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Abstract

Background: Converting electronic health record (EHR) entries to useful clinical inferences requires one to address
the poor scalability of existing implementations of Generalized Linear Mixed Models (GLMM) for repeated measures.
The major computational bottleneck concerns the numerical evaluation of multivariable integrals, which even for
the simplest EHR analyses may involve millions of dimensions (one for each patient). The hierarchical likelihood (h-
lik) approach to GLMMs is a methodologically rigorous framework for the estimation of GLMMs that is based on the
Laplace Approximation (LA), which replaces integration with numerical optimization, and thus scales very well with
dimensionality.

Methods: We present a high-performance, direct implementation of the h-lik for GLMMs in the R package TMB.
Using this approach, we examined the relation of repeated serum potassium measurements and survival in the
Cerner Real World Data (CRWD) EHR database. Analyzing this data requires the evaluation of an integral in over 3
million dimensions, putting this problem beyond the reach of conventional approaches. We also assessed the
scalability and accuracy of LA in smaller samples of 1 and 10% size of the full dataset that were analyzed via the a)
original, interconnected Generalized Linear Models (iGLM), approach to h-lik, b) Adaptive Gaussian Hermite (AGH)
and ¢) the gold standard for multivariate integration Markov Chain Monte Carlo (MCMC).

Results: Random effects estimates generated by the LA were within 10% of the values obtained by the iGLMs, AGH
and MCMC techniques. The H-lik approach was 4-30 times faster than AGH and nearly 800 times faster than

MCMC. The major clinical inferences in this problem are the establishment of the non-linear relationship between
the potassium level and the risk of mortality, as well as estimates of the individual and health care facility sources of
variations for mortality risk in CRWD.
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disorders in the clinic.

Conclusions: We found that the direct implementation of the h-lik offers a computationally efficient, numerically
accurate approach for the analysis of extremely large, real world repeated measures data via the h-lik approach to
GLMMs. The clinical inference from our analysis may guide choices of treatment thresholds for treating potassium

Keywords: Generalized linear mixed models, Laplace approximation, Adaptive Gaussian Hermite quadrature,
Electronic health records, Dyskalemias, Markov chain Monte Carlo

Background

Electronic Health Records (EHR) have been adopted
near universally in medical practices across the United
States. They contain information about vital signs, lab
results, medical procedures, diagnoses, medications, ad-
missions, healthcare facility features (e.g., type, location
and practice) and individual subject outcomes (e.g.,
death or hospitalizations). Due to the large number of
patients, and the equally large number of features col-
lected in each subject, EHR “big data” is increasingly be-
ing mined hoping to gain useful clinical insights that
enhance patient safety, improve health care quality and
even manage costs [1-4]. A unique feature of EHR data
that complicates analytics is the repeated measures and
unbalanced nature of the data, featuring multiple and
unequal number of observations in individual patients
(IP), seen by different healthcare practitioners (HCPs)
across healthcare facilities (HCFs). However existing ap-
proaches to big data such as deep learning [5] overlook
this feature of EHR data, missing on a unique opportun-
ity to mine variation at the level of IP/, HCPs or HCFs.
Subject or healthcare facility focused inference requires
the deployment of Generalized Linear Mixed Models
(GLMM) for the analyses of repeated measures at the
group (IP/HCP/HCEF) level. GLMMs can tackle the en-
tire spectrum of questions that a clinical researcher
would want to examine using EHR data. Such questions
typically involve the analyses of continuous (e.g., bio-
marker values, vital signs), discrete (e.g., development of
specific diagnoses), time to event (e.g., survival) or joint
biomarker-discrete/time-event data.

Addressing these questions with GLMMs necessitates
the evaluation of high-dimensional integrals, which even
for the simplest EHR analyses may involve millions of
dimensions (e.g., one for each patient). The implementa-
tion of GLMMs in existing statistical environments (e.g.
SAS, R) has been shown to scale poorly, when repeated
measures for more than a few thousand individuals are
analyzed [6, 7]; due to the “curse of dimensionality” nu-
merical integration is no longer tractable either analytic-
ally or numerically in these high dimensional spaces.
This lack of scalability presents a major barrier in the
application of formal statistical methods to big datasets.
Approximate methods for fitting large GLMMs within
the computational constraints of standard multicore

workstations [6-8] or even parallel architectures (e.g.
LinkedIn’s GLMix [9]) have been proposed in the litera-
ture. Most commonly analyses rely on specific features
of the datasets to speed up calculations through data
partitioning and meta-analytic techniques [6]. Other
proposals revisit older approaches to statistical inference
by applying the method of moments during estimation
[7], fitting the models through summary statistics [8]
and revisiting unsophisticated but rather robust
optimization methods such as coordinate block relax-
ation and its more recent reincarnation, stochastic gradi-
ent descent. Empirical analyses [7] demonstrates that
such approaches invariably trade statistical efficiency for
speed, effectively discarding valuable information hidden
in big data. Finally, quantification of uncertainty about
model estimates becomes extremely challenging theoret-
ically and, in some cases, it is not addressed at all in
publications (as in GLMix).

The ideal approach to the analyses of EHR big data
with GLMMs, would seek to eliminate or reduce the
need for statistically inefficient approximations, while
retaining the rigor, numerical precision, and uncertainty
quantification measures (e.g., standard errors) that one
has come to expect and trust from analyses of small to
medium sized data. In this work we show how these
ideals can be retained in big data analytics, by deploying
theoretically rigorous estimation methods for GLMMs
in a computationally efficient manner. The theoretical
background for achieving these goals is based on the
Hierarchical likelihood (h-lik) approach to GLMM esti-
mation [10-12]. The h-lik was initially introduced as a
theoretical framework for understanding the statistical
properties of GLMMs, but later received attention for
numerical work. In the context of k-lik, the Laplace ap-
proximation (LA) is used to replace multivariate integra-
tion with optimization, paving the road for
computationally efficient implementations that are
uniquely suited to tackle the challenges posed by EHR
big data, yet to our knowledge this approach has not
been applied in such a context.

Motivating example

The analyses reported in this paper were motivated by
the following clinical considerations from the physician
author’s subspecialty (nephrology):
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e Abnormalities in the serum potassium levels (K*,
dyskalemia), i.e., either low (hypokalemia) or high
(hyperkalemia) are commonly encountered in
clinical practice [13]. Aberrations in serum
potassium will in turn interfere with the electrical
conduction and cell membrane function in many
tissues, including muscle, bowel and heart leading to
muscle weakness/small bowel ileus, cardiac
arrhythmias and even death.

o The precise relationship of K™ with mortality
remains poorly defined. The largest to date repeated
measures study in the US examined a cohort of
55,266 individuals from a single Managed Care
organization in California [14]. It demonstrated a
“U” shaped curve suggesting that mortality was
higher for both hypokalemia and hyperkalemia.
However, this analysis was limited in examining
outcomes from a single health care organization and
discretized the K" measurements prior to analysis.
Therefore, a continuous risk relationship that
generalizes across the entire United States is difficult
to infer from this publication.

e This lack of precision limits rational use of both
potassium replacement in patients with low K*
(hypokalemia) and potassium binding drugs in those
with elevated K* (hyperkalemia). Existing and
emerging therapies for hypertension [15], congestive
heart failure [16—-18] and therapies for diabetic
kidney disease [19, 20], require the use of drugs e.g.
the mineralocorticoid receptor antagonists that will
variably elevate the potassium level [21]. By
leveraging the EHR we hope to inform future
practice guidelines for the management of potassium
disorders in clinical practice. For example, these
guidelines could link initiation of therapies to treat
dyskalemias to the prevailing K level, using the risk
relation identified in real world data to specify
treatment thresholds.

Contributions
These can be summarized as follows:

1) We provide a roadmap for the direct, accurate and
scalable implementation of GLMMs using the /- lik
approach. This implementation effectively maps the
core concepts of the statistical theory behind /4-lik,
to calls to software libraries that approximate
marginal likelihoods via the Laplace Approximation
(LA). These libraries employ state of the art
methods for Algorithmic Differentiation (AD), that
facilitate the fast calculation of measures of
uncertainty (covariance matrices/standard errors).
Rather than having to worry about manually
encoding a high-performance implementation, the
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analyst can leave the numerical subtleties to be de-
cided by the library. This implementation is scalable
enough to be deployed in standard multicore work-
stations available to most clinical epidemiologists
and as we show below yields answers to clinically
meaningful questions in an acceptable timescale.
Using simulations and real world big data, we show
that the results obtained by our implementation are
very similar to those obtained via theoretically more
accurate techniques for GLMM estimation, i.e.
Adaptive Gaussian Hermite (AGH) or Markov
Chain Monte Carlo (MCMC) or even the original
interconnected Gamma Model (iGLM) implemen-
tation of the /-lik [12].

