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In this study, we determined how rosiglitazone (RSG) 

differentially affected hippocampal neurogenesis in mice fed a 

low-fat diet (LFD) or high-fat diet (HFD; 60% fat). LFD and 

HFD were given to the mice for 8 weeks. Four weeks after 

initiating the LFD and HFD feeding, vehicle or RSG was 

administered orally once a day to both groups of mice. We 

measured cell proliferation and neuroblast differentiation in 

the subgranular zone of the dentate gyrus using Ki67 and 

doublecortin (DCX), respectively, as markers. In addition, we 

monitored the effects of RSG on the levels of DCX and 

brain-derived neurotrophic factor (BDNF) in hippocampal 

homogenates. At 8 weeks after the LFD feeding, the numbers 

of Ki67- and DCX-positive cells as well as hippocampal levels 

of DCX and BDNF were significantly decreased in the 

RSG-treated group compared to the vehicle-treated animals. 

In contrast, the numbers of Ki67- and DCX-positive cells along 

with hippocampal levels of DCX and BDNF in the HFD fed 

mice were significantly increased in the RSG-treated mice 

compared to the vehicle-treated group. Our data demonstrate 

that RSG can modulate the levels of BDNF, which could play a 

pivotal role in cell proliferation and neuroblast differentiation 

in the hippocampal dentate gyrus. 

Keywords: brain-derived neurotrophic factor, dentate gyrus, 
high-fat diet, rosiglitazone

Introduction

　Increased consumption of a high-fat diet (HFD) results in 
obesity and neurocognitive disorders [1]. A HFD is a major 
factor of metabolic disorder development and can 
contribute to the incidence of neurodegenerative diseases, 
long-term memory loss, and cognitive impairment [5,10]. 
This type of diet also induces increased levels of 
malondialdehyde (MDA) and reduced levels of 
brain-derived neurotrophic factor (BDNF) in the 
hippocampus [13,33]. In addition, hyperglycemia caused 
by a HFD accelerates the deposition of advanced glycation 
end-products that can promote neuronal damage [25,37].　In the mammalian brain, neurogenesis occurs throughout 
life [21,22]. The subgranular zone of the hippocampal 
dentate gyrus, which is associated with learning and 
memory functions [15], is one of two major neurogenic 
regions in the adult brain [6]. Neurogenesis in the dentate 
gyrus is known to be highly plastic, and many studies have 
focused on identifying factors that regulate this process in 
adults [29-31].　Peroxisome proliferator-activated receptor γ (PPARγ) is a 
glitazone receptor, and regulates glucose metabolism 
along with fatty acid storage by stimulating lipid uptake 
and adipogenesis [17]. It has been reported that adipose 
tissue is not synthesized in PPARγ-knockout mice fed a 
HFD [17]. Rosiglitazone (RSG), a synthetic agonist of 
PPARγ, is widely used as an anti-diabetic drug for treating 
patients with type 2 diabetes. Recently, it was reported that 
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PPARγ is also involved in modulating the proliferation and 
differentiation of neural stem cells [18,26,37]. In addition, 
PPARγ activation was found to help mitigate 
neuroinflammation induced by acute or chronic insults 
[19]. PPARγ agonists could be beneficial for ameliorating 
some neurological disorders including Parkinson’s disease 
[32], ischemia [9,20], and Alzheimer’s disease [34]. 
However, few investigations have addressed the effect 
PPARγ on adult hippocampal neurogenesis in a model of 
diet-induced obesity. 　In the present study, we investigated the effect of RSG on 
cell proliferation and neuroblast differentiation in the 
hippocampus of mice fed a low-fat diet (LFD) or HFD. For 
this, Ki67 and doublecortin (DCX) levels were measured. 
Ki67 is a marker of cell proliferation expressed during the 
active phases of the cell cycle [4] while DCX is a 
neuroblast marker [2].

Materials and Methods

Experimental animals　Male C57BL/6J mice (n = 68) were purchased from the 
Jackson Laboratory (USA). The animals were used at 8 
weeks of age, and housed at 22oC with 60% humidity and 
a 12-h light/dark cycle. All mice had free access to food 
and tap water. Animal handling and care conformed to 
guidelines that comply with current international laws and 
policies (National Institutes of Health [NIH] Guide for the 
Care and Use of Laboratory Animals, NIH Publication No. 
85-23, 1985, revised 1996), and the experimental protocol 
was approved by the Institutional Animal Care and Use 
Committee (IACUC) of Seoul National University 
(Approval No. SNU-110412-2). All experiments were 
conducted to minimize both the number of mice used and 
suffering due to the procedures performed in the present 
study.

