minimum resolution of the focusing sensor in different traversal directions is better than the
uniform sensor, which roughly determines that the high-resolution imaging area of the focusing sensor
is [−2.5, 2.5] on the x-axis and [0, 2.5] on the y-axis. However, the results also show that the focusing
sensor has poor resolution for the inclusions that are far away from the central electrode region and
near the boundary.
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Figure 10 shows the evolution of Ra with respect to the inclusion positions in the double targets
simulations. This simulation compares the ability of two sensors to distinguish multiple inclusions
in the near-electrode region. In Figure 10, the top image is the Ra of the focusing sensor, while the
bottom image is the Ra of the uniform sensor. The d is the distance between the centers of two targets.
The horizontal black dotted line indicates the zero value of Ra. If the value is above 0, the higher the
value is, the stronger the ability to distinguish between the two inclusions is. If the value is lower
than 0, it cannot distinguish the two inclusions. As it can be seen from Figure 10, when the inclusions
are located near the central electrodes region, the focusing sensor can distinguish the two inclusions
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with a center distance of 0.7, while the uniform sensor can only distinguish the two inclusions with a
center distance of 1.5. As the inclusions move away from the central region, the ability of the focusing
sensor to distinguish close inclusions gradually weakens. However, the uniform sensor can hardly
distinguish two inclusions that are close to each other. When the position number is lower than 15,
the Ra of the focusing sensor is better than the uniform sensor, which is consistent with the simulation
results of the minimum resolution of a single inclusion. In summary, the proposed focusing sensor,
compared with the uniform sensor, has a high resolution in the near center electrode region and a
strong ability to distinguish the two inclusions in close proximity. According to the above simulation
results, the focusing region of the proposed focusing sensor is about [−2.5, 2.5] on the x-axis and [0, 2.5]
on the y-axis.
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Figure 11 shows the reconstructed results of the single circle target with same size distributed at
different positions that are gradually away from the electrode with respect to the oblique direction.
In this simulation, the conductivity of the single circle target is 2 S/m, while the background conductivity
is 1 S/m. In the meanwhile, Figure 11 also gives the position of the phantom in the conformal circular
domain. Compared the reconstructed results of the focusing sensor and the uniform sensor, it can
be shown that when the target positions are close to the central electrodes (T1), the focusing sensor
leads to better reconstructed results both in location and shape of the circle target and has the highest
reconstruction image quality, while the reconstructed image of the uniform sensor has some distortion
for the size and shape of the circle target. As the target moves away from the central electrode and
close to the boundary, the reconstructed image of focusing sensor becomes bad and gradually worse
than that of the uniform sensor. Therefore, the subsequent simulation focused on the comparison of
the imaging results of the two sensors in the area near the central electrodes.
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Figure 11. Reconstruction results of single target based on uniform and focusing sensors.

Figure 12 shows the reconstructed results of double targets with different size and different
distance based on the uniform sensor and the focusing sensor. T5 and T6 are two conductive inclusions
with same radius of 0.5 and at different distance from each other. It can be seen that when two
inclusions are far apart (T5), both sensors can distinguish the two inclusions. When the two inclusions
are close to each other, they cannot be distinguished in the reconstructed image of the uniform sensor.
In this case, the reconstructed results of uniform sensor can only reflect the presence of the inclusions,
but does not distinguish the number and size of the inclusions. However, from the results of the
focusing sensor, he number and size of the inclusions can be distinguished clearly. Then the size
and distance of the inclusions are gradually decreased, as shown in T7 and T8. Due to the small size
of the inclusions, the distribution of T7 and T8 and the reconstruction results are locally amplified
in Figure 13a. T7 shows two conductive inclusions with same radius of 0.2 and relatively close to
each other. It can be found that the uniform sensor cannot get a good performance for the two small
inclusions and the reconstructed image is similar to the image of T6, which means the uniform sensor
cannot distinguish the two small inclusions. However, the focusing sensor has a great performance in
this case and the number and size of the inclusions can be clearly distinguished. T8 is two conductive
inclusions with the same radius of 0.1 and closer to each other. In this case, the uniform sensor can
only reconstruct a large region of conductivity changes and the exact distribution of the inclusions
is unknown. On the contrary, the focusing sensor still has great reconstruction quality, and it can
represent well not only the size of the inclusions, but also the location of the inclusions. In this case,
the focusing sensor has a minimum resolution of 2%.