2) We address the gap in the clinical knowledge about
the relation between K" with mortality adjusting for
the effect of kidney function on this relation.

3) We quantify the interindividual and healthcare
facility variation around the curve that relates the
K" level to survival Cerner Healthfacts Electronic
Health Record (EHR) database (now referred as
Cerner Real World Data and abbreviated as
“CRWD” in this work). Cerner is one of the major
EHR used in the United States. It contains
laboratory, clinical and outcomes data from nearly a
third of US healthcare facilities over a period of
more than 10 years. Assessment of such variability
is a major advantage of GLMMs over other
analytical approaches, e.g., deep learning and has
implications for both policy and clinical practice.

This paper is organized as follows. In the methods sec-
tion we introduce CRWD and the dataset used for our
analyses. We will also also review k-lik for GLMMs, and
alternative methodologies for estimating GLMMs (AGH
and MCMC), the original (iGLM) approach for fitting
the h-lik and describe our own implementation of the /-
lik calculations in the R package TMB. In the results
section we compare the results obtained by TMB and
the referent GLMM implementation in R using iGLMs,
AGH and MCMC. Unlike the direct implementation of
the h-lik we consider here, these three alternatives have
difficulties in running to conclusion within a reasonable
time scale when used in big datasets. Therefore, we used
simulated datasets and small random samples (1 and
10%) of the complete dataset to compare our method
against these competing approaches. After contrasting
these alternatives, we will then present our analyses of
the clinical scenario focusing on the relative risk of an
abnormal K" level while probing the magnitude of indi-
vidual and facility sources of variation in CRWD. We
conclude by considering the impact of the proposed
computational methodology for EHR big data, applica-
tions outside the narrow field of EHR analytics, and the
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path towards fully parallel implementations of the h-lik
approach for GLMMs. Parts of this work have been pre-
sented in preprint [22] and in abstract/poster form pre-
sented during the American Society of Nephrology 2018
meeting [23].

Methods

Cerner Real World Data and a “healthy” potassium level
CRWD is a comprehensive source of de-identified, real-
world data that is collected as a by-product of patient
care from over 700 healthcare facilities across the United
States. The relational database contains clinical records
with time-stamped information on pharmacy, laboratory,
admission, and billing data for over 69 million unique
patients. Types of data available include demographics,
encounters, diagnoses, procedures, lab results, medica-
tion orders, medication administration, vital signs,
microbiology, surgical cases, other clinical observations,
and health systems attributes. Detailed pharmacy, la-
boratory, billing, and registration data go back as far as
2000 and contain more than 630 million pharmacy or-
ders for nearly 3500 drugs by generic name and brand.
The two largest tables in the database contain more than
4.3 billion laboratory results and 5.6 billion clinical
events linked to more than 460 million patient visits.
This is a rich source of repeated measures data for indi-
vidual level clinical variables and outcomes. Such out-
comes may include counts of clinical encounters (e.g.
hospitalizations, emergency department visits, outpatient
clinic appointments), complications of treatment and
deaths/ For our analyses, we used the entire CRWD
from inception until September 1st, 2016 and extracted
the first K¥ measurement that had been obtained within
24 h of a clinical encounter. We restricted attention to
adult (older than 18-year-old) patients who were not re-
ceiving chronic dialysis (as the latter patients often have
abnormal K" values) and had received at least two K*
measurements in two clinical encounters. The latter pro-
vided a bona fide repeated measures dataset to analyze
with the proposed GLMM implementation. Individuals
were observed until the resolution of the clinical en-
counter for a total of 29,787,791 days (~ 81,610 patient
years). After excluding missing data, this dataset in-
cluded 9,935,812 observations in 3,123,457 individuals
and 327 facilities. During the observation period there
were 48,578 deaths, corresponding to an event rate of
59.5/100 patient years. The median/interquartile range
number of repeated observations per patient were 2/1
(mean and standard deviations were 3.18/2.72) and only
25% of patients had three or more repeated measure-
ments. Most patients in our analyses had observations
from a single HCF (2,886,375/3,123,457 or 92.4%).
Hence, even though most patients were “nested” inside
HCF, the absolute number of those who had “crossed”
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to multiple facilities is sufficiently high to create compu-
tational bottlenecks in the analyses when random effects
at both the IP and the HCF facility are considered.

Generalized linear mixed models for repeated measures
data

Lety;={yj}si=1, ... m j=1, ..., N; denote a vector of N;
repeated measures outcomes for the i individual, Vi, j
the i outcome from that individual and Y the “stacked”
outcomes for all individuals in the dataset. Furthermore,
x; = {xn |k, j = %, )k =1,..,N; j=1,....p the de-
sign matrix of fixed effects and z;={z }» k=1, ..., N;
j=1, ..., q the design matrix of the random effects. In the
simplest case, the later indicates the group membership
of the data, e.g., which observations came from the same
individual, but more complex scenarios are possible
dependent on the clustering structure of the data. The «;
matrix is associated with a global p dimensional coeffi-
cient vector 8 of fixed effects, while the z; with a g di-
mensional vector u of random effects. Stacking the
individual fixed and random effects matrices, leads to
the matrices X,Z. A GLMM is defined by the following
properties:

1. The expectation (g) of the data (Y) conditional on
the random effects is given by the equation: g(g) =
X + Zu . The function g(-) is the link function and
is determined by the nature of the regression e.g., it
is the logistic map for binary classification, or the
logarithmic function when modeling count data.
The variance of the data is determined as a product
of a dispersion parameter (conventionally indicated
as ¢) and a variance function that is strictly a
function of the conditional mean.

2. The probability density/mass function (f{y; ;| x;

z;, B, u, §)), of the data conditional on the random
and fixed effects design matrices and vectors, is a
member of the exponential family. Since regression
is always conditional on the design matrices, we will
abbreviate this density as fy;, ;| x: zi B, u, ) = fy;,
il B, u, ¢). The nature of the data determines the
exponential family, e.g. for binary classification this
would be the binomial distribution, for continuous
data the Gaussian distribution, and for the analysis
of time-to-event or counts of events (as in the
present case) the Poisson distribution [24].

3. The random effects vector is assumed to have a g
dimensional Multivariate Normal (MVN)
distribution with zero mean and covariance matrix
G = G(y) where y is a r dimensional vector of
variance components, i.e., flu| y)~MVN(0, G). We
stress that the specification of random effects in the
h-lik is not restricted to the MVN distribution, yet
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this choice is made in the mixed model
implementations and we will adopt this assumption.

The GLMM can be viewed as a stochastic data gener-
ation model, in which one first samples the random ef-
fects from their MVN distribution and then conditional
on those one samples the outcome variables. The associ-
ated joint, extended or hierarchical, likelihood (see pages
101-102 [12]), is given by:

n N;
L(ﬁv uy, (p; Y? u) = HHf(yi,j|ﬁ7u7 ¢)f(u|Y)

i=1 j=1

=f(Y|B,u,p)f (uly)
(1)

The logarithm of L(B,u,y, ¢; Y, u), h=hB,u,y, $;Y,

u) =log Y| B, u, ) + log flu| y) is the hierarchical (log)
likelihood function and plays a key role in calculations.