HFD feeding and drug treatment　Six-week-old mice were individually caged and allowed to 
adapt to a chow diet for 1 week. After this time, the mice 
were fed a commercial LFD (D12450Bi used as a control 
diet for D12492, n = 34; Research Diets, USA) or HFD 
(D12492i, n = 34; Research Diets) for 8 weeks. Four weeks 
after initiating the LFD and HFD feeding, vehicle (0.1% 
methyl cellulose) or 2 mg/kg RSG (Avandia; 
GlaxoSmithKline, USA) was orally administered to mice in 
both groups using a feeding needle (Kent Scientific, USA) 
once a day for 4 weeks. The RSG dose was chosen because 
it is equivalent to the doses clinically used in humans. With 
this concentration, we previously observed a reduction of 
cell proliferation and neuroblast differentiation in normal 
mice [26]. The experimental schedule was adopted because 
a previous study detected an HFD-induced reduction of cell 
proliferation and neuroblast differentiation at 4 weeks after 

the start of HFD consumption [12]. In addition, DCX is 
exclusively expressed in immature neurons in cells 1 to 28 
days old [2].

Tissue processing for histology　Eight weeks after starting LFD or HFD feeding (4 weeks 
after vehicle or RSG treatment), the mice (n = 7 in each 
group) were anesthetized with 30 mg/kg Zoletil 50 
(Virbac, France) and perfused transcardially with 0.1 M 
phosphate-buffered saline (PBS, pH 7.4) followed by 4% 
paraformaldehyde in 0.1 M phosphate buffer (PB, pH 7.4). 
The brains were removed and postfixed by 4% 
paraformaldehyde in 0.1 M PB for 12 h. The brain tissues 
were cryoprotected by overnight infusion with 30% 
sucrose, and 30-μm-thick coronal sections were serially 
cut using a cryostat (Leica, Germany). The sections were 
transferred to six-well plates containing PBS for further 
processing. 

Immunohistochemistry specific for Ki67 and DCX　Immunohistochemistry was performed under the same 
conditions for tissues from each group to obtain consistent 
results. We selected brain sections collected between 1.6 
mm and 1.8 mm posterior to the bregma as determined by 
a mouse brain atlas [8]. The sections were incubated with 
goat anti-DCX antibodies (1 : 50 dilution; Santa Cruz 
Biotechnology, USA) or rabbit anti-Ki67 (1 : 1,000; 
Abcam, UK) overnight at room temperature, and 
subsequently exposed to biotinylated donkey anti-goat or 
goat anti-rabbit IgG (1 : 200; Vector Laboratories, USA) 
for 2 h and streptavidin peroxidase complex (1 : 200, 
Vector Laboratories) for 30 min at room temperature. 
Antibody binding was detected using 0.05% 
3,3’-diaminobenzidine tetrachloride (Sigma, USA) in 0.1 
M Tris-HCl buffer (pH 7.2), and the sections were mounted 
on gelatin-coated slides. 　The numbers of Ki67- and DCX-positive cells in samples 
from all groups were determined using an image analysis 
system equipped with a computer-based charge-coupled 
device (CCD) camera (Optimas 6.5; Media Cybernetics, 
USA). In addition, images of all DCX-immunoreactive 
structures in the dentate gyrus were obtained with a BX51 
light microscope (Olympus, Japan) equipped with a digital 
camera (DP71; Olympus) connected to a PC monitor. 
Ki67- and DCX-positive cells in the dentate gyrus of each 
section were counted using Optimas 6.5 software (Media 
Cybernetics). Cell counts for all the sections from every 
mouse were averaged and are presented as a percentage. 

