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Abstract: For centuries, Azadirachta indica or neem has been utilized as a primary source of medicine
due to its antimicrobial, larvacidal, antimalarial and antifungal properties. Recently, its potential as an
effective biopesticide has garnered attention, especially towards efficient and continuous production
of its bioactive compounds. The present study investigated the effect of the plant growth regulators
(PGRs) thiadiazuron (TDZ) and 2,4-dichlorophenoxyacetic acid (2,4-D) on the induction of colored
callus formation and subsequent accumulation of azadirachtin (AZA) in A. indica. An efficient
protocol was established for micropropagation and colored callus production of this species, followed
by quantification of AZA (a mixture of azadirachtin A and B) and its safety assessment. For induction
of the callus, leaf and petiole explants obtained from a young growing neem plant were excised and
cultured on Murashige and Skoog (MS) medium supplemented with TDZ (0.2–0.6 mg L−1) and 2,4-D
(0.2–0.6 mg L−1), either applied singly or in combination. Callus was successfully induced from both
explant types at different rates, where media with 0.6 mg L−1 of TDZ resulted in the highest fresh
weight (3.38 ± 0.08 g). In general, media with a single hormone (particularly TDZ) was more effective
in producing a high mass of callus compared to combined PGRs. A culture duration of six weeks
resulted in the production of green, brown and cream colored callus. The highest callus weight and
accumulation of AZA was recorded in green callus (214.53 ± 33.63 mg g−1 dry weight (DW)) induced
using TDZ. On the other hand, small amounts of AZA were detected in both brown and cream
callus. Further experimentation indicated that the green callus with the highest AZA was found to
be non-toxic (LC50 at 4606 µg mL−1) to the zebrafish animal model. These results suggested that
the addition of different PGRs during in vitro culture could prominently affect callus and secondary
metabolite production and can further be manipulated as a sustainable method for the production of
a natural and environmentally friendly pesticide.
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1. Introduction

Medicinal trees serve as one of the prominent sources of natural drugs, with about 80% of
the world’s population still solely dependent on herbal or traditional medicine to treat various
diseases [1–3]. Plant-derived pharmaceutical compounds are often preferred due to their safety, stability
and affordability [4]. Among the widespread species of mahogany (Meliaceae), Azadirachta indica
has been widely utilized in the healthcare and agriculture industries. Locally known as neem, this
tree was mentioned in Ayurvedic medicine as one of the oldest remedies to treat various human
diseases such as malaria, diabetes and skin infections, and it was also used as an appetite stimulator [5].
Neem extracts were also reported to possess inhibitory effects on several cancer cell lines such as
breast, gastrointestinal, gynecological, hematological, prostate and skin cancers [6]. Based on literature
surveys, over 300 structurally complex compounds have been identified [4,7]. Several classes of active
chemical compounds had been discovered in neem such as nimbin, nimbidin, salanin, azadirachtin
(AZA), polyphenolics, glycosides, dihydrochalcone, coumarin and tannins [8,9]. Nevertheless, the
most predominant active compound in neem is AZA, which accounts for the majority of the biological
activity of this species [10,11].

Neem has been conventionally propagated through seeds, however, there are many limitations
caused by its recalcitrant properties and short-term viability [12]. There are also complications
in selecting plants which are fast-growing and high-yielding in terms of secondary metabolite
production and uniform in genetic constituents [13,14]. Commercialization of neem products are still
in development due to insufficient natural resources and limited reports on its in vitro biochemical
properties. To overcome these hurdles, tissue culture techniques can be applied as a sustainable
alternative approach for mass and rapid propagation of this species, while minimizing the harvest of
this plant from its natural habitat. Plant cell culture technology has served as an effective alternative
system for the in vitro production of bioactive molecules to meet current market demands.

Besides that, modifications in terms of media composition and in vitro culture conditions are key
elements in the production of targeted bioactive compounds. In the past few years, researchers have
initiated callus lines from juvenile leaves and petioles of neem followed by the development of shoots
and roots through the manipulation of growth regulators [15–17]. Indirect shoots and roots were also
initiated from callus cultures of anther and leaf discs [18,19]. Furthermore, researchers have attempted
to develop methods to produce valuable secondary metabolites in vitro. This technique serves as
a valuable alternative to yield a continuous and sustainable production of secondary metabolites,
as it is independent of climates and geographic location [20]. The yield of secondary metabolites
produced through the conventional approach often varies depending on various other external factors
such as soil composition, the presence of endophytic organisms, altitude, processing, and storage
conditions [21,22]. On the other hand, the production of in vitro-derived secondary metabolites reduces
the need for large land use and the heavy use of labor for planting, maintaining and harvesting the
plants [23]. This method offers the potential for production scale-up through suspension culture and
the use of bioreactors, genetically uniform starting material (clonal plants) as well as a more uniform
secondary metabolite production, as all external factors affecting the growth of the plant materials can
be controlled [24].