GLMMs inference requires high-dimensional integrations
GLMM inference corresponds to estimating the values
of the variance components (y), dispersion parameter(s)
(¢) the fixed (B) and the random effects (u). Maximum
likelihood estimation (MLE) for the variance compo-
nents and the fixed effects involves maximization of the
marginal likelihood L(B,y, ¢; Y):

lg;g;d(ﬁ,y, ¢ Y) = /mg(/ exp( logf(Y|B,u, ) + logf(uly))du
(2)

The integral in (1) is typically over the high dimen-
sional space of the random effects and can only be ap-
proximated numerically. In particular, evaluation of such
integrals in closed form are typically available for only a
few combinations of random effects and response distri-
butions. Quadrature approximations replace integrals
via weighted sums over predefined abscissas (“nodes”)
that are placed over the domain of integration. The qual-
ity of the approximation and the computational re-
sources required to evaluate the integral will scale up
with the number of nodes (order) used by the quadra-
ture rule. Integration of GLMMs in most statistical com-
puting environments is based on Adaptive Gauss-
Hermite quadrature [25-28]. AGH carefully centers the
location of the nodes by finding the values of the ran-
dom effects (conditional modes, #) that maximize the
hierarchical log-likelihood function and scales them ac-
cording to the curvature of that function around its
mode. These scaling factors are determined from the
second derivatives (entries of the Hessian matrix) of the
hierarchical loglikelihood function around its maximum.
AGH thus provides a more efficient way to spend one’s
fixed computational budget, by focusing on the area of
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the integrand that is substantially different from
zero. While a significant advance in numerical mathem-
atics for GLMMs, the combination of MLE and AGH is
not exactly problem free:

a. AGH is still as subject to the curse of
dimensionality as the non-adaptive versions of
Gaussian quadrature. The curse-of-dimensionality
often makes the use of higher order (more accurate)
AGH approximations impractical: applying an m
order rule in q dimensions will require mq evalua-
tions of the integrand thus quickly exhausting com-
putational resources. Higher order AGH rules are
only practical for GLMMs with nested random ef-
fects: in this case (1) assumes the special form of
nested univariate integrations and numerical inte-
gration requires m2 evaluations of the joint likeli-
hood, irrespective of the dimension of the random
effects. For all intents and purposes, estimation of
GLMMs with large number of random effects will
be limited to a single node (AGH1) which is just
the Laplace Approximation see ([29-31] and below)

b. The variance components will often be estimated
with considerable bias, especially for non-Gaussian
outcomes (e.g. logistic or Poisson) models and few
observations per random effect [32, 33]. The Re-
stricted Maximum Likelihood (REML) approach in-
troduced in the next section [34, 35] may be used
to reduce bias.

H-likelihood inference for GLMMs

The h-lik is an inferential procedure for GLMMs, in
which the relevant calculations proceed in stages [10, 11,
35, 36]. h-lik computations are based on the class of
functions p,,(4(0, w)) = p,,(h) defined as:

pulh) = |- logl-H(h,w) /21 ®

W:ﬁ/g

where || is the determinant, H(k, w) is the Hessian
(matrix of second derivatives) of the function 4 with re-
spect to the argument w . The expression in (3), when
evaluated at the point wgy which verifies the (non-linear)
system of the score equations dl(/)/ow = 0 for a given 6,
is an adjusted profile log-likelihood [37] that allows the
elimination of the nuisance effects w, through
marginalization (random effects) or conditioning (fixed
effects) [11]. These eliminations are required during
steps 1-2 of the h-lik inferential procedure:

1. Inference about the variance and dispersion
components is based on maximizing pg . (h(B, u, y,
¢, Y, u)) = pp,,(h) with respect to y, ¢, yielding the
corresponding REML point estimates j, ¢. The
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uncertainty (standard errors) of these estimates is
obtained from the Hessian of pg (/) at the
optimum.

2. Inference about the fixed effects is based on
maximization of the marginal likelihood (1). This
maximization can be approximated via the

maximization of p, (h(B,u,j, ;Y u)) = p"(hf’ éﬁ)
over B by using the plugging in the (point) ’
estimates §, ¢. Standard errors for the fixed effects
at the optimum ii are computed through the
Hessian of p, (h(B,u,y, ¢; Y, u)).

3. The random effects are obtained by optimizing the
hierarchical log-likelihood h([;’, u,y,d:Y,u) given
the estimates of the variance/dispersion parameters
and the fixed effects [10].

Alternatively, one may jointly optimize the hierarchical
likelihood, 4(B, u, y, (}’); Y, u), for B, u and thus obtain es-
timates for fixed and random effects in one pass [10].
Despite its computational attractiveness, this joint
optimization may lead to non-negligible data for sparse,
binary datasets, with small number of repeated observa-
tions per cluster as discussed in [12] (Chapter 6). Conse-
quently, the appropriateness of joint maximization
should be judged on a model-by-model basis.

The relation of the k-lik approach to the Laplace Ap-
proximation for multivariate integration is immediate.
For a general q dimensional integral, the LA for a func-
tion in the variables 0, I(0), defined via the integral of an
exponentiated kernel /4(6,w) over the variables w, is
given by:

1(6) = [ exp(h(6.w)) dw = (21)" exp(h(6.so)|-H(h. o) 2 = exp(z, (h(6,w))
(4)

Steps 1-2 of the k-lik approach approximate marginal
likelihoods of the form 1(0) as multivariate normal distri-
butions by finding the mode () and the associated
curvature (Hessian matrix). s-lik further assumes that
the slice of the joint log-likelihood 4(0 = 0, w) at any
given 0=0; can be approximated by a multivariate
quadratic polynomial in w . Under this quadratic ap-
proximation, the LA in (4) holds for all 6, not just for
the value 6 = 0 that maximizes 1(6). If a sequence of 6y,
k=0, ..., Kuax is generated by an iterative optimization
procedure for p,(h(6,w)), that starts from an initial
value 6, and continues to update 6 until the value of
1(6;) no longer changes (or the maximum number of it-
erations, k,,.., has been exceeded) then one obtains a
direct implementation of the /-lik. The optimization of
I(0) takes a standard nested optimization form: during
the k™ (outer) iteration one first fixes the value of @ at
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6 to maximize for w (inner optimization), and then up-
dates the working estimate of 6 to 6;,; using an
optimizer of one’s choice. This is a profile likelihood
optimization problem that can be coded in the package
TMB (discussed further below). An alternative, indirect
computational approach to /4-lik is through the intercon-
nected Generalized Linear Model (GLM) algorithm.

The interconnected GLM algorithm for H-likelihood
inference

While the theory of the h-lik is presented in terms of the
LA, the actual numerical computations as introduced
[10] and latter extended by numerous authors [11, 12,
38] are based on an additional approximation. Specific-
ally, an Extended Quasi-Likelihood (EQL) approach [39]
is used to model the mean and the variance of the re-
sponse variable (Y) and the random effects (#). Re-
placing the original GLM of the response variable and
the probability density random effects by an approxima-
tion based on their first two moments, would appear a
poorly justified choice given the loss of accuracy and po-
tential for bias. However, this choice also allows the ana-
lyst to use the deviance (residuals) of a GLM as data.
This feature of the EQL reduces estimation of fixed, ran-
dom effects, dispersion parameters and variance compo-
nents to a iterative fitting algorithm of interconnected
GLMs (iGLM, see Chapter 7 in [12] and the documenta-
tion of the R implementations [40, 41]). In this iterative
algorithm, one fixes values of blocks of parameters (dis-
persion and variance components) during fitting of an
augmented GLM to estimate the values of fixed and ran-
dom effects. The deviance residuals from this fit are used
as data that are used to fit a gamma GLM, leading to im-
proved estimates of the dispersion and variance compo-
nents. The whole process of fitting the interconnected
GLMs is then iterated to convergence.

Variations of this algorithm have been proposed to
correct for errors introduced by the various distribu-
tional approximations and the dependence of the ran-
dom effects on dispersion parameters [12, 32, 36]. If
correctly implemented, the iGLM approach is very fast
to converge, as is typical of block-coordinate
optimization algorithms [42, 43], in which one keeps
certain parameters fixed, while sequentially updating
others and cycling through the parameter list until esti-
mates no longer change.

Pitfalls in the high performance implementation of the
iGLM have been previously described [32]: they include
a) errors in the implementation of the update equations
and the derivatives (gradients) for the various GLMs, b)
need of sparse representations for the matrices appear-
ing in the gradients and updating equations, ¢) numer-
ical imprecisions when finite differences are used to
calculate the gradients and d) the large computational
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burden if finite differencing is used to calculate the Hes-
sian, from which standard errors of estimates are com-
puted. Current implementations of the iGLM algorithms
are available in R package hglm [40] and the (archived)
package HGLMMM [41] as well as GenStat. To our
knowledge, a scalable, direct implementation of the hier-
archical likelihood estimation for GLMMs that is not
based on the iGLM algorithm has not been reported.
Our implementation designated as A-/ik for the remain-
der of this paper is discussed below.