Western blot analysis　To confirm the effects of RSG on neuroblast 
differentiation, five mice from each group were sacrificed 
and used for Western blot analysis [39]. After the brains 
were removed, the dentate gyrus was removed with a 
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Fig. 1. Immunohistochemistry specific for Ki67 in the dentate 
gyrus. Ki67-positive nuclei were detected in the subgranular 
zone of the dentate gyrus. The number of Ki67-immunoreactive 
nuclei was decreased in the LFD-RSG group compared to the 
LFD-Vehicle group. Ki67-positive nuclei were rarely seen in the 
HFD-Vehicle group unlike the LFD-Vehicle group. The number 
of Ki67-positive nuclei was significantly increased in the 
HFD-RSG group compared to the HFD-Vehicle group. (A) 
low-fat diet (LFD)-fed vehicle-treated group (LFD-Vehicle). (B)
LFD-fed rosiglitazone (RSG)-treated group (LFD-RSG). (C) 
high-fat diet (HFD)-fed vehicle-treated group (HFD-Vehicle). 
(D) HFD-fed RSG-treated (HFD-RSG) groups. (E) Relative 
numbers of Ki67-immunoreactive nuclei in the LFD-Vehicle, 
LFD-RSG, HFD-Vehicle, and HFD-RSG groups (n = 7 per 
group; *p ＜ 0.05, Vehicle versus RSG groups; †p ＜ 0.05, LFD
versus HFD groups). All data are expressed as the mean ±
standard error of the mean (SEM). ML: molecular layer, GCL: 
granule cell layer, PoL: polymorphic layer. Scale bar = 50 μm. 

surgical blade. The dentate gyrus was homogenized in 50 
mM PBS (pH 7.4) containing 0.1 mM ethylene glycol 
bis-(2-aminoethyl ether)-N,N,N´,N´ tetraacetic acid 
(EGTA, pH 8.0; Sigma), 0.2% Nonidet P-40 (Sigma), 10 
mM ethylendiamine-tetraacetic acid (EDTA, pH 8.0; 
Sigma), 15 mM sodium pyrophosphate (Sigma), 100 mM 
β-glycerophosphate (Sigma), 50 mM NaF (Sigma), 150 
mM NaCl (Sigma), 2 mM sodium orthovanadate (Sigma), 1 
mM phenylmethylsulfonyl fluoride (PMSF, Sigma), and 1 
mM dithiothreitol (DTT; Sigma). After centrifugation, 
protein concentration of the supernatants was determined 
using a Micro BCA protein assay kit (Pierce Chemical, 
USA) with bovine serum albumin as the standard. Aliquots 
containing 50 μg of total protein were boiled in a loading 
buffer that contained 150 mM Tris (pH 6.8), 3 mM DTT, 6% 
sodium dodecylsulfate (SDS), 0.3% bromophenol blue 
(Sigma), and 30% glycerol. The aliquots were then loaded 
onto a 8% polyacrylamide gel (Sigma). After electrophoresis, 
the proteins were transferred to nitrocellulose membranes 
(Pall Corporation, USA). To reduce background signals, the 
membranes were blocked with 5% non-fat dry milk (Sigma) 
in PBS containing 0.1% Tween 20 for 45 min. Next, the blots 
were incubated with with goat anti-DCX (1 : 100) and then 
peroxidase-conjugated anti-goat IgG (Vector Laboratories). 
Antibody binding was detected with an enhanced luminol- 
based chemiluminescent (ECL) kit (Pierce Chemical). The 
bands was densitometrically scanned to quantify the relative 
optical density (ROD) using Scion Image software (Scion 
Corporation, USA). The obtained data were normalized 
against that for β-actin.

Measurement of BDNF levels　In order to confirm changes in BDNF levels in the dentate 
gyrus [38], five mice from each group were anesthetized 
with 100 mg/kg Zoletil 50 (Virbac) and decapitated. The 
hippocampus was removed from the brain and stored in 
liquid nitrogen. BDNF levels in the hippocampus were 
measured using a BDNF Emax immunoassay kit 
(Promega, USA). The tissue samples were weighed and 
300 μL of lysis buffer was added to each sample. The 
samples were then sonicated for 30 sec and centrifuged at 
4oC for 20 min. The supernatant was stored at −20oC until 
it was analyzed. All samples were assayed in duplicate and 
the absorbance was read with an enzyme-linked 
immunosorbent assay (ELISA) plate reader (Bio Tek, 
USA). The concentration for each sample was calculated 
by plotting the absorbance values on a standard curve with 
known concentrations generated by the assay. 

Statistical analysis　Data are presented as the mean for each experiment. 
Differences between the mean values were analyzed with 
a one-way analysis of variance followed by Tukey’s 
multiple range test. Statistical significance was 

considered at p ＜ 0.05.

