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Abstract The metabo-ring initiative brought together five

nuclear magnetic resonance instruments (NMR) and 11

different mass spectrometers with the objective of assessing

the reliability of untargeted metabolomics approaches in

obtaining comparable metabolomics profiles. This was

estimated by measuring the proportion of common spectral

information extracted from the different LCMS and NMR

platforms. Biological samples obtained from 2 different

conditions were analysed by the partners using their own in-

house protocols. Test #1 examined urine samples from adult

volunteers either spiked or not spiked with 32 metabolite

standards. Test #2 involved a low biological contrast situ-

ation comparing the plasma of rats fed a diet either sup-

plemented or not with vitamin D. The spectral information

from each instrument was assembled into separate statisti-

cal blocks. Correlations between blocks (e.g., instruments)

were examined (RV coefficients) along with the structure of

the common spectral information (common components

and specific weights analysis). In addition, in Test #1, an

outlier individual was blindly introduced, and its identifi-

cation by the various platforms was evaluated. Despite large

differences in the number of spectral features produced after

post-processing and the heterogeneity of the analytical

conditions and the data treatment, the spectral information

both within (NMR and LCMS) and across methods (NMR

vs. LCMS) was highly convergent (from 64 to 91 % on

average). No effect of the LCMS instrumentation (TOF,

QTOF, LTQ-Orbitrap) was noted. The outlier individual

was best detected and characterised by LCMS instruments.

In conclusion, untargeted metabolomics analyses report
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consistent information within and across instruments of

various technologies, even without prior standardisation.

Keywords Inter-laboratory � Untargeted metabolomics �
Mass spectrometry � Nuclear magnetic resonance �
Metabolic fingerprinting

1 Introduction

Metabolomics has become essential to understanding the

impact of external or pathological stressors on a biological

system (Ryan and Robards 2006). Although early attempts at

using such analytical approaches took place in the 1970s

(Pauling et al. 1971), metabolomics approaches have

increased only since the beginning of this century and have

appeared promising only during the present decade (Opinion

2010). For instance, recent studies have transitioned meta-

bolomics from proof-of-principle to validation. In these

studies, untargeted metabolomics allowed a hypothesis to be

generated and to be challenged in order to validate new

biomarkers of disease (Wang et al. 2011; Cobb et al. 2013),

which ultimately led to the development of a clinical test

(Cobb et al. 2013). However, the implementation of meta-

bolomics is not trivial and requires validation and an esti-

mation of reliability, even though some standardisation

attempts have been made and recommendations have been

proposed (Fiehn et al. 2006; Lindon et al. 2005; Scalbert et al.

2009). This is an important issue because, in addition to

sampling (Griffin et al. 2007) and extraction procedures

(Want et al. 2006; Tulipani et al. 2012; Pereira et al. 2010),

the performance of metabolomics analyses also relies on the

instrument type (Gika et al. 2010; Williams et al. 2005;

Rubtsov et al. 2007) and on the methods implemented (van

den Berg et al. 2006; Tautenhahn et al. 2008; Sumner et al.

2007). Such heterogeneity can thus result in discrepancies in

the results produced from different places and prevent their

generalisation. Several inter-laboratory studies have

attempted to validate the accuracy of the metabolomics

approach, but these studies all used similar instruments,

either NMR of different magnetic fields (Viant et al. 2009;

Ward et al. 2010) or GC–MS (Allwood et al. 2009) and LC–

MS (Benton et al. 2012) of the same type. When using tight

standardized conditions among the partners these studies

showed a high degree of inter-laboratory repeatability.

However they did not address comparisons of heterogeneous

instruments or methods nor the fact that strict protocol

designs are difficult to extrapolate to real-life situations.

Comparisons among various instruments can also be chal-

lenging because metabolite coverage is highly instrument-

dependent (Mandal et al. 2012; Suhre et al. 2010). The best

starting point and limiting point in the metabolomics ana-

lytical workflow is to compare the spectral information

gathered from instruments of various technologies irre-

spective of the samples preparation step. This issue was

recently addressed at the intra-laboratory scale using two

types of LCMS systems of different technologies (Gika et al.

2010; Glauser et al. 2013). The authors found good conver-

gence between the instruments, but the results of these

intra-laboratory studies needs to be challenged at the
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inter-laboratory scale and to be extended to heterogenous

instruments to allow complete generalisation.

Thus, to respond to this challenge and to facilitate stan-

dardisation initiatives, it would be wise to determine the

usefulness of the current metabolomics strategies in deliv-

ering homogeneous results using both homologous and

heterologous instrumentation and methods. To this end, we

designed 2 metabolomics ring-tests (Test #1 and Test #2), in

which the same sets of samples were analysed without any

imposed standardisation on 16 instruments (5 NMR and 11

LCMS) located in three European countries. These two tests

included a spiking experiment in human urines and plasma

analysis of rats challenged with vitamin D. Our primary goal

was not to make comparisons at the analytes level but rather

to evaluate the inter-instrument convergence at the meta-

bolic profiling level. A specific statistical design was applied

to make these comparisons possible. Both instruments

(NMR and LCMS) and procedures used covered the most

common situations observed in non-targeted metabolomics.

2 Materials and methods

2.1 Experimental setup

2.1.1 Test #1: High biological contrast

Fourteen volunteers were recruited, including 13 males

(age 17–50) and one woman in mid-pregnancy (age 32).

The study was approved by the regional committee on

human experimentation (No. 2008-A01354–51, Comité de

Protection des Personnes Sud Méditerranée I). A written

informed consent for the use of the urine samples was

signed by each individual. The sample list was sent blind to

all analytical partners.

The specific gravities of the urine samples were deter-

mined using a density meter (Anton Paar, Austria) to cal-

culate a normalisation factor to be applied to each signal

intensity measured by NMR or LCMS (Cone et al. 2009)

whenever specified.