A scalable, direct implementation of the h-lik using AD
and the LA using the R package TMIB

For a software implementation of /-lik to align with the
corresponding statistical theory, it is only required that
inferences about the variance components be based on

Pup(h) and for the fixed and random effects on pu(hy P

) and & respectively. To implement A-/ik for very large
datasets, one needs ways to calculate and optimize gen-
eral functions of the form p, (/) in a manner that scales
favorably with problem size. Scalability is afforded by a)
bypassing finite differences for gradients during numer-
ical optimization of the adjusted profile likelihoods, b)
automatic detection of the sparsity (zero elements) in
the Hessian and gradient matrices used in the optimiza-
tions to speed up matrix computations and c)
parallelization of calculations of the value of the log-
likelihood. The availability of all three features would
free the analyst to concentrate on the specification of
the likelihood and let the computer organize calculations
in an efficient, expedient manner:

e The benefits of AD in the context numerical
optimization are well understood: the gradients used
during optimization are computed with numerical
accuracy that rivals that of hand-coded analytical ex-
pressions while the computational cost for obtaining
these gradients is of the same order as evaluating
the original function. The latter feature should be
contrasted to finite differencing, in which the cost
increases with the number of dimensions) [44—46] .
Finally, optimized, automatically generated software
code for the Hessian also becomes available to the
analyst at zero cost.

e Automatic generation for the Hessian is beneficial
because a) it allows the use of second order
optimization methods (e.g., Newton algorithm) for
the inner iteration of p,,(h(6, w)) optimization and
b) provides standard errors for estimated
parameters, by computing the curvature matrix the
optimum.

e For GLMM applications, the Hessian matrix will be
a sparse one (i.e., only a few entries will be non-
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zero). Computer science algorithms such as graph
coloring [47, 48] can be used to automatically detect
the sparsity pattern of the Hessian for each specific
dataset analyzed and tremendously speed up calcula-
tions but also reduce memory requirements by ig-
noring elements that are zero during matrix
multiplications.

Scalable optimization of marginal log-likelihoods ap-
proximated via a Laplace Approximation, was initially
proposed in the context of MLE (rather than REML) es-
timation for mixed models [49, 50] and is the main use
case of the R library TMB [51]. Implementation of any
statistical model in TMB requires the writing of code in
two languages: C++ and R. Using C++ macros, the user
specifies the joint log-likelihood, receives parameters,
random effects, data, and initial values from R. R is used
to prepare data, generate initial values, generate a com-
putational tape (see below), invoke the optimizer, and
post process the results. The standard TMB program-
ming and workflow that an analyst must follow is:

1. Specify the h-loglikelihood function h(B, u,y, ¢; Y, u)
in C++ and compile it into a dynamic library. This
is done only once since the dynamic library may be
used with different data for the same general model.
Hence TMB code for GLMMs is reusable across
application domains (and can even be used for MLE
estimation if so desired).

2. Generate a computational graph (“tape”) of the
calculations required to analyze a specific dataset
designating parameters as either fixed or random by
calling the TMB package from within R. During
tape generation, explicit dependencies between the
parameters are identified by TMB and code is
automatically generated for the evaluation of the
gradient of the log-likelihood and its Hessian.

3. Call an optimizer of one’s choice which repeatedly
evaluates the adjusted profile likelihood and its
gradient until convergence During this
optimization, TMB will internally calculate the
values of the parameters that are being eliminated
by the profile likelihood using a second order
optimization method (Newton’s algorithm).
Regardless of the choice of the optimizer, the latter
must be able to utilize gradients (computed by AD)
and fully leverage the potential of our
implementation.

4. Runs the report function of TMB from within R to
generate standard error of all estimates to quantify
uncertainty upon convergence. There are various
ways to generate these standard errors of variable
speed and potential loss of accuracy: a) numerical
(finite differencing) differentiation of the Jacobian,
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b) numerically invert an estimate of the Hessian,
obtained in step 3 if a quasi-Newton optimizer (e.g.,
BFGS) was used for step 3, and ¢) multiplication of
the Jacobian from the last point prior to conver-
gence with its transpose.

This TMB workflow implements MLE for GLMMs
and is equivalent to optimizing p,(h(B, u, y, ¢; Y, u)) sim-
ultaneously with respect to y, ¢ and B. However, we
propose that an analyst can use TMB to carry out REML
estimation and thus /4-lik via a straightforward modifica-
tion. First, we integrate over B,u by designating both as
“random” when generating the tape. Using this tape dur-
ing optimization amounts to optimizing p,, g(/) to obtain
a point estimate (and a covariance matrix) for the vari-
ance components and the dispersion parameters (if any).
Then fixing the value of the variance components and
fixed parameters at their point estimates obtained by the
first step, one generates the tape a second time designat-
ing only # as random. Optimizing this tape, is equivalent
to optimizing p, (h)? (2)) to obtain point estimates and

)
covariance matrices for the fixed and random effects.
The proposed implementation corresponds to the HL (1,
1) approximation [52] in the hierarchy of h-lik algo-
rithms [12, 32, 35].

In our direct implementation of the h-lik in TMB,
we typically used a constrained quasi-Newton method
for the variance components and unconstrained
quasi-Newton for fixed effects. Constraining the vari-
ance components to be greater than zero is typically
required only if these parameters are close to the
boundary value of zero, otherwise one may use any
unconstrained optimization algorithm. Finite differen-
cing the Jacobian appears to be the fastest approach
to generate covariance matrices, and this is the ap-
proach we followed here. In the h-lik theory, a third
optimization conditional on the (fixed) values of the
variance components and the fixed effects is required
to obtain the value of the random effects. This is

avoided by noting that the mode of p”(hf’ (;5) with re-

spects to u, B will often be close to the mode of

hf/ &,) 3 :h([;’,u,f/, (:i); Y,u), so that one can use the
estimates of the random effects during the
optimization of pu(hi, (}5)

Noting that the use sequential optimization of
Pup(h) and pu(hi, (;5) doubles the execution time, one

may wonder whether the optimization for the fixed
effects could be bypassed entirely. In this case, the es-
timates for the fixed and random effects are based on
the final inner optimization step for p, g(h). This ap-
proach effectively corresponds to the initial proposal
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by Lee and Nelder [10] to jointly optimize the condi-
tional hierarchical log-likelihood (B, u,y,®;Y,u) to
obtain estimates for the fixed and random effects
when the Hessian matrix of the hierarchical log-
likelihood does not vary with the fixed and random
effect estimates around the mode. It is known as the
HL (0,1) approximation in the hierarchy of k-lik algo-
rithms and appears to be currently implemented in
the R package glmmTMB [53], though this is not ex-
plicitly stated.

In our analyses we used the high performance imple-
mentation of the BLAS libraries [54] (MKL® by Intel that
are distributed with Microsoft R Open) as suggested by
the authors of the TMB package. We also evaluated the
speed up afforded by the parallel calculation of the k-
likelihood function, a feature which is natively supported
by TMB in multicore platforms through OpenMP.

Verifying H-likelihood calculations via Bayesian methods
It has been previously pointed [11, 32, 55] out that the
h-lik approach can be viewed as a modal approximation
to a Bayesian analysis that uses non-informative, uni-
form priors for the fixed effects, dispersion parameters
(if they are not known) and variance components. This
connection allows one to check any method implement-
ing the h-lik (e.g., the iGLM or our direct implementa-
tion) by comparing its computations against those
obtained by MCMC integration of the corresponding
Bayesian model. While MCMC may be considered the
gold standard for high dimensional integration, it is a
much more computationally demanding technique.
Hence, while one can apply MCMC to small problems,
one will wait for a very long time for MCMC to finish
for datasets of the size we are considering. However, one
can compare the results in smaller datasets that are rep-
resentative of the big dataset. Such datasets may be ob-
tained by simple random sampling without replacement
from the final dataset that one would like to analyze.
These analyses can serve as a sensitivity check for the
quality of the numerical approximations used, as we il-
lustrate in results section.

Modeling the risk of dyskalemia in CRWD via Poisson
GLMM

The data y; for these analyses were repeated observa-
tions of the disposition of patients during clinical en-
counters recorded in CRWD. For each individual
patient, this vector is a string of zeros (if the patient was
alive at the end of each encounter), possibly terminated
via a one, if the patient had died. The vector of zero-one
outcomes was modelled as a Poisson variable, by exploit-
ing the link between Poisson models and analysis of sur-
vival time [24, 56], using the duration of each clinical
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encounter as an offset. Predictors that were coded as
fixed effects included the K" level, the Charlson Comor-
bidity Index, a well validated instrument of the comor-
bidities of ang an individual, the prevailing level of
kidney function (estimated Glomerular Rate, eGFR,
computed by the validated CKD-Epi formula), patient’s
age, type of healthcare facility (e.g., hospital, nursing
home, outpatient clinic), patient’s age, race and gender.
Natural splines were used to probe non-linear relation-
ships between the outcome of interest, kidney function
(eGFR) and the potassium level as well as age. During
the comparative evaluation of methods for fitting the
dataset, we run two separate analyses with different ran-
dom effects specifications: one in which the grouping
level was the individual (IP) and one in which the group-
ing level was the facility (HCF). These analyses allowed
us to explore the scaling of performance of various esti-
mation methods for GLMMs against the increasing di-
mensionality of the problem. The latter is largely
determined by the number of random effects, since the
vector of fixed effect coefficients is low dimensional, i.e.,
p =18 in all analyses. Clinical inference about the rela-
tion between the K' level and the risk of death was
based on the full dataset using random effects at both
the IP and HCEF level. For both the Poisson and Logistic
GLMM used in simulations, the dispersion parameter is
known and fixed at the value of one, ie., p,(h. +) =p,