Results

Effect of RSG on cell proliferation　In all groups, Ki67-positive nuclei were detected in the 
subgranular zone of the dentate gyrus. Among all mice, the 
LFD-fed vehicle-treated group had the highest number of 
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Fig. 2. Immunohistochemistry specific for DCX in the dentate gyrus. 
DCX-positive neuroblasts were detected in the subgranular zone of the 
dentate gyrus. The number of DCX-immunoreactive neuroblasts was 
decreased in the LFD-RSG group compared to the LFD-Vehicle group. 
DCX-positive neuroblasts were rarely seen in the HFD-Vehicle group 
unlike the LFD-Vehicle group. The number of DCX-immunoreactive 
neuroblasts in the dentate gyrus was increased in the HFD-RSG group 
compared to the HFD-Vehicle group. (A and B) LFD-Vehicle. (C and D)
LFD-RSG. (E and F) HFD-Vehicle. (G and H) HFD-RSG groups. (I) 
Relative number of DCX-immunoreactive cells in the LFD-Vehicle, 
LFD-RSG, HFD-Vehicle, and HFD-RSG groups (n = 7 per group; *p ＜
0.05, Vehicle vs. RSG groups; †p ＜ 0.05, LFD vs. HFD groups). All data 
are expressed as the mean ± SEM. (J) Western blot analysis of DCX levels
in the dentate gyrus of the LFD-Vehicle, LFD-RSG, HFD-Vehicle, and 
HFD-RSG groups. Relative optical density (ROD) of the bands is 
expressed as percentages (n = 5 per group; *p ＜ 0.05, Vehicle vs. RSG 
groups; †p ＜ 0.05, LFD vs. HFD groups). Data are presented as the mean
± SEM. Scale bars = 25 μm (B, D, F, and H) or 50 μm (A, C, E, and G).

Ki67-positive cells (Figs. 1A and E). The number of Ki67- 
positive cells was decreased in the LFD-fed RSG-treated 
group compared to the LFD-fed vehicle-treated animals 
(Figs. 1B and E). Ki67-positive nuclei were rarely detected 
in the dentate gyrus of the HFD-fed vehicle-treated group, 
and the number of Ki67-positive cells was significantly 
decreased in these mice compared to the LFD-fed 
vehicle-treated animals (Figs. 1C and E). The number of 
Ki67-positive cells was markedly increased in the 
HFD-fed RSG-treated mice compared to the HFD-fed 
vehicle-treated group (Figs. 1D and E).

Effect of RSG on neuroblast differentiation　In all groups, DCX-immunoreactive neuroblasts were 
detected in the subgranular zone of the dentate gyrus. The 
dendrites extended into the molecular layer of the dentate 
gyrus. Compared to the other three groups, the LFD-fed 
vehicle-treated mice had a greater number of 
DCX-positive neuroblasts in the dentate gyrus (Figs. 2A 
and B). The number of DCX-immunoreactive neuroblasts 
and their dendrites were decreased in the dentate gyrus of 
the LFD-fed RSG-treated group compared to the LFD-fed 
vehicle-treated animals (Figs. 2C, D, and I). The number of 
DCX-positive neuroblasts was also markedly decreased in 
the HFD-fed vehicle-treated group compared to the 
LFD-fed vehicle-treated group. In addition, the abundance 
of DCX-immunoreactive dendrites was prominently 
decreased in the HFD-fed vehicle-treated group (Figs. 2E 
and F). However, the number of DCX-immunoreactive 
neuroblasts was increased in the dentate gyrus in the 
HFD-fed RSG-treated group compared to the HFD-fed 
vehicle-treated mice (Figs. 2G, H, and I). 　Western blot analysis showed that DCX protein 
expression in the dentate gyrus was significantly lower in 
the LFD-fed RSG-treated mice than in the LFD-fed 
vehicle-treated group. Compared to the LFD-fed 
vehicle-treated group, the HFD-fed vehicle-treated group 
had significantly decreased levels of DCX protein. 
However, the expression of DCX protein in the HFD-fed 
RSG-treated group was markedly increased compared to 
that in the HFD-fed vehicle-treated group (Fig. 2J).

Effect of RSG on BDNF levels　In the LFD-fed vehicle-treated group, the average level of 
BDNF in the hippocampal homogenates was 96.1 pg/mg 
of protein. BDNF protein levels were lower in the LFD-fed 
RSG-treated group than in the LFD-fed vehicle-treated 
mice. In contrast, BDNF levels in the HFD-fed RSG- 
treated animals were significantly increased compared to 
those in the HFD-fed vehicle-treated group (Fig. 3).