A mixture of standards was prepared to be incorporated

into the urine samples using the NuGO standard operating

procedure (SOP) number 43 produced by the University of

Copenhagen, details of which are available via the web link:

http://www.nugo.org/frames.asp?actionID=39148&action=

loginFromPP. For further information, please contact Lars

Dragsted ldra@life.ku.dk. The standard mixture only con-

tained 32 chemicals (see online resource Table 1): ascorbic

acid, citrulline, creatinine, taurine, uric acid, caffeine, glu-

taric acid, inosine, isoleucine, leucine, pyroglutamic acid,

methionine, methylmalonic acid, N-methylhistidine, ami-

nobenzoic acid, phenylalanine, proline, riboflavin, adeno-

sine, adenine, adipic acid, azelaic acid, caffeic acid,

tryptophan, tyrosine, uracil, uridine, chenodeoxycholic acid,

cholic acid, cortisone, deoxycholic acid, glycocholic acid.

All the molecules can be naturally present in urine, except

chenodeoxycholic acid.

To prevent dilution the standard mixture was aliquoted

then lyophilised and reconstituted with each urine sample.

2.1.2 Test #2: low biological contrast

Vitamin D is involved in many biological functions and in

the maintenance of health (Adams and Hewison 2010). It

occurs endogenously but can also be provided by various

food sources. We chose to examine its metabolic effect as a

test of a low biological contrast study, which is a common

situation in nutritional metabolomics research. Twenty

Sprague–Dawley male rats, weighing 250 g and purchased

from JANVIER SAS (Le Genest Saint Ile, France), were

fed for 6 weeks after 1 week of acclimatisation while

maintained in a dark/light cycle of 12 h. All experiments

were conducted according to the French Regulations for

Animal Experimentation (Art 19. Oct 1987, Ministry of

Agriculture) and in conformity with the Public Health

Service Policy after approval by our institutional Animal

Care and Use Committee. Half of the rats were fed with the

low vitamin D diet (1,000 IU/kg of diet, SIGMA ref

C9756, L’Isle d’Abeau Chesnes, France), while the others

received a high vitamin D diet (20,000 IU/kg of diet)

(online resource Table 2), as described elsewhere (Fleet

et al. 2008). After 6 weeks, the rats were anesthetised with
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Jérôme, 13397 Marseille Cedex 20, France

M. N. Triba

Université Paris 13, Sorbonne Paris Cité, Laboratoire CSPBAT,

CNRS (UMR 7244), 93017 Bobigny, France

N. Stojilkovic

LCH, Laboratoire des Courses Hippiques,

91370 Verrières-le-Buisson, France

N. Banzet
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isoflurane and exsanguinated through the left ventricle with

a heparinised syringe. The blood was immediately cooled

to 0 �C, and the plasma separated at 3,000 g and 4 �C for

10 min. For LCMS analysis, plasma deproteinisation and

metabolite extraction were performed by methanol treat-

ment, as described by (Pereira et al. 2010); 500 lL plasma

samples were kept unprocessed for NMR analysis. All the

operations were performed on randomly ordered samples.

We checked that the supplementation increased the vitamin

D in the plasma by assaying the 25(OH)-vitamin D3 con-

centration. As a result of the supplementation, the rats

weighed more after 6 weeks (552 ± 9 g versus 517 ± 5 g

in the supplemented versus deprived rats, respectively;

P\ 0.05) and the 25(OH)-vitamin D3 concentration was

significantly increased (215 ± 8 and 63 ± 8 mmol/L in

supplemented vs deprived rats, respectively). Extracted

(for LCMS) or unprocessed (for NMR) plasma samples

were aliquoted into Eppendorf tubes and shipped to par-

ticipants in dry ice along with QC samples and blank

samples. Once received, the samples were stored at

-80 �C until analysis within 1–3 months.

2.2 Metabolomics analysis

The instruments used in both tests were, for NMR, a

Bruker 500 Avance III, a Bruker DRX-600 Avance, and

three Bruker Avance III 600, and for LCMS (all operating

in ESI), a Bruker microTOFQ coupled to an Agilent

RRLC, a Bruker microTOFQII coupled to an Ultimate

3000 Dionex U-LC, a Bruker QTOF Maxis Impact coupled

to an Ultimate 3000 Dionex U-LC, a Waters QTOF Pre-

mier coupled to an Acquity UPLC, a Waters QTOF Micro

coupled to an Acquity UPLC, a Thermo Fisher Scientific

LTQ-Orbitrap coupled to an Agilent 1200 RRLC, a

Thermo Fisher Scientific LTQ-Orbitrap Discovery coupled

to an Ultimate 3000 Dionex U-LC, a Thermo Fisher Sci-

entific LTQ-Orbitrap Discovery coupled to an Accela

liquid chromatographic system (Thermo Fisher Scientific,

Les Ulis, France), a Thermo Fisher Exactive coupled to a

Shimadzu Nexera liquid chromatography system, a Waters

QTOF Synapt-2 MS coupled to a ThermoAccela binary

UPLC, and a Bruker Micro-TOF delivered by an Agilent

1100 LC.

For both NMR and LCMS analyses, each participating

laboratory was asked to use its own in-house protocols for

instrument tuning, data processing and post-processing. A

detailed description of all the procedures used by the dif-

ferent platforms is given in the online resource. Analyses

were performed in random order (LCMS and NMR). The

same quality control sample, consisting of a pool of urine

(Test #1) or plasma (Test #2) samples, was provided to

each partner and was analysed by insertion into the

analytical series (from every 5 to every 10 samples) to

check the performance of the analytical system in terms of

retention times, accurate mass measurements, and signal

intensities (all LCMS). The analytical variability compared

to the biological variability was assessed using these

quality controls samples. The low dispersion (almost nill

with NMR) of the QC samples obtained by each partner

after PC analysis indicated proper analytical conditions.

2.3 Statistical analysis

The statistical analyses were applied separately for Test #1

and Test #2. The Test #1 samples were analysed by 14

instruments (5 NMR and 9 LCMS operating in positive and

negative modes), whereas in Test #2, 12 instruments (4

NMR and 8 LCMS operating mainly in positive mode)

were used (Table 1).

A workflow of the statistical design is presented in the

online resource Figure 1.