Y@

(h)A,) and only the variance components (standard devia-

tions of the random effects) must be estimated from
pu,/}(h)'

Simulated datasets for comparative evaluations of
numerical methods for GLMMs

To compare different approaches (AGH, iGLM, and the
direct implementation of 4-lik) for the integration of
marginal likelihoods in GLMMs, we simulated data that
recapitulate features of the EHR datasets that may be en-
countered in practice: unbalanced observations per IP,
variable crossing over IP to different HCF for different
number of individuals (100 and 1000) and health-care
facilities (5 and 50). In these simulations we were par-
ticularly interested in how the structure of the regression
matrix of the random effects Z, affects the performance
of the various estimation methods. Hence, we simulated
scenarios of full nesting (an IP will visit one and only
one HCF), partial crossing (25% of IP will visit two or
more facilities) and more extensive crossing (75% of IP
with visits at more than two HCF). In the simulations
we also included a moderate number of fixed effects.
The design matrix of the latter included constant terms
(the intercept), binary covariates (“simulated gender”),
continuous linear terms (“simulated Charlson score”)
and spline terms (“simulated age/eGFR/K" level”). The
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Poisson exponential family was used to simulate counts
of discrete events (e.g., death or hospitalizations) that
may be observed in the EHR: the choice of the simulated
fixed effect associated with the intercept ensured that in-
dividuals would have an outcome of zero or one. Our
simulation strategy (Supplementary Methods, Add-
itional file 1) yielded 200 datasets for each of the six
Poisson scenarios of nesting and number of IP/HCF
considered.

A critical question for the analyses of very big data is
whether one adopt shortcuts e.g., the HL (0,1) instead of
the HL (1,1) approach or foregoing of a third conditional
optimization for the estimation of the random effects.
Binary (logistic) GLMMs models with few repeated mea-
sures per cluster and a low dimensional fixed effect co-
variate vector are often the most challenging to fit with
approximate methods [12, 32, 35, 52]. We thus simu-
lated fifteen logistic regression scenarios using the same
random effect structures (two random effects) and cross-
ing structures like the Poisson scenarios, but fitting only
a single fixed effect (the intercept). Six of the fifteen sce-
narios used the same variance component values (“less
variable datasets”) and intercept values as the synthetic
Poisson data, while the remaining nine scenarios used
higher values for the standard deviation of the IP ran-
dom effect (“more variable datasets”). This approach
yielded another 3000 simulated, artificial datasets as we
describe in Supplementary Methods, Additional file 1.

For each of simulated dataset we extracted the point
estimates of the fixed, random effects and variance com-
ponents and computed measures of bias (the absolute
standardized bias) and total accuracy (Mean Square
Error, MSE) using standard formulas [57]. We also sup-
plemented these simulations by randomly subsampling
our CRWD full dataset to create two subsets that in-
cluded 1 and 10% of patients. These datasets were used
to contrast the inferences by the various methods in real
world, moderate sized datasets.

Software and R packages

We used the R package Ime4 [58] for AGH based infer-
ence (function glmer) and utilized quadrature with 0, 1,
5 and 9 nodes to explore the tradeoffs incurred between
accuracy and speed for models with a single random ef-
fect. Note that the LA is formally equivalent to an AGH
with a single quadrature node, so that the comparison
between AGH1 and /k-lik reflect the speedup due to the
LA/AD combination. The “zero” order method AGH ef-
fectively ignores the integral for the random effects and
thus its estimates will contain a variable and unknown
amount of bias. However it appears to be one of the
most robust methods available in glmer and thus was
considered here. Analyses using the iGLM approach
were conducted with the R package hglm [40], while the
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HL (0,1) approximation was coded directly in TMB or
by specifying models in the R package glmmTMB [53].
Bayesian analyses were carried out by invoking the Pois-
son GLMM in the STAN programming language [59] as
implemented in the R package rstanarm [60]. Like TMB,
STAN codes the statistical model into a C++ language
template, which is also compiled into a dynamic library
that implements the calculations for the posterior prob-
ability kernel of the model. In this case, the kernel coin-
cides with the h-likelihood function. STAN also utilizes
AD to compute the gradient of the model that are used
during MCMC with the No U Turn Sampler [61].
Therefore, the comparison against STAN allows an as-
sessment of the accuracy-speed trade-off of MCMC
against the s-lik computations when the latter are inter-
preted as modal approximations to a full Bayesian ana-
lysis. While the formal interpretation of the h-lik as a
modal approximation to a Bayesian analysis requires
uniform priors for the fixed and random effects, we
found that using this prior for the model intercept in-
duced very slow mixing, and long execution times dur-
ing MCMC. Hence, we used the default, weakly
informative prior, a Gaussian centered at 0.0 but with a
standard deviation of 2.5 in the scale of the response for
Bayesian runs.

Hardware and timing

Timing information was generated in a high-end con-
sumer workstation equipped with the i7-5960x octacore
Intel Processor equipped with 32 GB of DDR4 RAM
clocked at 2133 MHz. The base frequency of the i7-
5960x is at 3GHz, but the processor was overclocked to
3.8 GHz for the timing experiments. For the analyses of
the full dataset, we utilized a Dual 16-core Xeon Gold
5218 clocked at 2.3 GHz (turbo single core frequency of
3.9 GHz) equipped with 512GB of DDR4 RAM (clocked
at 2666 MHz) running Windows 10 Pro for Worksta-
tions. Large memory requirements did not allow us to fit
the parallel version to the full dataset, even in this large
memory machine. For the comparative evaluation of
execution timing in the smaller datasets we ran the
iGLM and the parallel TMB analyses thrice on the i7-
5960x and the Xeon. To compare parallel and serial
implementations of the /-lik in the TMB environment,
we ran analyses of the 1 and 10% datasets on the i7-
5960x using both parallel and serial versions of the code
that incorporated the two random effects. In addition,
we run all three datasets with the serial code on the dual
Xeon. Analysis of variance was used to explore the rela-
tive impact of dataset size, parallel vs serial version of
the code and computing platform, on execution (“wall”)
times. We collected timing information for all the steps
of the TMB h-lik calculation e.g., the generation of the
tape, optimization, and calculation of the Hessian at
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convergence, only the total wall time is reported. All
analyses were run using Microsoft R Open v 3.5.3 and
v4.02 and TMB package v1.7.14-1.7.15.

Results

Structure and outcome sparsity patterns of the simulated
datasets

The distribution of observations per IP and the number
of HCF “visited” per IP are shown in Supplementary
Fig. 1, in Additional file 1; the median (Inter-Quartile
Range, IQR) of visits per patient were 5(4) respectively.
The median (IQR) number of HCF visited by each IP
varied from 1(0), 1(1) and 4(3) for the nested, partly
crossed and more crossed scenarios. The number of ob-
servations (“visits”) and distinct IP per HCF are shown
in Supplementary Fig. 2 in Additional file 1. Each facility
registered on average ~ 100 patients but this number
varied widely (standard deviation between 23 and 27
visits or corresponding IQR between 33 and 41). The
number of IP per clinic varied according to the degree
of nesting; the median (IQR) was 20 (5.75), 28 (7.75) and
94 (28.5) for the nested, partly crossed and more crossed
scenarios. Supplementary Fig. 3 in Additional file 1
shows boxplots of the number of events per observation
in the simulated datasets. The Poisson datasets were the
least sparse with most datasets having an average num-
ber of observations of fewer than 0.10 per observation,
and binomial outcomes were sparser with number of
events per observation less than 0.015.