Preliminary studies are being conducted to elevate the continuous production of azadirachtin
(AZA), a major compound which contributes to neem biological activities. Applications of AZA range
from its utilization as an insect biocontrol agent, to vast medicinal and pharmacological applications.
For example, AZA demonstrated larvicidal activity against Anopheles stephensi, a malarial vector [25],
and possessed better antioxidant potential than ascorbate to scavenge free radicals [26]. Other than that,
AZA was reported to possess chemo-preventive potential, whereby it inhibited the development of
7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinomas, reportedly
through the upregulation of antioxidant and carcinogen detoxification enzymes, reducing oxidative
DNA damage and the prevention of pro-carcinogen activation [27]. Moreover, azadirachtin A has
also been reported to exhibit hepatoprotective effects in rats, whereby treatments with azadirachtin A
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resulted in the amelioration of carbon tetrachloride (CCl4)-induced hepatotoxicity in a dose-dependent
manner [28].

The first report on AZA production in androgenic haploid callus cultures was established by
Srivastava and Chaturvedi [29], where anthers were used as explants to induce callus, followed by
plantlet regeneration, which were then examined for AZA content. Akula et al. [30] have successfully
induced somatic embryos from root and nodal segments, yet only a slight amount of AZA was detected
in the derived cultures. Recently, AZA was also produced from transformed hairy roots of A. indica,
which was cultured in a stirred tank reactor under optimized in vitro conditions and with the addition
of elicitors [31]. Sujanya et al. [32] reported that nutritional variation influences the biomass content
and AZA production.

Even though there are several reported publications on the production of AZA from neem in the
literature, to date there is no available published report on the effect of 2, 4-dichlorophenoxyacetic acid
(2, 4-D) and thidiazuron (TDZ) on the production of colored callus in A. indica and the subsequent
assessment of their AZA (mixture of azadirachtin A and B) content. The present study was carried out
to optimize and develop an efficient in vitro protocol for the production of callus of various colors in
A. indica using different explants, as well as to quantify the levels of AZA in the colored callus and
assess its toxicity. The outcomes of this study will yield valuable insights into the manipulation of
culture conditions to produce colored materials (callus) with bioactive properties which can further
be utilized as functional natural colorants or for the sustainable production of bioactive secondary
metabolites such as AZA, a valuable biopesticide.

2. Materials and Methods

2.1. Explant Source and Surface Sterilization

Surface sterilization of explants was done according to Daud et al. [33] with some modifications.
Leaf and petiole explants of a young and apparently healthy grown A. indica tree were collected.
At first, the plant materials were washed under running tap water for an hour and then soaked in
0.3% (w/v) of Carbendazim (fungicide) solution for another hour. The traces of fungicide were rinsed
off with distilled water and then soaked in 70% ethanol for 1 minute. The explants were rinsed with
sterile distilled water once and soaked again in 70% (v/v) of commercially available bleach, Chlorox®

(5.25% (w/v) sodium hypochlorite as the active ingredient), with the addition of a few drops of Tween
20 for 15 minutes. Finally, the traces of detergent were rinsed three times with sterile distilled water
and inoculations of explants were done aseptically in a laminar flow hood.

2.2. Callus Cultures Establishment

Following surface sterilization, both leaf and petiole explants were blotted dry. Leaves were
cut into pieces containing the midrib and two veins at each side of the midrib. Callus cultures were
initiated on solid Murashige and Skoog (MS) [34] media comprising of 30 g L−1 sucrose, 4.4 g L−1 MS
powder (Duchefa) and 8 g L−1 gelrite, supplemented with 2, 4-D (0.2 mg L−1, 0.4 mg L−1 or 0.6 mg L−1)
and TDZ (0.2 mg L−1, 0.4 mg L−1 or 0.6 mg L−1) singly or in combination. Before autoclaving (at 121 ◦C
for 20 min), the pH of the media was adjusted to 5.8. Explants were cultured in a sterile tube and were
incubated in dark conditions in a growth room at 25 ± 1 ◦C. Visual observations of the morphology of
the callus such as the color and texture, frequency of response, days taken for callus induction and
fresh weight of the callus were recorded for six weeks.