For each test data from all the platforms were pooled,

and one statistical analysis each was applied. The aim of

this global statistical analysis was to assess the conver-

gence of the biological information delivered by the met-

abolic profiling and provided by several instruments (NMR

and LC–MS). All statistical methods used to extract the

common information shared by all the platforms are

detailed in the online resource. Briefly, we compared the

relationship between the data tables using RV coefficients

(Escoufier 1973; Lavit et al. 1994), which can be inter-

preted as the multivariate equivalent of a squared corre-

lation coefficient (R2) ranging from [0–1]. An RV

coefficient equal to 1, when considering the two tables X

and Y, means that the relative position of the samples in X

is similar to those in Y. In other words, the information

included in the two data tables is identical. We also

explored the common information among the various data

tables using the Common components and specific weights

analysis (i.e., CCSWA or ComDim). This method was

developed by Qannari et al. in 2000 (Qannari et al. 2000)

for sensory profiling analysis and has also been applied to

chemometrics studies (Mazerolles et al. 2002). Several

extensions of the method have been developed recently

(Amat et al. 2010; Jouan-Rimbaud Bouveresse et al. 2011;

Mazerolles et al. 2006). CCSWA estimates the dispersion

of the samples in a series of dimensions that are common

to all the data tables. Each data Table has a specific weight

(called salience) that quantifies its contribution to each

common dimension. Based on global scores, samples can

be projected onto the common space to determine the

sample structures that are common to all data tables. The

CCSWA algorithm has been described elsewhere (Bro

et al. 2008; Qannari et al. 2000).
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The RV coefficient matrices and CCSWA were com-

puted using the SAISIR package developed for the open

source SCILAB software (Bertrand and Cordella 2008).

Our secondary endpoint was to identify a set of features

allowing discrimination of the two groups in each test. For

Test #1, the additional objective for all partners was to

identify all of the 32 molecules added to the spiked sam-

ples. Table 1 summarises the statistical methods used by

each laboratory for identifying the discriminating features

in both tests. The univariate statistics refer to the signifi-

cance of the fold-change, whereas the multivariate meth-

odology refers to the PLS-DA regression. The

discriminating features found by each partner were also

compared to the ones found in the CCSWA performed on

the post-processing datasets computed in the data collec-

tion centre.

2.3.1 Correlation networks

The correlation network is an efficient tool for providing a

graphical representation of the correlations between vari-

ables. In this study, the correlation network visualises

multiple proximities between instruments based on the

estimated RV coefficients. The RV coefficient networks

were calculated and visualised using the Cytoscape soft-

ware (Shannon et al. 2003) (http://www.cytoscape.org/).

2.4 Characterisation of the Test #1 outlier

The CCSWA performed in the data collection centre was

applied to select spectral features present in the NMR and

LCMS analyses that discriminated the blind biological

outlier individual introduced among the urine samples. For

annotation purposes, the features retained were selected

according to a correlation value, with the common com-

ponent characterising the outlier as being more than 0.8 for

LCMS or more than two z-scores for NMR. This biological

outlier was a mid-term pregnant woman contrasting with

the samples collected from male individuals.

2.5 Annotation of discriminating features

Annotation was either performed after operator visual

spectral inspection or using automated procedures based on

accurate mass and referencing to public or in-house dat-

abases (MS instruments). Metabolites identification refer-

red to level 1 of the MSI when dealing with the spiked

standards, or to level 2 whenever applicable, and thus

corresponded to putative annotation (Sumner et al. 2007).

Table 1 Descriptions of the

MS and NMR platforms used in

the two tests and the number of

features retained per test and

instrument

a These instruments are located

on the same platform
b This platform used a QTOF

analysis in Test #1 and an

Orbitrap analysis in Test #2
1 N for NMR spectrometer, Q

for QTOF mass spectrometer, O

for orbitrap mass spectrometer,

T for TOF mass spectrometer.

The P or N appended to the

mass spectrometer identifier

number denotes positive or

negative ionisation mode,

respectively

Platform

ID1
Instruments Mode Deconvolution

software

Test #1

n = 25

Test #2

n = 18

Stat

N1 Bruker 600 – AMIX 751 881 Multivariate

N2 Bruker 600 – AMIX 252 – Univariate and

multivariate

N3 Bruker 600 – AMIX 88 9300 Multivariate

N4 Bruker 500 – In-house 9,699 9550 Multivariate

N5a Bruker 600 – AMIX 233 120 Multivariate

O1P LTQ orbitrap Positive XCMS 5,035 710

Q6P/O2Pb QTOF premier/

orbitrap

Positive XCMS 1,922 1295 Univariate

Q6N QTOF premier Negative XCMS 314 – Univariate

O3P LTQ orbitrap Positive XCMS 1,827 1979 Univariate

O3N LTQ orbitrap Negative XCMS 1,715 795 Univariate

O4P LTQ orbitrap Positive XCMS 2,668 – Multivariate

Q1P QTOF micro Positive XCMS 1,181 504 Multivariate

Q1N QTOF micro Negative XCMS 1,288 – Multivariate

Q2P QTOF impact Positive XCMS 1,688 – Multivariate

Q2N QTOF impact Negative XCMS 2,492 – Multivariate

Q3P microQTOF Positive XCMS 908 2631 Univariate

Q4P QTOF micro II Positive XCMS 909 2277 Multivariate

Q4N QTOF micro II Negative XCMS 438 – Multivariate

Q5Pa QTOF synapse Positive XCMS 6,992 1595 Univariate

Q5Na QTOF synapse Negative XCMS 5,167 – Univariate

T1Pa TOF Positive XCMS 580 – Univariate

T1Na TOF Negative XCMS 398 – Univariate
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3 Results

3.1 Sample analysis, data acquisition and post-

processing

The procedures used for data acquisition and data post-

processing and filtering prior to the statistical analyses are

detailed in the online resource.

For NMR, the operators used AMIX or in-house C

programs to bin the spectra into regions of various ppm

widths (from 0.001 to 0.04 ppm).

For LCMS, all partners used XCMS for peak picking

and retention time correction; however, the basal parame-

ters and methods scripts differed among the partners based

on their individual background experience. This led to

different workflows for XCMS from one platform to the

other. In addition, further signal filtering was sometimes

applied, such as de-isotoping and de-adducting, de-noising

using blank samples or QC dilutions, elimination of unre-

liable features based on the use of QC samples, etc. (see

online resource).