Comparison of h-lik, iGLM, AGH and MCMC based
methods in the simulated datasets
Poisson outcomes: In Fig. 1 we contrast the performance
of two AGH methods (the zero and first order as imple-
mented in R’s package lme4), the HL (0,1) method as
implemented in the package glmmTMB, the iGLM im-
plementation of HL (1,1) the proposed k-lik implemen-
tation and two MCMC estimates: that based on means
of the posterior marginals and that based on posterior
modes (MCMCmode). In general differences between
any two methods were minimal (less than 10% of the
standardized bias for each coefficient, and MSE for the
fixed effects (Fig. 1A) were similar, irrespective of the
number of individual simulated patients in the datasets.
On the other hand, estimates of variance components
was sensitive to the number of IP random effects (Fig.
1B), with more random effects associated with reduction
in the MSE. Random effect estimates were virtually bias
free for all methods, except from AGH1 (Fig. 1C).
Binary outcomes: Having established the similar per-
formance of various methods for GLMMs we then
moved to compare the HL (0,1) and HL (1,1) implemen-
tations in the simulated sparse binomial datasets. In
these datasets we encountered numerical instability in
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getting the iGLM to converge, so we only report on the
TMB based implementations. In Fig. 2 we show the per-
formance of the various methods in the “less variable”
binary outcome dataset. The poor performance of the

fixed

effects from the

AGH1 implementation manifests both in the MSE and
the absolute standard error of the single fixed effect (Fig.
2A) and the two variance components (Fig. 2B). Using
the estimates of the

first
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optimization of the h-lik proposal (“h-lik-pub” in the fig-
ure) yields fixed effect estimates that are indistinguish-
able from glmmTMB. This is not surprising as these two
are equivalent both mathematically and

methods

computationally. Turning to our attention to the ran-
dom effect estimates (Fig. 2C), we observe clear evidence
for a small, but definite bias for the AGH1 method. On
the other hand, estimates returned by the AGHO,
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glmmTMB, h-lik, the h-lik-pub and h-lik-3 (which opti-
mizes h(/3’, u,y,¢:;Y,u) to estimate the random effects)
are effectively identical. The “more variable” binary out-
come dataset allowed us to test the h-lik implementa-
tions in very sparse binary datasets. The relevant
analyses are shown in Fig. 3 and illustrate substantial
bias and large MSE when the HL (0,1) method for is
used for the estimation of low dimensional fixed effects
against the 4-lik implementation of the HL (1,1) method.
This bias is observed for both HL (0,1) TMB based
implementations, i.e. glmmTMB and “h-lik-pub”. Esti-
mation of variance components (Fig. 3B) shows an inter-
esting pattern: while the estimate of the largest variance
component (that due to individual variability) is much
more biased than the estimate of the smallest variance
component, the MSE are identical. Similarly, the esti-
mates of the random effects (Fig. 3C) by glmmTMB are
less biased than that of the /-lik method, yet the MSEs
are identical. As the number of random effects in-
creased, the bias in the /-lik method decreased and the
random estimates returned by the two methods become
identical (note the progressive alignment of the boxplots
of the random effect estimates as the number of individ-
uals increase from 100 to 10,000).

In summary, our simulations indicate that for non-
binary GLMMs with somewhat sparse outcomes, one
can proceed with the HL (0,1) method, as implemented
in glmmTMB or via the first optimization of the h-lik
approach for fixed effect estimation. However, for data-
sets with sparse binary outcomes and large number of
random effects, the HL (1,1) method as implemented by
our h-lik proposal, will yield the least bias and the smal-
lest MSE and thus is to be preferred. Alternative numer-
ical methods for the implementation of h-likelihood
inference are associated with equivalent MSE perform-
ance for the estimates of variance components and ran-
dom effects. Despite this equivalence, they seem to
proportionate the total (MSE) error differently between
bias and variance. Based on these observations, we
retained the two-stage /-lik method for the analyses in
CRWD.

Estimates of h-lik against AGH and MCMC based methods
for random intercept Poisson models in the CRWD

Analyses of the 1 and 10% datasets with glmer [7]
generated warnings about at least one non-positive
definitive Hessian matrix suggesting that the
optimization algorithm got stuck close to the true
global optimum. Furthermore, AGH1 failed to con-
verge at all, when the measurements were grouped at
the IP level. In contrast to previous reports [6], we
could obtain a solution from glmer for the 10% data-
set for very large number of random effects but only
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if the AGH5 or AGH9 method were used. Conver-
gence failure of the AGH1-9 methods implied that
their estimates may not reliable. Despite the theoret-
ical potential for bias, the AGHO approximation con-
verged without warnings in the CRWD. The results
of the direct implementation of h-lik with TMB,
AGHO, and AGH9 are shown Fig. 4 in as estimate
(point) and 95% confidence interval for the two
groupings and the two datasets. In general, the esti-
mates of our Ah-lik implementation were numerically
close to the AGH methods, suggesting that the non-
convergence reported by the latter would not affect
inferences about the fixed effects. The difference
among the different methods lies within the uncer-
tainty of the estimate from each method; in fact, esti-
mates were identical for most covariates up to two
significant digits. Nevertheless, there were substantial
differences among the methods when the estimate of
the variance component was examined. Table 1 shows
the estimates for the direct implementation of /-/ik in
TMB, the iGLM implementation in the R package
hglm, AGHO and AGH9. The variance of the esti-
mates could not be obtained for the other AGH
methods and thus are not reported. Furthermore, we
could not fit the iGLM to any dataset with IP ran-
dom effects due to large memory requirements (i7-
5960x) and numerical errors in platforms not limited
by memory (Xeon).

Increasing the size of the dataset results in a greater
agreement among the three methods and reduction in
the magnitude of uncertainty in the estimates of the pro-
posed h-lik method. Estimates by the AGH5 method
were identical to the AGH9 to three significant digits
(not shown). Bayesian analyses may be considered the
benchmark against which other methods of integration
for GLMMs should be judged. However only the 1%
dataset with grouping at the facility level could be fit in
reasonable time (see timing below). The Bayesian point
estimate (posterior mean) of the variance component
was 0.426 (standard deviation 0.089), an estimate that
was in rough agreement with the estimates generated by
all the methods in Table 2 but was numerically closer to
the direct h-lik estimate of 0.422. The Bayesian model
estimates (posterior mean and standard deviation) for
the fixed effects against the direct /-/ik and iGLM imple-
mentations are shown in Table 2. Point estimates and
standard errors returned by the two h-lik implementa-
tions were in close numerical agreement. Many of the
MCMC estimates, including the coefficients for the nat-
ural splines used to model the effects of age and eGFR
were close to those obtained by the /4-lik implementa-
tions. Notable exceptions were the coefficient for some
of the racial groups and the coefficients for the natural
splines of the potassium level. There are two related
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reasons for these differences: first, the lack of sufficient
amount of information to estimate these coefficients
from the data as evidenced by the large relative magni-
tude of the standard errors relative to the point esti-
mates. This is turn causes the quadratic approximation

to the likelihood (and thus the LA) to fail for these data-
sets. This is shown in Additional file 2 which graphs
non-parametric kernel density estimates to the MCMC
samples for the coefficients of the potassium spline,
along with the AGH9 and the h-lik estimates. The h-lik,
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and to a less satisfactory extent the AGHY, clearly iden-
tify the mode of the marginal posterior distribution with
precision. Since the corresponding Bayesian marginals
are highly asymmetric, their means do not coincide with
their modes and thus the /-lik methods which approxi-
mate the marginal mean by the mode fails. Despite the
differences in the numerical values of the spline coeffi-
cients, the splines estimated by the proposed /-lik imple-
mentation and the MCMC method were nearly identical
and had very similar pointwise confidence intervals
(Fig. 5).

The predicted random effects for the 1% dataset
grouped at the facility level obtained by all non- Bayes-
ian methods were rather like those obtained by MCMC
(Fig. 6), as evidenced by the high correlations. Bland Alt-
man plots (lower diagonal panels in Fig. 6) indicate that
the difference between /-/ik and the other methods were
within 10% of each other.

Table 1 Estimates of the standard deviation of the variance
components for single random effects Poisson models

Dataset  Group h-lik iGLM AGHO AGH9

1% Individual 0306 0.253 0.260
(0.289)

10% Individual ~ 0469(0.074) - 0.505 0.504

1% Facility 0422(0.085)  0.395(0.047) 0401 0414

10% Facility 0.703(0.061)  0.669(0.042) 0.699 0.701

In summary, all methods appear to generate similar es-
timates for the fixed effects, rather similar estimates of
the variance components, with the proposed direct s-lik
implementation demonstrating the closest numerical
agreement to MCMC.