A quantitative analysis of these reconstruction results is shown in Table 1. As it can be seen
from the table, in all four cases, the results of the focusing sensor have better Ra than the uniform
sensor. Except for T5, the Ra of the uniform sensor is negative, which means the uniform sensor
cannot distinguish small inclusions that are close to each other. Ag measures the steepness of the
multiple reconstructed inclusions boundary. When the inclusions are far from each other, the Ag
values obtained by the two sensors are similar. When the size and distance of the inclusions are
gradually decreased, the reconstruction results of the uniform sensor can no longer distinguish the two
inclusions, and then Ag of the focusing sensor becomes much larger than that of the uniform sensor.
Therefore, the focusing sensor has strong resolution ability for the inclusions located in the area nearby
the central electrodes. Meanwhile, the results based on the focusing sensor have lower RE and higher
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CC in almost all simulated situations. This means that the images of the focusing sensor show better
image quality and reconstruction accuracy. Moreover, as the inclusion size and spacing decreases,
the advantages of focusing sensor become more and more obvious.

Table 1. Quantitative analyses of the reconstruction results shown in Figure 12.

T5 T6 T7 T8

Uniform Focusing Uniform Focusing Uniform Focusing Uniform Focusing

Ra 0.642 0.813 −0.132 0.611 −0.149 0.545 −0.217 0.498
Ag 4.531 6.045 0.728 12.145 0.538 14.266 0.911 28.644
RE 0.132 0.143 0.177 0.101 0.233 0.131 0.250 0.089
CC 0.855 0.872 0.780 0.842 0.750 0.851 0.714 0.887

In order to explore the performance of different sensors in the presence of noise, T7 and T8 are
simulated in the case of no noise and 40dB SNR noise, respectively. The result is shown in Figure 13.
The uniform sensor results have deformations in the shape of the inclusions and cannot distinguish the
two inclusions. On the contrary, the result of the proposed focusing sensor has less deformation and
can reflect the actual circumstances of the circle target. In the meantime, when 40 dB SNR random noise
is added to the simulation data the uniform sensor leads to bad results in which the reconstructed target
has large distortion and image artifacts. However, under the influence of noise, the focusing sensor
can reconstruct the true distribution of inclusions, especially for small inclusions close to each other.Sensors 2019, 19, x FOR PEER REVIEW 14 of 22 
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Table 2 shows the quantitative analyses of these reconstructed results. The results of the proposed
focusing sensor have lower RE and higher CC in all of the tested phantoms compared with the uniform
sensor results. In these cases, the Ag of the focusing sensor is much better than the uniform sensor
and the Ag becomes larger as the size and distance of the inclusions decrease. This indicates that the
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boundary of the inclusions reconstructed by the focusing sensor is steep, and the steepness increases
with the decrease of the distance between inclusions. Meanwhile, the Ra of the proposed focusing
sensor are obviously better than the uniform sensor results, which means that under the influence of
noise, the focusing sensor can still reconstruct multiple small inclusions located at the area near the
central electrodes. Moreover, the reconstructed images of the focusing sensor have less image artifacts
and higher reconstruction quality compared with the uniform sensor ones.

Table 2. Quantitative analyses of reconstruction results shown in Figure 13.

Noise Free 40 dB SNR

T7 T8 T7 T8
Uniform Focusing Uniform Focusing Uniform Focusing Uniform Focusing

Ra −0.149 0.545 −0.217 0.498 −0.161 0.441 −0.117 0.312
Ag 0.538 14.266 0.911 28.644 0.507 13.889 0.912 28.627
RE 0.233 0.131 0.250 0.089 0.251 0.142 0.370 0.136
CC 0.750 0.851 0.714 0.887 0.678 0.788 0.623 0.811

3.1.4. Reconstruction Results Combining the Focusing Sensor and Uniform Sensor

The former discussion shows the focusing sensor can reconstruct smaller targets near the central
electrode, but its reconstructed results for targets far away from the electrodes are worse than those of
the uniform sensor. Therefore, if a measurement of the same object was taken using each individual
sensor, in the same environment and in the same location then it could be assumed that all of the
measurements were from one device rather than individual sensors. The reconstruction could then use
all of the combined measurements in order to reconstruct the conductivity distribution. There are two
ways to fuse the data from two different sensors. The first method (Method 1) is to directly superimpose
the reconstructed images of the two sensors. The second method (Method 2) is to combine all of the
measurements from two sensors and then the augmented sensitivity matrix is used to solve the same
solution vector. This means that each calculation now uses 2 × 208 measurements, where 208 is the
number of measurements of each sensor. This improves the overall solution as more measurements
are used to calculate the same number of answers.