Discussion

　PPARγ is known to have a role in insulin sensitivity. 
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Fig. 3. BDNF levels in the hippocampal homogenates from the 
LFD-Vehicle, LFD-RSG, HFD-Vehicle, and HFD-RSG groups 
(n = 5 per group; *p ＜ 0.05, LFD vs. HFD groups; †p ＜ 0.05, 
Vehicle vs. RSG groups). All data are expressed as the mean ±
SEM.

However, it was recently reported that PPARγ and its 
signaling pathways are involved in regulating other cellular 
functions and homeostasis [11]. PPARs are also associated 
with chronic diseases such as diabetes, obesity, 
atherosclerosis, and cancer [23,24], and play an important 
role in various central nervous system disorders [11]. It was 
found that ciglitazone, a PPARγ agonist, can reduce 
excitotoxic neuronal damage [40] and PPARγ agonists can 
attenuate ischemic damage by reducing neuroinflammation 
[35]. In addition, the PPARγ agonist pioglitazone was 
shown to improve anatomical repair and locomotor 
function after spinal cord injury [28]. 　In the present investigation, we examined the effects of 
RSG, a PPARγ agonist, on cell proliferation and neuroblast 
differentiation (by measuring Ki67 and DCX expression, 
respectively) in adult LFD- and HFD-fed mice. In the 
LFD-fed group, RSG treatment decreased the number of 
DCX- and Ki67-positive cells. In contrast, RSG 
administration significantly increased the number of Ki67- 
and DCX-positive cells in the HFD-fed mice compared to 
that observed in the vehicle-treated HFD-fed group. 　A previous study revealed that PPARγ plays an important 
role in controlling the proliferation and differentiation of 
neural stem cells mediated by the regulation of epidermal 
growth factor receptor and activation of extracellular 
signal-regulated kinase (ERK) as well as signal transducer 
and activator of transcription 3 (STAT-3) pathways [37]. In 
yet another investigation, RSG treatment decreased BDNF 
and glial cell line-derived neurotrophic factor levels in the 
dentate gyrus of normal adult mice [26]. BDNF is known to 
influence hippocampal neurogenesis, and BDNF-mediated 
neuronal precursor cell differentiation and survival are 
regulated by activation of the Akt, ERK1/2, and STAT-3 
signaling pathways [14]. Therefore, changes in BDNF 
expression may be correlated with PPARγ pathway activity. 

　HFD-fed mice have been reported to have increased levels 
of PPARγ in adipose tissue, and PPARγ mRNA expression 
above a certain level helps regulate adipocyte development 
and function [36]. In the brain, PPARγ activation has been 
reported to promote neurogenesis as well as neurite 
outgrowth in mature neurons, which enhances neuronal 
connectivity [7,30]. However, excessive activation of 
PPARγ was shown to induce cell death and inhibit the 
differentiation of neural stem cells whereas optimal 
activation of the PPARγ pathway induces the neurogenesis 
of neural stem cells [37]. In addition, PPARγ deficiency 
decreases neural stem cell proliferation and subsequent 
apoptosis by activating the caspase pathway [37].　In the present study, a HFD significantly reduced BDNF 
levels in the hippocampus. BDNF expression reduced by 
HFD feeding can impair cell proliferation [27], progenitor 
survival [31], and neuronal differentiation [3] because 
BDNF has a potent impact on adult hippocampal 
neurogenesis [33]. In contrast, we found that the 
administration of RSG significantly rescued HFD-induced 
BDNF deficiency in the hippocampus. This result was 
consistent with findings from a previous study in which 
RSG administration rescued BDNF deficiency in the 
cerebral cortex of a model of Huntington’s disease [16]. In 
addition, we previously observed that blocking the BDNF 
receptor reduces cell proliferation and neuroblast 
differentiation in the hippocampal dentate gyrus of mice 
[38]. Thus, our present results indicate that modulation of 
BDNF levels can alter hippocampal neurogenesis in the 
dentate gyrus of LFD- and HFD-fed mice.　In conclusion, RSG administration decreased the number 
of Ki67- and DCX-positive cells in the dentate gyrus of 
LFD-fed mice. On the other hand, RSG increased the 
number of Ki67- and DCX-positive cells in the dentate 
gyrus of HFD-fed mice. These results demonstrate that 
RSG can affect cell proliferation and neuronal 
differentiation in the subgranular zone of the dentate gyrus 
by modulating BDNF levels in the hippocampus.
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