Timing comparisons between h-lik and the AGH methods

for random intercept models

Figure 7 contrasts the execution times between /-/ik and
the AGH methods in the i7-5960x platform. Irrespective of
the size of the dataset and the grouping structure, the s-lik
implementation was much faster than the AGH implemen-
tation in glmer. The smallest speedup was observed for the
10% dataset with grouping at the IP level (3.7x faster), but
the speedup could range up to 32.5x (1% dataset, grouping
at the HCF level). The direct /-lik implementation was only
slightly slower than the iGLM in the datasets we could
analyze with the iGLM. Analysis of Variance (ANOVA)
showed that the size of the dataset (F statistic 68.07) and
the estimation method (F statistic 18.1) were much stronger
predictors of these timing differences than the grouping
structure of the data (F statistic 3.68). Examination of the
timing of the three steps of the /-lik method showed
that the greatest amount of time was spent on
optimization, e.g., for the 10% dataset with random
effects at the IP level, tape generation took 137s,
optimization 3327s and Hessian calculation/uncer-
tainty quantification 1844s. For the 1% dataset with
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Table 2 Fixed effect estimates, summarized by the mean (standard error) from Bayesian and h-lik (as implemented in this paper and
the iGLM algorithm) analyses for the 1% dataset with grouping at the facility level

Fixed Effects Bayesian (MCMC) h-lik iGLM
Intercept —6.214 (0.961) —6.218 (0.994) —6.168 (0.992)
Potassium (natural spline coefficient 1) 8.062 (1.979) 6.808 (2.462) 6.805 (2.461)
Potassium (natural spline coefficient 2) —38.03 (31.12) —9.491 (40.24) —10.00 (40.23)
Potassium (natural spline coefficient 3) —7533 (61.7) —18.50 (79.78) —19.51 (79.76)
eGFR (natural spline coefficient 1) —0.406 (0.255) —043 (0.251) — 0435 (0.251)
eGFR (natural spline coefficient 2) 1.872 (0492) —1.839 (0.505) —1.839 (0.505)
eGFR (natural spline coefficient 3) 1.141 (0.502) —1.091 (0.509) —1.089 (0.509)
Age (natural spline coefficient 1) 0.305 (0.332) 0.309 (0.329) 0.306 (0.329)
Age (natural spline coefficient 2) —0.086 (0.938) -0.227 (0.913) —0.227 (0913)
Age (natural spline coefficient 3) 0.924 (0.199) 0.906 (0.198) 0.902 (0.198)
Male Gender 0.214 (0.093) 0.214 (0.093) 0.214 (0.093)
White Race 0.155 (0.143) 0.158 (0.146) 0.160 (0.145)
Hispanic Race —0.745 (0.853) — 0457 (0.723) —0452 (0.723)
Native American —0.233 (0.829) 0.031 (0.731) 0.040 (0.730)
Other Race -0618 (0.321) —0.580 (0.323) —0571(0.322)
Unknown Race —0.347 (0.488) —0.242 (0472) —0.238 (0.471)
Inpatient status 2404 (0.198) 2.390 (0.194) 2.397 (0.194)
Charlson Comorbidity Score 0.098 (0.014) 0.099 (0.014) 0.099 (0.014)

random effects at the HCF level, the corresponding were limited to the 1% dataset at the HCF level. Par-
times were: 8s (tape generation), 17s (optimization), allel simulation of 1000 samples from each of four in-
1.7s (uncertainty quantification). In sharp contrast, dependent Markov Chains took 20,517 s of wall time,
Bayesian methods were much slower than any of the thus was nearly three orders of magnitude slower
other methods considered. Therefore, our analyses than either of the two /A-lik implementations.
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3.51
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, / — | h-lik

Potassium (meq/l)

Fig. 5 Estimated cubic splines relating the relative risk of death to potassium level and their associated 95% confidence (h-/ik) and credible
(MCMC) intervals using the 1% dataset and a single random effect at the healthcare facility leve
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Table 3 Fixed effects estimates summarized by the mean (standard error) from the direct h-lik implementation for the 1%, 10 and

100% dataset with random effects at both the IP and HCF levels

Parameter 1% 10% 100%

Fixed Effects
Intercept —6.22 (0.99) -522 (031) -3.21(0.16)
Potassium (natural spline coefficient 1) 6.81 (2.46) 8.65 (0.74) 11.98 (0.32)
Potassium (natural spline coefficient 2) —949 (40.24) —39.56 (12.39) —77.79 (7.97)
Potassium (natural spline coefficient 3) —185 (79.78) —74.64 (24.57) —146.92 (15.84)
eGFR (natural spline coefficient 1) —0.43 (0.25) —0.66 (0.08) —0.59 (0.02)
eGFR (natural spline coefficient 2) —1.84 (0.51) — 141 (0.15) — 144 (0.05)
eGFR (natural spline coefficient 3) —1.09 (0.51) —0.32 (0.15) —0.26 (0.05)
Age (natural spline coefficient 1) 0.31 (0.33) 06 (0.12) 0.78 (0.04)
Age (natural spline coefficient 2) -0.23 (091) 143 (0.32) 2.08 (0.11)
Age (natural spline coefficient 3) 091 (0.2) 1.1 (0.07) 1.22 (0.02)
Male Gender 021 (0.09) 0.17 (0.03) 0.17 (0.01)
White Race 0.16 (0.15) 0.06 (0.05) 0.1 (0.02)
Hispanic Race —0.46 (0.72) 0.14 (0.15) 6 (0.05)
Native American 0.03 (0.73) -0.08 (0.2) 0.16 (0.06)
Other Race -0.58 (0.32) -0.12 (0.09) 0.08 (0.03)
Unknown Race —0.24 (047) —0.09 (0.15) 0.02 (0.05)
Inpatient status 2.39 (0.19) 2.13 (0.06) 2.21 (0.02)
Charlson Comorbidity Score 0.10 (0.01) 0.10 (0.00) 0.10 (0.00)

Potassium level, interindividual and interfacility sources
of variation in the risk of death in CRWD
Predictors of mortality in the CRWD accounting for
both IP and HCF variability by a bivariate random ef-
fects model and for the various datasets considered here
are shown in Table 3. Increasing the dataset size, stabi-
lized model estimates of the (log) relative risk of death
associated with each of the covariates and was associated
with a substantial decrease in the standard error of these
estimates. There was considerable interindividual and
(to a larger extent) interfacility variation in the relative
risk of death, as evidenced by the magnitude of the vari-
ance components in the full CRWD dataset. The point
estimate (standard error) was 0.234 (0.034) and 1.11
(0.067) for the IP and HCF components, respectively.
These estimates imply that individual factors not cap-
tured by the covariates considered in Table 3 will be as-
sociated with 2.5-fold wvariation in individual risk
between the 2.5% and the 97.5% risk quantiles of pa-
tients with the exact same values of these covariates.
Similarly, facility level factors are an important source of
variation, though in this case the relative risk of an indi-
vidual evaluated in a facility at thee 97.5% quantile vs. a
facility in the 2.5% quantile is 77.5-fold higher.

The coefficients of the spline associated with the K*
level appear rather different among the three datasets.
Nevertheless, the predicted relative risk of death for a

given K level was essentially identical between the 10%
and the 100% datasets (Fig. 8). Utilizing the full (100%)
dataset resulted in a substantial reduction in the uncer-
tainty (95% pointwise confidence interval) for a given K*
level. The relative risk associated was numerically close
to one for a broad range of K* between 3.3 to 4.8 meq/],
i.e, in the vicinity of the “normal” level of 4.0 meq/1.

Analysis of performance of h-lik computations in large
datasets with bivariate and partially crossed random
effects

Total wall time (in log10 space) for triplicate executions of
the parallel and serial versions of the proposed implemen-
tations of /-lik are shown in Fig. 9 and clearly illustrate
the exponential increase in execution time with the size of
the dataset irrespective of the machine used. ANOVA
identified the size of the dataset (F statistic 1950.474) and
the parallel implementation (F statistic 78.030) as more in-
fluential predictors than the machine executing the code
(F statistic 2.694). A linear regression analysis of the data
showed that execution on the Xeon was 16% slower than
the 17-5960x (95% confidence interval - 2.8% to 38.4 p =
0.114). The serial code was 11.5% faster (95% confidence
interval - 25.8 to +5.6%, p=0.190) to execute than the
parallel code. In Fig. 10 we illustrate the time spent in
various activities when running the #&-lik programs.
Optimization of the p, g(h) profile likelihood took the
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longest, followed closely by optimization of Pu(hj/)' These

time-consuming tasks only slightly benefited from
parallelization. Tape generation was notably slower when
done in parallel. The divergent effects of parallelization on
tape generation and optimization, underline the small
total effect of parallelization on execution speed.