Figure 14 shows reconstructed results of two different phantoms based on each individual sensor
as well as the two data fusion methods. When there exists a small inclusion close to the electrode and
large inclusions far from the electrode, the reconstructed image of focusing sensor can clearly recognize
the two small inclusions that are close to the electrode and close to each other, but the large inclusion
far from the electrode can hardly be recognized. On the contrary, the uniform sensor can reconstruct
the large inclusion far from the electrode, but cannot recognize the two small inclusions that are close
to the electrode. Through the data fusion of two different sensors, from the reconstructed image, it can
be found that the combination of two measurement data can effectively improve the reconstruction
quality of multiple inclusions. Method 1 and Method 2 can both reconstruct the multiple inclusions
compared with the reconstructed results of each individual sensor. These results indicate that the
fusion of the measurements from two sensors can not only realize high-resolution reconstruction of
multiple inclusions near the electrode, but also realize high-quality reconstruction of distant inclusions.
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3.2. Experimental Analysis

To further test the performance of the proposed focusing sensor, a set of experimental studies
are carried out. The experimental equipment is show in Figure 15. It consists of a rectangular tank
and a data acquisition system. The EIT system was developed in Tianjin University, China. It is
a sixteen-channel high-speed serial data acquisition (DAQ) system [33]. The rectangular tank is
80 cm in length and 40 cm in width, which is used to simulate the open region. For the proposed
focusing sensor, the electrodes are 16 copper plates with different widths which are consistent with the
simulation settings. They are placed on the central boundary of the rectangular tank. Table 3 shows
the actual dimensions of the focusing sensor electrodes used in experimental studies. For comparison,
the electrodes of the uniform sensor are 16 copper plates with 6 mm width and they are uniformly placed
on the central boundary of the rectangular tank. According to the simulation results, the imaging region
is focused on the shallow region near the electrodes. Thus, the region of interest is set to 20 cm in length
and 10 cm in width. Figure 16 shows the schematic diagram of the region of interest. The experiments
are conducted by placing different size of plastic (nonconductive) or metallic (conductive) rods placed
at different locations. Na2SO4 solution with a conductivity of 6.22 × 10−2 S/m is selected as the
background medium.
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Table 3. The actual dimensions of the focusing sensor electrodes used in experimental studies.

Electrode Number
1 2 3 4 5 6 7 8

(16) (15) (14) (13) (12) (11) (10) (9)

Length (mm) 110 15.5 6.0 3.5 2.6 2.0 1.7 1.5

The experimental results of different phantoms based on the proposed focusing sensor and
uniform sensor are shown in Figure 17. The inclusion of E1 is an aluminum rod of 10 mm diameter,
while E2 is a nylon rod with 3 mm diameter. The two inclusions are set at the region near the central
electrode. The test aims to compare the ability of reconstructing the small inclusion as well as the
resolution of the two sensors. From the reconstructed results, it can be found that the focusing sensor
shows better performance than the uniform sensor and the recognition ability of conventional uniform
sensors for small sized inclusions is poor, even if the inclusions are located near the electrode area.
For the 10 mm diameter aluminum rod (E1), the focusing sensor can reconstruct the position and
shape of the inclusions with high accuracy, while the uniform sensor can only reconstruct the general
area of conductivity variation with large image artifacts. When the size of the inclusions is reduced
to 3 mm (E2), the uniform sensor cannot reconstruct the conductivity variation, while the focusing
sensor can still reconstruct the inclusion clearly. The above results shows that the proposed focusing
sensor is more sensitive to small conductivity changes in the near electrode region and the focusing
sensor can improve the reconstruction resolution to at least 3% in the near central electrodes region.
E3 and E4 show the experimental results for double inclusions, which is to test the ability of different
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sensors to distinguish multiple inclusions in close proximity. E3 is two same sizes of 10 mm aluminum
rods located near the electrodes. The uniform sensor still can only reconstruct the blurred image and
the inclusions are not clearly identifiable. However, the two inclusions can be clearly distinguished
from the reconstruction image of focusing sensor, although the reconstructed inclusions have slight
deformation. E4 shows two same size nylon rods with 5 mm diameter and closer to the electrodes,
the reconstruction result of focusing sensor is significantly better than that of the uniform sensor.
The uniform sensor cannot recognize small size inclusions, while focusing sensor can not only recognize
two small size inclusions that are lose to each other, but also reconstruct them with a high accuracy.
Table 4 shows the quantitative analyses of the experimental reconstruction results. The quantitative
analyses shows that the results of focusing sensor can reach higher CC and lower RE compared with
the results of uniform sensor for all the experimental reconstruction images. The above results show
that the proposed focusing sensor has higher sensitivity and reconstruction accuracy to small size
inclusions in the near-electrode region. Compared with the uniform sensor, the focusing sensor has
better reconstruction quality and higher reconstruction accuracy for small conductivity changes in the
focusing region. The experimental results show that the resolution of the focusing sensor can reach 3%
in the near center electrode region.
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Tikhonov regularization.