2.3. Isolation and Extraction of Azadirachtin

On the sixth week of culture incubation, callus were harvested and grouped according to their color
based on morphological observations (green/brown/cream). Samples were subjected to freeze-drying
using a Labconco freeze dryer (Labconco Corporation, MO 64132 United States) at−50 ◦C. The extraction
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of AZA from the colored callus and preparation of the standard curve were done according to Singh
and Chaturvedi [35] with some modifications.

Prior to extraction, colored callus were washed with distilled water and blotted dry. Thereafter,
the samples were freeze dried until a constant weight was achieved. The drying temperature was kept
low to prevent the thermal decomposition of metabolites. Prior to soaking, the samples were ground in
a chilled mortar and pestle to enhance the extraction process. The whole extraction process was done
in dim light conditions as the compounds are sensitive to light and heat. The dried samples (1–2 g DW)
were soaked in methanol overnight at 4 ◦C, followed by sonification for 45 min. The mixtures were
centrifuged using a refrigerated centrifuge at 5000 rpm for 10 min. The supernatant was collected and
water was added at a ratio of 40:60 (40% water and 60% methanol). Following the addition of water,
the mixture was partitioned against equal amounts of dichloromethane (DCM) in separating funnels.
The solution was mixed thoroughly and was left to separate into two immiscible solvents (methanol +

water and DCM). Following separation, the upper water–methanol layer was discarded and the lower
phase of the DCM layer was collected and then evaporated to form dry matter. The retrieved dry
matter was weighed and re-dissolved in HPLC grade methanol at a desired concentration and used as
a stock solution. Then, the prepared extracts were filtered through a 0.22-mm nylon membrane filter
prior to HPLC analysis.

2.4. HPLC Quantification of Azadirachtin

Quantitation of AZA was conducted on an Agilent 1200 series HPLC system (Agilent Technologies,
USA) comprised of a binary pump with an autosampler injector, micro vacuum degassers,
a thermostatted column compartment and a diode array detector. A ZORBAX SB-C18 endcapped
5 µm, 4.6 mm × 250 mm reverse phase column (Agilent Technologies, USA) was used and the mobile
phase was 90% methanol and 10% water at a flow rate of 0.5 mL−1. AZA was detected at 210 nm
and the chromatographic peaks of the analytes were determined by comparing the retention time of
the samples with an AZA standard (≈ 95%). The eluents used were as follows: (A) acetonitrile:water
(9:1 v/v) and (B) ethyl acetate. The solvent gradient was developed by: 0–40% solvent B (0–20 min),
40–60% solvent B (20–25 min), 60–100% solvent B (25–25.1 min), 100% solvent B (25.1–35 min) and 100%
solvent B (35–35.1 min) at a flow rate of 1.0 mL min−1. The column was allowed to re-equilibrate in
100% solvent A for 10 min prior to the next injection. The temperature of the column was maintained
at 20 ◦C. The injection volume was 10 µL. The AZA compound was detected by co-chromatography
with standards and by elucidation of their spectral characteristics using a photo-diode array detector.
The quantity of the AZA compound was determined by comparing their relative measurement, as
revealed by integrated HPLC peak areas. The overall AZA quantities in each colored callus were
reported in terms of milligram per 1.0 dry weight of matter (mg/g DW).

2.5. Toxicity Analysis

2.5.1. Sample Preparations and Zebrafish Maintenance and Breeding

For preparation of the extract for the zebrafish toxicity tests, the A. indica green callus was
oven-dried at 33 ◦C, macerated and then soaked in methanol for 24 h (at 4 ◦C). Following that, the
mixture was centrifuged at 5000 rpm for 10 min and the supernatant was collected and evaporated
to dryness using a rotary evaporator at 50 ◦C. After that, the dried extract was reconstituted in
Dimethyl sulfoxide, DMSO (1 g mL−1 of DW of green callus). For the purpose of the analysis, a stock
solution (5 mg mL−1) of the green callus extract was prepared by dissolving the extract in sterile
deionized water. The working solutions were prepared by diluting the stock solution in embryo media
(Danio–SprintM solution) in 2-fold serial dilutions to six concentrations ranging from 500–5000 µg mL−1

in a 96-well microplate. Embryos in embryo media only (Danio–SprintM solution) were used as a
negative control (untreated).
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The keeping and raising of zebrafish (Danio rerio F. Hamilton, 1822) brood stocks were performed
under the permission of the Institutional Animal Care and Use Committee (IACUC), Universiti Putra,
Malaysia. Briefly, a pair of adult zebrafish was placed into a breeding tank prior to the day of breeding
setup. On the following day, the embryos were collected using egg collector, washed and incubated in
embryo media (Danio–SprintM solution) for approximately 2 hours. Dead (coagulated) embryos were
discarded and only healthy fertilized embryos were selected for the zebrafish embryo toxicity assay.