Discussion

In this report we demonstrate the initial feasibility
of fitting GLMMs to mine large clinical EHR data-
bases by combining the LA with AD into a direct

implementation of the h-lik approach to GLMMs.
Analysis of very large datasets is an area in which
many existing approaches to numerical integration
for GLMM, e.g., those based on higher order AGH
or MCMC methods, are impractical because they
execute slowly for big datasets with large number
of random effects. In contrast, the proposed tech-
nical advance can reliably and reasonably fast fit
such datasets. Our implementation differs from the
original iGLM algorithm for fitting the hierarchical
likelihood. The direct implementation of adjusted
profile likelihoods avoids programming errors in the
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hand coding of matrix operations, as well as nu- Random effects modeling in very big datasets

merical errors when calculating derivatives by finite ~GLMMs are one of the most versatile modeling tech-
differences speeding up calculations. There are sev- niques in statistics. In recent years, it has been noted
eral implications for future work and practice as that numerous models used for the non-parametric, flex-
noted below. ible modeling of data can be viewed as special cases of
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Fig. 8 Estimated cubic splines relating the relative risk of death to potassium level and their associated 95% confidence by the direct h-lik
implementation for various dataset sizes. Poisson models included random effects at both the individual and the healthcare facility levels (gray
lines demarcate the zone in which RR is between 0.9 and 1.1)
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the GLMMs. Such models include penalized spline ap-
proaches in statistics, but also “workhorses” of Machine
Learning such as kernel based methods [62]. However,
the applications of GLMMs to big data to date has been
limited by the computational bottlenecks inherent in
evaluating the high dimensional integrals that arise in
their mathematical formulation. A previous biomedically
oriented paper reported difficulties in fitting random ef-
fects models with 890,934 random effects using AGH in
glmer in 2012. The authors resorted to a “divide and
conquer” technique to fit separate models to chunks of
this dataset followed by meta-regression to synthesize
evidence from the smaller datasets. However, because of
their approximative nature, any “divide and conquer”
technique will be accompanied by a non-negligible
amount of bias. Furthermore, certain approximation ap-
proaches may exhibit a dramatic loss in statistical effi-
ciency, discarding information and essentially converting
a “big”, information-rich dataset to a much smaller one
[7]. Having the ability to fit a large dataset with the same
rigorous techniques that work in small datasets would
thus represent a major advantage, because of the preser-
vation of statistical efficiency. In our analyses we effort-
lessly fit a problem that was 4 times as large as the
largest one reported in the biomedical literature by fit-
ting the GLMM using the A-lik.

Although GLMMs are frequently encountered in the
analyses of biomedical data, their scope of application is

rather broad. For example, an implementation of
GLMMs by the LinkedIn software engineers [9] showed
that the random effect modeling performed among the
top 5 to 10 methods in numerous nonmedical datasets
used in the KDD Cup competitions. Taken together
these results suggest that GLMMs deserve a closer
examination by other fields that deal with massive data-
sets using various ad hoc Machine Learning or Artificial
Intelligence approaches.

H-lik offers a theoretically rigorous, computational
friendly method for estimation of GLMMs

The h-lik was originally introduced as a unified frame-
work for several common models e.g. Poisson-gamma,
binomial-beta with the intention to resolve apparent dif-
ferences between subject specific and population aver-
aged models [10]. Ah-lik was latter extended to models
with structured and unknown dispersion parameters
(e.g. the (inverse) Gaussian GLMM) [11] and even the so
called “double HGLM” in which random effects can be
specified for both mean and variance parameters. The
reliance of /-lik on the LA would appear to be an area
of concern, especially in datasets similar to our own,
with few repeated measurements per individual and a
binary outcome [35, 36, 63]. Our simulations show that
these concerns may not be as limiting as one may think,
especially when modeling takes place in the log-relative
risk, rather than the logit scale. In both simulated and
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CRWD datasets, the LA based /-lik inferences for fixed
and random effects were numerically close to those ob-
tained via the alternative AGH and MCMC approaches.
In the case of varying estimates between /-/ik and AGH,
we found the former to be closer to the gold standard of
MCMC integration. This observation suggests that
higher order LA introduced in extensions of the basic /-
lik theory [11, 12, 32, 35, 36] may not be required for
the size of datasets considered in this paper. At first, this
conclusion appears to contradict previous literature ar-
guing that higher order LA are required to avoid biases
in the estimation of variance components [32, 35, 36,
64—67]. However, this apparent contradiction disappears if
one considers the asymptotic order behavior of the LA to in-
tegrals over very high dimensional spaces [68]. The error
(and thus potential inferential bias) introduced by foregoing
corrections is of the order of (k"' *%2), where d is the di-
mensionality of the space and k a scaling factor of the Hes-
sian at the optimum. Therefore, for analyses of datasets with
large number of random effects (large d), in which the
underlying model is reasonably identified by the data (large
k), the approximation error of the LA will rapidly decline to
zero because of the “little o” asymptotics. Consequently,
while the curse of dimensionality renders higher order AGH

approximations impractical, it simultaneously makes the or-
dinary LA highly accurate in the same settings, at least for
non-ultra-sparse datasets. Even in that case, the proposed
implementation of the /-/ik corresponds to method HL (1,1)
in the theory of the hierarchical likelihood, which appears to
not be as susceptible to bias as lower order approximations
[32, 36, 52, 69] for sparse binary data.

The h-lik approach may be viewed as an Empirical
Bayes/modal approximation to a non-informative Bayes-
ian analysis of the same data, allowing the analyst to in-
voke a Bayesian interpretation of the results obtained
through the /-lik if non-informative priors are appropri-
ate for the problem at hand. In the opinion of the au-
thors, this is a rather significant development since bona
fide Bayesian analyses of large datasets via MCMC can
be orders of magnitude slower than their likelihood
counterparts. Future studies should explore the use (and
abuse) of h-lik as approximations to full Bayesian ana-
lyses in other datasets and define the range of problems
and random effects structures for which /4-lik will give
numerical answers that do not differ much from those
given by MCMC. A Bayesian “repurposing” of the h-lik
could thus allow a wider adoption of Bayesian methods.
A particularly interesting extension would also explore
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non-Gaussian random effect distributions, which are
trivial to estimate both by the iGLM algorithm and the
implementation considered herein.

Scalable alternatives to the proposed h-lik implemen-
tation, include the R package glmmTMB and the ori-
ginal iGLM algorithm for fitting the hierarchical
likelihood approach. glmmTMB was recently introduced
[53] for GLMMs and uses an interface similar to R’s
glmer. glmmTMB offers a “REML” option, yet the pre-
cise definition of the REML implemented is not expli-
citly stated in the package documentation. Examination
of the R source code of the glmmTMB package suggests
that REML estimation amounts to optimization of the
pup(h) function, ie., the first stage in the hierarchical
likelihood approach. We have verified this to be the case
by contrasting the glmmTMB fixed effects estimates to
those returned by the first optimization in the /-lik ap-
proach. Limited comparisons in subsets of CRWD and
simulations showed that while the variance components
returned by glmmTMB and our approach were identical,
estimates of the fixed and random effects could differ,
particularly when the number of random effects in the
dataset were small. Future work should thus concentrate
on investigating alternative ways to optimize the ad-
justed profile likelihood functions of h-lik theory that
can offer higher speed advantages to our direct
implementation.

The original iGLM approach offers an alternative to
the direct implementation of the h-lik approach with
comparable performance in small datasets. This alterna-
tive is also a candidate for a high-performance imple-
mentation, since the underlaying operations (iterative
solutions of weighted linear regression and numerical
optimization) are available in many high-performance
scientific computing platforms. Future work may even
consider implementing either of the two implementa-
tions of the h-lik explored in this work within main-
stream Machine Learning platforms such as TensorFlow
[70]. R research in alternative implementations of the /-
lik thus has the potential to make the rigor of GLMM:s
available to a wider audience of data scientists in
addition to statisticians.

What did we learn about the potassium level and EHR
analyses?

This work was motivated by a clinical question that the
authors posed internally a few years ago. We believe that
the analysis presented herein answered the question by
re-confirming the “U” shaped curve between the K" level
and mortality previously suggested [14], but dramatically
reducing the uncertainty about this relationship. Based
on our data, potassium levels close to the normal level
of 4meq/l are not associated with excess mortality.
Hence, our bracketing of a globally valid reference range
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for potassium levels could be used to inform the design
of clinical trials to guide the proper use of potassium
supplements and potassium lowering drugs. The individ-
ual and facility level variation detected here is of rele-
vance to future investigations that use EHRs; unless
such variation can be captured and modelled through
covariates available in the EHRs, inferences from such
data will be contaminated by significant bias.

Conclusions

Combining the Laplace Approximation with Automatic
Differentiation results in a direct implementation of the
h-lik that can efficiently fit very large EHR datasets, with
accuracy that is equivalent if not better than the state-
of-the-art AGH methods and the original iGLM algo-
rithm for GLMMs. For the problems we examined, the
h-lik gave results that are indistinguishable from the
gold standard of MCMC integration, but the results
were obtained much faster.
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