As a result, the various non-standardised, in-house

procedures applied to the heterogeneous analytical plat-

forms led to very different datasets in terms of the number

of features retained and the characteristic features for the

two tests (Table 1). For instance, the number of features

varied by 2 orders of magnitude from the lowest to the

highest dimensional data Table (from 88 to 9699 for Test

#1 and from 120 to 9550 for Test #2). The number of

features was less heterogeneous within the LCMS

Table 2 Results of Test #1 for the various platforms

Platform

ID1
Mode Total

features

Discriminating

features from

independent

analysis

Number of

identified

standard

molecules2

Discriminating

features from

CCSWA

(r[ 0.8)

Features

shared by

both

methods

%1 of

shared

features

Discriminating

features from

CCSWA

(r[ 0.9)

Features

shared by

both

methods

%3 of

shared

features

N1 – 751 86 22 188 65 35 103 50 49

N2 – 252 93 24 43 33 77 30 22 73

N3 – 88 36 16 37 23 62 21 13 62

N4 – 9,699 NR 345 – 66

N5a – 233 133 23 110 68 62 60 43 72

O1P Pos 5,035 25 798 – 552

Q6P Pos 1,922 354 22 820 102 12 398 38 9.5

Q6N Neg 314 137 14 69 43 62 27 19 70

O3P Pos 1,827 265 23 194 194 100 158 158 100

O3N Neg 1,715 348 25 222 222 100 177 177 100

O4P Pos 2,668 11 433 – 256

Q1P Pos 1,181 118 21 129 108 84 104 95 91

Q1N Neg 1,288 210 13 171 171 100 152 152 100

Q2P Pos 1,688 440 NR 472 415 88 388 373 96

Q2N Neg 2,492 153 NR 268 149 56 203 143 70

Q3P Pos 908 167 13 184 83 45 144 66 46

Q4P Pos 909 202 23 176 85 48 151 74 49

Q4N Neg 438 74 15 58 58 100 52 52 100

Q5Pa Pos 6,992 2215 20 1431 1430 100 970 970 100

Q5Na Neg 5,167 1137 22 475 474 100 257 257 100

T1Pa Pos 580 192 22 139 139 100 117 117 100

T1Na Neg 398 101 14 77 77 100 66 66 100

Total number of features, number of discriminating features per statistical method and number of discriminating features shared by the two

statistical methods for each instrument
a These instruments are located on the same platform
1 N for NMR spectrometer, Q for QTOF mass spectrometer, O for Orbitrap mass spectrometer, T for TOF mass spectrometer. The P or N

appended to the mass spectrometer identifier number denotes positive or negative ionisation mode, respectively
2 Annotated standard molecules detected by each laboratory are reported in online resource Table 3; annotation was performed only on features

that statistically differed in the spiked samples, except for partners O1, Q2 and N4 (NR for non-reported)
3 The percentage of discriminating features (selected by the CCSWA) that were also selected as discriminating by the simple statistical analysis

carried out by each participating laboratory
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instruments (from 398 to 6992 in Test #1 and from 504 to

2271 in Test #2).

3.2 Group discrimination by statistical analyses

In Test #1 (high contrast), all the platforms used their own

statistical analyses and all partners were able to discrimi-

nate the spiked group from the non-spiked group (Tables 1,

2). The CCSWA performed by the referent partner brought

further external validation of each partner’s findings

(Table 2). Using either ESI–MS approaches and the exact

mass of the monoisotopic ion and isotopic distribution or

one-dimensional ppm shifts (NMR), from 16 to 23 were

identified by NMR, and from 13 to 25 of the 32 spiked

standards were identified by LCMS (both polarity modes)

(see online resource Table 3). From 36 to 133 discrimi-

nating features for NMR and from 74 to 2215 features for

LCMS were thus retained by the partners and characterised

the spiked molecules. The proportions of discriminating

features produced varied from 11 to 57 % in the NMR

instruments and from 5 to 33 % in the LCMS instruments

(from Table 2 data). The CCSWA calculated from the

combination of all the data tables confirmed the partner’s

statistical analyses, with a clear discrimination between the

spiked and non-spiked urine samples found by all platforms

(Fig. 1a and online resource Figure 5A).

Fig. 1 Individual common component and specific weights analysis

scores (a) and saliences or loadings (b) calculated from the Test #1

datasets. The first common component discriminates the control

group from the spiked group. The second common component

describes the inter-individual variability that was most common to all

the instruments. The third and fourth components highlight the

specific metabolic profiles of urine samples 8 and 5, respectively. For

the NMR instruments (NMR1, NMR3 and NMR5), the major part of

the variability (i.e., 70 %) explained the discrimination between the

two groups. NMR instruments characterised 10 % of the total

variability as inter-individual variability (saliences on the second

common component). Among the LCMS instruments, 20 to 50 % of

the total variability explained the inter-group variability (first

component), and 20 to 30 % of the total variability explained the

inter-individual variability. NMR2 was different from the other NMR

instruments because it was associated with, respectively, 35 and 38 %

of the total inter-group and inter-individual variability. Two particular

urine samples (individuals #5 and #8) were identified by all LCMS

instruments, and only NMR2 identified individual #8, in the same

proportion (approximately 5 % of total variability). a Open circles

denote the original urine samples, grey circles denote the matched

spiked samples. b Open diamond denotes NMR, black circles denote

Orbitrap, squares denote QTOF, and triangles denote TOF
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However, the NMR platforms generally performed

better than LCMS in distinguishing the spiked versus non-

spiked urine, with an average percentage variance (CC1

score) of 0.494 ± 0.092 compared to 0.316 ± 0.026 for

LCMS (P = 0.0159) (Fig. 1b). Conversely, the LCMS

platforms showed higher CC scores than did NMR in

depicting interindividual metabotypes (0.285 ± 0.092 and

0.132 ± 0.061 in CC2 for LCMS and NMR, respectively,

P = 0.0093, Fig. 1b). As a result, all the LCMS instru-

ments were equally proficient at distinguishing interindi-

vidual and intergroup variability, whereas NMR mainly

described intergroup variability, except NMR2, which

shared closer characteristics with the LCMS platforms than

with the other NMR instruments. Of note is that the relative

score distribution pattern summarizing the individual me-

tabotypes was not modified in the spiked versus native

urine samples in Test #1 either for NMR or LCMS

(Figs. 1a and 5A).