2.5.2. Zebrafish Embryo Toxicity (ZFET) Assay

The zebrafish embryo toxicity assay was carried out based on the Organization for Economic
Cooperation and Development (OECD) guidelines for fish embryo toxicity (FET) tests [36]. Briefly,
12 zebrafish embryos (one embryo/well) at 24 hours post-fertilization (24 hpf) were exposed to A. indica
extract (200 µL) in 96-well microplates at six different concentrations ranging from 500–5000 µg mL−1.
The toxicity of the extracts towards the zebrafish embryos was also compared to a commercial chemical
pesticide (chlorpyrifos, 21.2% w/w) at the recommended field concentration (31.75 µg mL−1). Treated
embryos were incubated at room temperature (25–28 ◦C) for 5 days. The cumulative mortality and
developmental malformations of the embryos and larvae were observed and determined at every 24 h
interval until 120 hours post exposure (hpe). Survival rate, hatching rate, heart rate, morphological
malformation and teratogenic defects were observed and images/videos were captured and recorded
using an inverted microscope attached to a digital camera. The heartbeat was counted from three
selected embryos using a stopwatch for 1 minute. Lethal endpoints were characterized by coagulation
and no heartbeat. Developmental anomalies such as pericardial edema, yolk sac edema, non-hatched,
curved body and bent tail were recorded. The toxicity of the extracts was categorized according
to Ohikhena et. al. [37], where plant extracts showing LC50 values greater than 1000 µg mL−1 are
considered non-toxic, 500–1000 µg mL−1 are considered weakly toxic and less than 500 µg mL−1 are
considered toxic.

2.6. Statistical Analysis

All tissue culture experiments were carried out in triplicate. Statistical analysis was done by
one-way analysis of variance (ANOVA) followed by Duncan’s multiple range test (DMRT) at 5%
significance level using SPSS software. All results were reported as mean ± standard error (SE) of
triplicate experiments. For the zebrafish toxicity analysis, all graphs were generated by using GraphPad
Prism version 7.0 (GraphPad Software, Inc.).

3. Results

3.1. Development of Callus in vitro

In this study, the PGRs TDZ and 2,4-D were used either singly or in combination to induce the
formation of callus of various colors in A. indica (Figure 1). The induction of callus formation from
leaf explants cultured on single PGR treatments was observed after 14 days of culture on MS media
with both 0.6 mg L−1 of TDZ and 2,4-D. Generally, the number of days taken for the leaf explants to
respond reduced significantly as the concentrations of the PGRs used increased (Table 1). Interestingly,
supplementation of only TDZ to the media yielded the formation of only green callus, in contrast
to when 2, 4-D was added singly (Table 1). On the other hand, addition of only 2, 4-D to the media
produced brown and cream callus (Table 1). Meanwhile, as shown in Table 2, the combination of both
TDZ and 2,4-D in the media was observed to yield green callus at all concentrations used, but only
produced brown callus when 2,4-D was combined with high TDZ concentrations (0.4–0.6 mg L−1).
It was also observed that the initiation of callus formation from leaf explants was delayed when the
hormones were used in combination.
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Figure 1. Production of colored callus from leaf explants of Azadirachta indica. (a) Green callus 
obtained from Murashige and Skoog (MS) media with added thiadiazuron (TDZ). (b) Brown callus 
obtained from MS media with added 2,4-dichlorophenoxyacetic acid (2,4-D). (c) Cream callus 
obtained from MS media with added 2, 4-D. (d) Green and brown callus obtained from MS media 
with added TDZ plus 2,4-D. (e) Brown and cream callus obtained from MS media with added 2,4-D. 

Table 1. Effect of single TDZ and 2,4-D supplementation on the production of colored callus from leaf 
explants of Azadirachta indica. 