Table 4. Quantitative analyses of experimental reconstruction results shown in Figure 17.

E1 E2 E3 E4

Uniform Focusing Uniform Focusing Uniform Focusing Uniform Focusing

RE 0.314 0.150 0.238 0.093 0.271 0.164 0.325 0.137
CC 0.681 0.879 0.713 0.895 0.737 0.828 0.632 0.841

To further test the performance of the proposed focusing sensor and the two different data
fusion methods, an experimental phantom is carried out and compared under different methods.
The phantom is two 5 mm nylon rods located near the central electrodes and a 25 mm nylon rod far
away from the electrodes. Figure 18 shows the reconstructed results based on each individual sensor
and the two data fusion methods. The experimental results are consistent with the simulation results.
The focusing sensor has high resolution ability in the focusing region. It can reconstruct small targets
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in the area near the electrodes, but its reconstructed results for the target far away from the electrodes
are worse than the uniform sensor. However, the uniform sensor can hardly reconstruct the two small
targets when there has a large inclusion far away from the electrodes. The situation is improved
through the data fusion method 1. From the results, Method 1 can basically present small inclusions
near the electrode and large inclusions far from the electrode. However, the results of Method 2, which
has severe deformation and image artifacts, are relatively poor. This is because in the experimental
environment, uncertain noises and errors will increase the difficulty of data fusion under different
sensors. Therefore, Method 2 adopts the method of solving the same solution matrix, which will
increase the ill-posedness of the solution. Method 1 solves the optimal solution under each sensor
and then fuses the image. By this method, the conductivity distribution of the measured field can be
reconstructed more accurately. Because the data fusion method proposed in this paper combines the
advantages of the two sensors, this method may have the possibility of realization in some application
fields. For example, in the surface geological exploration and landmine detection, these two sensors
could be used to scan the same static object, successively. Then these two kinds of data could be fused
to reconstruct the same object.
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4. Conclusions

A new sensor design based on conformal transformation for OEIT is proposed to improve the
image reconstruction quality and low reconstruction accuracy of OEIT. The proposed focusing sensor is
derived from the uniform distribution of electrodes in the conformal circular domain through conformal
transformation method. The numerical results show that compared with the conventional uniform
sensor, the proposed focusing sensor can achieve high resolution reconstruction of the inclusions near
the central electrode with a minimum resolution of 2%. The evolution results roughly determine
the high-resolution imaging area of the focusing sensor is [−2.5, 2.5] of x-axis and [0, 2.5] of y-axis.
Moreover, the focusing sensor can distinguish small sized inclusions that are close to each other in the
focusing region and reconstruct them with high quality. Qualitative and quantitative results show that
the results of the proposed focusing sensor have smaller minimum resolution and higher resolution
ability when the position of target is near the central electrodes. The experimental results show that
the resolution of the focusing sensor can reach 3% in the near center electrode region. The data fusion
methods of the two sensors are also discussed. The experimental results show that the method that
solves the optimal solution under each sensor and then fuses the image can lead to better results
compared with the method of solving the same solution matrix. However, the proposed method can
be used for scanning imaging based on a one-dimensional linear electrode array at present, and the
method of constructing two-dimensional focusing electrode arrays is still the main topic of future
research. Future work will focus on the construction of two-dimensional electrode array as well as the
further improvement of the reconstruction algorithms.
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