The urine of a mid-term pregnant woman introduced as

a blind outlier (individual #5) was detected in the common

space component 4 (Fig. 1a), but this occurred mainly with

LCMS (variance described in CC4 was 0.051 ± 0.003 for

LCMS and 0.033 ± 0.006 for NMR, P = 0.0113)

(Fig. 1b). Based on the exact mass only or on the exact

mass and isotopic distribution of the discriminating fea-

tures, most of the LCMS instruments found that the dif-

ference between this individual and the others was due to

estro-progestative components in the urine (online resource

Table 4). On the other hand, NMR found that the dis-

crimination was due to alanine, lactate, glycine, glutamine,

and threonine, among the most consensual metabolites

(online resource Table 4), as determined from chemical

shifts and database matching. Of note is that another outlier

(individual # 8) was unexpectedly revealed in CC3 of

Fig. 1a. It was also detected by most of the LCMS

instruments and by NMR2 (Fig. 1b).

Fig. 2 Individual common component and specific weights analysis

scores (a) and saliences or loadings (b) calculated from the Test #2

datasets. No common dimension discriminated the groups, although

common component #2 showed a trend towards group discrimination.

More than 50 % of the total variability of the NMR instruments and

of 2 LCMS instruments (Q2P and Q6P) was recovered in the first two

common dimensions. The variability of all other LCMS instruments

was mainly in the third and the fourth common components. The

structure of the samples associated with the second common

component is essentially due to the NMR instruments
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In Test #2 (low biological contrast), no discrimination

between the groups was determined based on the signals

detected by each instrument unless specific signal correc-

tion was applied (orthogonalisation to discard part of the

variance that was not linked to class characteristics) (Fearn

2000; Trygg and Vold 2002). The vitamin D specific bio-

logical effect was thus not measured as the major part of

the biological variance. Even if the two groups were not

statistically distinguishable, it was interesting to compute

the overall statistical analysis in order to estimate the

common biological information extracted by several

instruments and revealing individual metabotypes. The

CCSW analyses also confirmed the partner’s statistical

findings showing at best a tendency to distinguish among

the supplemented versus non supplemented vitamin D rats

(Fig. 2a and online resource Figure 5B).

For both tests, looking at online resource Figure 5, each

sample was represented in the common space (plot) as the

barycentre of all the individual platform results, with the

lines beaming towards the scores of the individual plat-

forms showing their dispersion around the barycentre. In

Test #1, this representation indicated that LCMS presented

less dispersion than NMR in depicting individual metabo-

types (score 2, online resource Figure 5A), whereas NMR

showed less dispersion in extracting intergroup differences

(score 1). This was no longer observed for the low contrast

plasma samples of Test #2 (online resource Figure 5B).

3.2.1 Estimation of the statistical link between instruments

The RV coefficient matrix was calculated on 22 data sets

for Test #1 and on 12 data sets for Test #2. For both tests,

the estimated average links (i.e., RV coefficient) of each

instrument with all of the others are shown in online

resource Fig. 2. RV coefficients can show artificially high

values when comparing megadata sets (Smilde et al. 2009).

We thus compared the observed to the re-sampled RV

values (Online resource Figure 2) and to the modified RV-

coefficient for large datasets designed by Smilde et al.

(2009) (online resource Figure 2). The observed RV values

were generally much higher than the random ones gener-

ated in both tests (online resource Figure 2) and were close

to the modified-RV (online resource Fig. 2), especially in

Test #1.

The RV values can define the convergence between the

instruments in our study, and is thus the ability of each

instrument not to deviate in reporting the individual met-

abolomes in the multivariate space.

In Test #1, the convergence of the metabolic profiles

between instruments was much better than in Test #2. Thus,

the average RV coefficients in Test #1 were close to 0.8

(online resource Figure 2) for all instruments, except for

NMR4 (0.67) and the Orbitrap LCMS O2N operating in

negative mode (0.64). The NMR2 instrument was more

similar to all the LCMS instruments (average RV equal to

0.90) than to the other NMR instruments (average RV equal

to 0.68). To discard the artificial convergence that may arise

from the addition of the standard metabolites, the RV were

recalculated while excluding the spiked urine samples. The

closeness between the instruments based on the RV values

was not modified, as shown in Table 3 and in Fig. 3b.

In Test #2, all instruments had similar levels of con-

cordance (average RV = 0.6), except for the LCMS

instrument O3P (Orbitrap 3 in positive mode), which had

an RV coefficient close to 0.4. This instrument clearly

provided profiling information that did not converge with

the others. Indeed, the distribution of the RV coefficients

based on random re-sampling was close (median = 0.3) to

the original RV coefficient.

When examining the RV coefficients calculated within

methods (e.g., either among NMR or among LCMS), NMR

showed somewhat less convergence in the profiling than

did LCMS in Test #1, irrespective of the artificial contrast

due to spiking (0.78 and 0.77 in NMR versus 0.87 and 0.87

for LCMS in spiked vs non-spiked samples, respectively).

While the same values for Test #1 were found in Test #2

for NMR, the convergence between LCMS was lower in

Test #2 (0.78 for NMR vs. 0.64 for LCMS) (Table 3).

When examining the between methods RV coefficients

(e.g., metabolic profiling convergence between NMR and

LCMS), the values decreased from*0.75 in Test #1 (urine

samples) to 0.54 in Test #2 (rat plasma samples) (Table 3).

Of note is that in Test #1, while QTOF Q6 (both in positive

and negative ionisation modes) was in higher correlation to

NMR than to the other LCMS, the reverse held true for

NMR2, which was in higher correlation to LCMS than to

the other NMR (Table 3). The RV coefficients matrix

(closeness) calculated between each instrument was further

visualised as an interaction network calculated for each test

(Fig. 3). Cut-off values of RV = 0.791 and 0.708 were

chosen in Test #1 and Test #2, respectively, to produce

networks including all nodes with the least number of

edges.

In the Test #1 network, most of the LCMS platforms

clustered together, except for QTOF Q6, which was the

LCMS platform sharing less common information with the

other platforms, irrespective of spiking. Conversely, NMR

N2 tightly clustered with most of the LCMS platforms,

away from the NMR region of the network (Fig. 3a, b).

Noticeably, when data normalisation was performed on the

total area, as with the other NMR, instead of on trimeth-

ylsilyl propionate (TSP), as done originally, the metabolic

profiling of NMR2 looked more like the other NMR than

like the LCMS (online resource Fig. 3). Among the LCMS,

one QTOF (Q2P) and one Orbitrap (O4P) shared the most

common information with all the other instruments. NMR1
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displayed the most ubiquitous information among the NMR

instruments (Figs. 3a, 4b).

In the Test #2 network, LCMS and NMR were also

located in two distinct regions (Fig. 3b). In this test, the

QTOF Q1P and the NMR 4 shared the most common

information with NMR and LCMS, respectively. QTOF

Q4P shared the most common information with the other

LCMS platforms.

Of note, for the LCMS instruments in both tests, the

number of features retained as well as the LCMS tech-

nology (QTOF, TOF or Orbitrap) did not influence the

proximity between instruments (Fig. 3).

3.3 Effect of urine dilution in Test #1

In addition to the obvious differences between the spiked

versus non-spiked urine samples, we addressed whether the

interindividual differences in the metabolic profiling found in

urine could result from variations in urine dilution. For this, a

correction factor was calculated for each non-spiked sample

based on the specific gravity method (Cone et al. 2009)

(Online Table 5). For bothNMRandLCMS, the total spectral

intensity was used to recalculate a new CCSWA model after

correction with the dilution factor (online resource Fig. 3).

This model only emphasised the interindividual metabotype

differences. It showed a very similar pattern of distribution

before and after dilution correction among the individuals for

themain related common components (CC2 panel A andCC1

panel B in Fig. 1 and in online resource Figure 4B, respec-

tively). However, although individuals #5 and #8 were again

identified as outliers, the normalisation of the data to the urine

dilution factor also revealed another heterologous individual

(#2, CC2 of online resource Figure 4, panel A) that was not

previously found. Interestingly, this outlier was mainly

detected by NMR (saliences for CC2, panel B of online

resource Figure 4).

4 Discussion

Our study was designed to evaluate the ability of untar-

geted metabolomics approaches to produce convergent

Table 3 Average RV

coefficients within the NMR

and MS instruments and the

average RV coefficients

between the NMR and MS

instruments for Test #1 and

Test #2

* These instruments are located

in the same platform
a This platform used an

Orbitrap analysis in Test #1 and

a QTOF analysis in Test #2
1 ‘‘Methods’’ refers to NMR

and MS technologies
2 N for NMR spectrometer, Q

for QTOF mass spectrometer, O

for Orbitrap mass spectrometer,

T for TOF mass spectrometer.

The P or N appended to the

mass spectrometer identifier

number denotes positive or

negative ionisation mode,

respectively
3 Calculation made by

excluding the spiked samples

and based only on parent

samples

Instrument2 Within-methods1 RVs Between-methods RVs

Test #1

(n = 25)

Test #13

(n = 25)

Test #2

(n = 18)

Test #1

(n = 25)

Test #13

(n = 25)

Test #2

(n = 18)

NMR

N1 0.86 0.85 0.84 0.74 0.80 0.56

N2 0.68 0.74 – 0.88 0.90 –

N3 0.82 0.79 0.72 0.68 0.70 0.51

N4 0.71 0.63 0.80 0.67 0.60 0.57

N5* 0.85 0.85 0.78 0.72 0.79 0.52

Average 0.78 0.77 0.78 0.74 0.76 0.54

MS

O1P 0.91 0.92 0.68 0.80 0.84 0.56

Q6P/O2Pa 0.76 0.76 0.64 0.88 0.86 0.52

Q6N 0.64 0.66 – 0.73 0.72 –

O3P 0.89 0.90 0.44 0.71 0.74 0.31

O3N 0.91 0.91 0.60 0.70 0.73 0.46

O4P 0.88 0.89 – 0.85 0.85 –

Q1P 0.87 0.87 0.70 0.61 0.65 0.65

Q1N 0.90 0.90 – 0.69 0.71 –

Q2P 0.90 0.90 – 0.85 0.85 –

Q2N 0.88 0.88 – 0.63 0.66 –

Q3P 0.92 0.92 0.67 0.79 0.81 0.55

Q4P 0.91 0.91 0.75 0.72 0.73 0.58

Q4N 0.89 0.91 – 0.67 0.70 –

Q5P* 0.92 0.89 0.66 0.78 0.79 0.66

Q5N* 0.87 0.93 – 0.64 0.67 –

T1P* 0.91 0.87 – 0.79 0.80 –

T1N* 0.90 0.91 – 0.71 0.74 –

Average 0.87 0.87 0.64 0.74 0.75 0.54
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results at the metabolic profiling level when performed on

the same set of samples by instruments of various tech-

nologies and located in different laboratories using non-

standardised procedures. This is to date the largest inter-

laboratory test implemented for metabolomics.

The samples analysed were generated through two

protocols purposely depicting a high and a low biological

contrast situation and extracted from two biofluids, plasma

and urine. These situations and matrices were thought to

reflect the typical analytical metabolomics situations

commonly encountered in human and animal studies.

Although in Test #1 we spiked the samples with known

standards, our main goal was not to make comparisons at

the molecular level but to evaluate the inter-instrument

convergence at the metabolic profiling level, which con-

stitutes the bottom line of untargeted metabolomics.

This approach differed from previous attempts in which

the instruments and/or the analytical conditions were in as

near identical conditions as possible (Ward et al. 2010;

Allwood et al. 2009; Viant et al. 2009; Benton et al. 2012)

or possessed some variations authorised in post-acquisition

procedures (Viant et al. 2009). Our test has the scope to

help us assess to what extent results can be platform

dependent and how trustworthy the findings may be when

obtained under non-standardised conditions using instru-

ments of different technologies.

The samples were analysed on relatively similar NMR

instruments but on rather different LCMS systems, where

the LC varied from conventional to very high pressure, was

from different vendors, and used different chromatographic

columns, ESI conditions, LCMS configurations (TOF,

QTOF, orbital technology) and instrument series (see

online resource). Additionally, specific spectral signal fil-

tering and deconvolution methods were used by each par-

ticipant. As a result of this instrumental, analytical,

acquisition and post-processing heterogeneity, the signal

generated by the various instruments could not be directly

compared on a feature (variable extracted from the work-

flow) basis. Neither could they be compared on a metab-

olite basis, owing to metabolite annotation difficulties and

discrepancies in instrument sensitivity. To circumvent this

difficulty, we implemented spiking experiments in one of

the two tests and also applied two statistical methods that

allowed the comparison of the entire dataset generated by

each platform rather than merely the individual features,

namely, CCSWA and calculation of RV coefficients. The

primary aim of this overall statistical analysis was to assess

the convergence of the metabolic profiling obtained by

Fig. 3 Correlations networks calculated from the pair-wise RV

coefficients matrix from Test #1 (a) with spiked and non-spiked

samples or with native urine samples only (b) and from Test #2 (c).
Node labelling: N NMR platforms, Q QTOF mass spectrometer,

O orbitrap mass spectrometer, T TOF mass spectrometer. The P or N

appended to the mass spectrometer identifier number denotes positive

or negative ionisation mode, respectively. Node shapes: hexagon for

nuclear magnetic resonance platforms, ellipse for mass spectrometers.

The node size is proportional to the number of features retained by

each instrument. The node colour from black to white indicates an

increasing node degree (number of edges per node). The edges

represent the RV coefficient values, with cut off values C0.791 in

Test #1 and C0.708 in Test #2). At this cut off level, O3P was

excluded from the Test #2 network (b)

b
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several types of instruments and depicted as spectral

information, regardless of the metabolite chemistry. In

other words, we investigated how biological status, trans-

lated into metabolomics profiles, could be related when

measured by instruments of various technological designs.

Our results also provided an overview of the number of

features that could be extracted from the same set of

samples compared with those that diverged dramatically

across the platforms, both in Test #1 and Test #2, mainly

due to post-processing methods. This is well highlighted in

Test #1 by the number of discriminating features found by

CCSWA related to the 32 standard molecules (Table 2).

The RV coefficients examining the pair-wise relationships

among the instruments also appeared unaffected by this

factor in both tests, as exemplified in online resource Fig. 2

(average RV) and Fig. 3. Hence, redundancy or parsimony

in the number of features extracted did not seem to com-

promise convergence in the information retrieved across

the platforms. Participants used both PLS-DA models and

VIP scores (Trygg et al. 2007) to select the discriminating

features or used a standard t test. Compared to the selection

made independently from CCSWA, the results were highly

overlapping, indicating the consistency of the discrimi-

nating features isolated across platforms and the statistical

methods used.

Not surprisingly, in the first test matching the native

urine and the urine spiked with the standard mixtures, all

the participants were able to discriminate the two groups

quite clearly. This was not due to any dilution effect owing

to the addition of the spiking solution since we carefully

controlled this factor (see methods section). Of note, the

addition of the standard mixture to the urine samples in

Test #1 did not improve the metabolic profiling conver-

gence (RV values) among either the NMR or the LCMS

results (Table 3). This is likely because the amount of

exogenous metabolites spiking the urines was constant

among all the urine samples and thus did not contribute to

the variation measured across the samples.

When the data were examined for NMR and LCMS

separately, it appeared that, whereas NMR reported steady

‘within’ RV values (0.78) across both tests, this was not the

case for LCMS, for which the RV values were lower in

Test #2 versus Test #1 (Table 3). This cannot be ascribed

to the lower sensitivity of LCMS in the low contrast situ-

ation (Test #2) because the addition of the standard mixture

to the urine (Test #1), which artificially increased the

contrast, did not result in a commensurate convergence

among LCMS (Table 3). In fact, the addition of the stan-

dards did not improve the convergence among the NMR

results, either. Compared to NMR, the lower RV values

observed within LCMS in Test #2 (plasma samples) versus

the RV of the non-spiked urine samples in Test #1 would

suggest a matrix-related effect, in which LCMS was

inferior to NMR in reporting the metabolic profiles in

plasma. This could arise from the trace amount of proteins

that remained in the plasma sample extracts, which would

impair the LCMS analyses. This issue remains to be

carefully addressed.

In Test #2, the vitamin D group could not be clearly

distinguished from the untreated group, but the treated

group displayed the greatest dispersion, suggesting indi-

vidual differences in the treatment response. Additionally,

in Test #2, a tendency for discrimination could be observed

in the common component 2, in which the NMR instru-

ments appeared more influential than did the LCMS

instruments, as indicated by the CC2 scores. The same

pattern also occurred for Test #1, in which the NMRs per-

formed slightly better than the LCMSs in discriminating the

groups (CC1 scores and loadings of Fig. 1). It should be

noted that for sensitivity reasons, the standard concentration

was 10-fold higher in the urine to be analysed by NMR. On

the other hand, the individual metabotypes were more

repeatedly reproduced across the LCMS instruments than

they were in NMR, at least in the Test #1 urine samples

(scores and loadings CC2 in Fig. 1a, b, low dispersion along

the inter-individual CC2 in online resource Figure 5A).

This is further outlined by the better performance of LCMS

in detecting the two outliers in the Test #1 urine and

especially in detecting the blind outlier. For the latter, most

of the LCMS instruments found estroprogestative hormone

derivatives and related steroid hormone derivatives as the

leading discriminating factors, as could be expected

according to the physiological situation of that individual (a

mid-term pregnant woman). NMR did not report similar

discriminating compounds but rather compounds such as

alanine, threonine, lactate, and glycine, which are difficult

to relate specifically to the particular physiological status of

the outlier. This might be due to differences in sensitivity, as

the concentrations of estroprogestative derivatives in

pregnant women are reported to range from 3 to 5 lmol/L

urine (0.5 to 0.8 lg/mL) (Johnson and Williams 2004),

which is within the lowest level or slightly below the limit

of detection for NMR. In addition, possible overlap with

other signals could impair detection. Also likely is that the

compounds found to be discriminating by NMR could be so

for LCMS as well, but to a lesser extent than the estropro-

gestative derivatives primarily detected by LCMS. They

could thus be excluded from the list of the features retained

at the high correlation threshold level chosen (r[ 0.8 for

LCMS). Also interestingly, some laboratories used auto-

mated annotation from METLIN for the XCMS output,

which gave either multiple hits for each m/z feature and/or

irrelevant annotation in the current biological context (see

Q6, O1, and most obviously O4 in online resource Table 4).

This is a good illustration of the care that should be

implemented in post-data acquisition curation.
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For confidentiality reasons, the discriminating metabo-

lites were not investigated for the unexpected outlier.

Interestingly though, LCMS also generally performed

better than did NMR in identifying this individual, except

for one NMR, which similarly pinpointed this individual

(common component 3 of Fig. 1b). This NMR additionally

distinguished itself from the other NMRs by clustering with

LCMS for the other characteristics, such as inter-individual

metabotypes description or group discrimination in Test #1

(common component 2 and common component 1 in

Fig. 1b, respectively). As a result, it also more closely

clustered with all LCMS in the network analysis (Fig. 3a).

The only noticeable difference with the other NMR plat-

forms was that normalisation was performed on trimeth-

ylsilyl propionate (TSP), whereas the other methods used

the total peak area. In general, normalisation is performed

on the total spectral area when dealing with NMR urine

analysis to prevent bias due to the dilution factor varying

widely between urine samples. This is less critical in

plasma due to the much tighter regulation of metabolite

contents. In fact, when NMR2 data were normalised to the

total intensity area as done for the other NMR, its speci-

ficity vanished and it performed closer to the other NMR

for its average RV values, CCSWA scores (except for

individual #8 detection) and RV closeness in network

analysis (online resource Figure 3).

Thus, although obvious differences owing to techno-

logical designs occurred between LCMS and NMR that

may lead to individual metabolite mismatching, the con-

vergence in the spectral characteristics extracted by either

LCMS or NMR was generally satisfactory in our studies

and could even be improved by adjusting the data post-

processing normalisation of an internal standard, such as

TSP. We also assessed whether different data scaling

would affect the results, but found this factor to be irrele-

vant (not shown). Additionally, when focusing on the

LCMS systems, none differed according to whether the

instrument configuration was based on time-of-flight or

orbital design, ionisation mode (positive/negative) or var-

ious LC systems. This result extends to multiple instru-

ments the findings on metabolic profiling made by others

comparing only two mass-analysers (Gika et al. 2010;

Glauser et al. 2013). However, one LCMS Orbitrap (O3)

was somewhat separated from the others in Test #2 when

run in positive mode but not in negative mode. This was

not observed in Test #1, thus indicating a poor contextual

acquisition due to an unidentified and non-constitutive

reason (e.g., source contamination). One instrument (Q6) in

Test #1 was also shifted away from the others, as illustrated

in the network display (Fig. 3a), but this was corrected

when the XCMS parameters were tuned differently and run

on the same original dataset (not shown). With regard to

this post-processing parameter, both the QTOF Q2 and the

Orbitrap O4 operated in positive mode shared the most

common information with all the other platforms in Test

#1, whether LCMS or NMR. O4 in particular, although

similar to O3, used the default XCMS conditions embed-

ded in MetaboAnalyst (http://www.metaboanalyst.ca/) and

displayed somewhat more robust relationships with the

other instruments. Nonetheless, at this stage we cannot

recommend XCMS specific parameters to be tuned to

improve LCMS profiling because a specific design is

required for such an objective (Smith et al. 2006). Of note

is that others found this deconvolution step weakly critical,

even when performed with different software and algo-

rithms (Gürdeniz et al. 2012).

Due to its robustness, the application of untargeted

metabolomics to epidemiological studies has been restric-

ted thus far to NMR (Holmes et al. 2008), although

methods have been implemented for large series for LC–

MS (Dunn et al. 2011). However, these latter could suffer

from mathematical bias. Conversely, LCMS is more sen-

sitive and produced data of higher information density. The

good convergence we found in the spectral information

extracted across LCMS and NMR also indicated that,

although the analytes to be detected may be individually

different, they all described the same biological status. This

is a further illustration that metabotypes are defined over

the whole metabolome, whose constituents are in close

equilibrium. Thus, an interesting strategy to analyse large

sets of samples would be to perform a screening using

NMR to select sub-groups of interest for which the meta-

bolomics coverage could be completed by LCMS.

5 Conclusion

Our primary aim was to assess the disparity of untargeted

metabolomics approaches in characterising the same me-

tabotypes translated into different spectral datasets col-

lected from instruments of various technologies under

unstandardised conditions. Our main finding is that there is

a high convergence in the spectral information produced

from the various instruments to describe the same set of

samples, irrespective of the type of standardisation,

deconvolution method, LCMS analyser or configuration

(QTOF, TOF, Orbitrap delivered by various LC systems,

ionisation modes). The performance of instruments and

methods to identify and match individual metabolites,

especially using LCMS systems (Benton et al. 2012),

remains to be explored in greater depth (such as in http://

www.abrf.org/index.cfm/group.show/MetabolomicsResearch

Group(MPRG).60.htm). Additionally, including GCMS in

such interlaboratory tests for comparison with other analys-

ers appears necessary. At last, our results suggest that data

fusion across platforms using either similar or different
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analytical methodologies and operated with a variety of

experimental settings is possible. Owing to these differences

of experimental settings, high level data fusion relying on

identified metabolites or annotated features should be the

most relevant approach. In this context, sharing common

quality control samples dedicated to a given biological

matrix should permit cross platform normalisation (Dunn

et al. 2011) and could thus be an efficient way to achieve this

goal. Finally, in addition to the analytical convergence, the

absolute validation of untargeted metabolomics in a ring test

would also rely on the convergence of the biological out-

comes arising from the analyses. This remains to be

investigated.
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