MS + 
Hormone 
(mg L-1) 

 

Fresh 
Weight 

(g) of Callus 

Percentage 
(%) of 

Explants 
That 

Produced A 
Green 
Callus 

Percentage 
(%) of 

Explants 
That 

Produced A 
Brown 
Callus 

Percentage 
(%) of 

Explants 
That 

Produced A 
Cream 
Callus 

Number of 
Days for 

Explants to 
Respond 

Callus 
Texture 

Control 0.22 ± 0.01a NR 100.00 ± 0.00a NR 41 ± 0.66d watery 
0.2 TDZ 2.08 ± 0.05d 100.00 ± 0.00a NR NR 20 ± 0.57b compact 
0.4 TDZ 2.41 ± 0.09e 100.00 ± 0.00a NR NR 15 ± 0.88a compact 
0.6 TDZ 3.38 ± 0.08f 100.00 ± 0.00a NR NR 14 ± 0.33a compact 
0.2 2,4-D 0.96 ± 0.06c NR 100.00 ± 0.00a 60.00 ± 2.08 25 ± 0.33c watery 
0.4 2,4-D 0.82 ± 0.07bc NR 100.00 ± 0.00a 3.33 ± 1.52 16 ± 0.88a watery 
0.6 2,4-D 0.76 ± 0.03b NR 100.00 ± 0.00a 16.67 ± 1.15 14 ± 0.33a watery 
Data represent mean value ± standard error (SE) with 30 explants in each treatment. Means with 
different letters in the same column are significantly different at p ≤ 0.05 according to Duncan’s 
multiple range test (DMRT). NR = no response. 

Table 2. Effect of combined TDZ and 2,4-D supplementation on the production of colored callus from 
leaf explants of Azadirachta indica. 
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Control 0.22 ± 0.01ab NR 100.00 ± 0.00b NR 41 ± 0.66e watery 
0.2 T + 0.2 D 0.43 ± 0.04d 100.00 ± 0.00a NR NR 32 ± 1.15d compact 
0.2 T + 0.4 D 0.31 ± 0.03c 100.00 ± 0.00a NR NR 29 ± 0.58cd compact 
0.2 T + 0.6 D 0.56 ± 0.03e 100.00 ± 0.00a NR NR 29 ± 0.66cd compact 
0.4 T + 0.2 D 0.34 ± 0.04c 100.00 ± 0.00a NR NR 31 ± 0.57d compact 

0.4 T + 0.4 D 0.34 ± 0.03c 100.00 ± 0.00a 100.00 ± 0.00b NR 31 ± 0.57d watery + 
compact 

0.4 T + 0.6 D 0.29 ± 0.03bc 100.00 ± 0.00a 100.00 ± 0.00b NR 31 ± 0.57d 
watery + 
compact 

0.6 T + 0.2 D 0.19 ± 0.03a 100.00 ± 0.00a 100.00 ± 0.00b NR 18 ± 1.52a 
watery + 
compact 

0.6 T + 0.4 D 0.18 ± 0.02a 100.00 ± 0.00a 100.00 ± 0.00b NR 23 ± 1.73b 
watery + 
compact 

Figure 1. Production of colored callus from leaf explants of Azadirachta indica. (a) Green callus obtained
from Murashige and Skoog (MS) media with added thiadiazuron (TDZ). (b) Brown callus obtained
from MS media with added 2,4-dichlorophenoxyacetic acid (2,4-D). (c) Cream callus obtained from MS
media with added 2, 4-D. (d) Green and brown callus obtained from MS media with added TDZ plus
2,4-D. (e) Brown and cream callus obtained from MS media with added 2,4-D.

Table 1. Effect of single TDZ and 2,4-D supplementation on the production of colored callus from leaf
explants of Azadirachta indica.

MS +
Hormone
(mg L−1)

Fresh Weight
(g) of Callus

Percentage
(%) of

Explants That
Produced A

Green Callus

Percentage
(%) of

Explants That
Produced A

Brown Callus

Percentage
(%) of

Explants That
Produced A

Cream Callus

Number of
Days for

Explants to
Respond

Callus
Texture

Control 0.22 ± 0.01 a NR 100.00 ± 0.00 a NR 41 ± 0.66 d watery

0.2 TDZ 2.08 ± 0.05 d 100.00 ± 0.00 a NR NR 20 ± 0.57 b compact

0.4 TDZ 2.41 ± 0.09 e 100.00 ± 0.00 a NR NR 15 ± 0.88 a compact

0.6 TDZ 3.38 ± 0.08 f 100.00 ± 0.00 a NR NR 14 ± 0.33 a compact

0.2 2,4-D 0.96 ± 0.06 c NR 100.00 ± 0.00 a 60.00 ± 2.08 25 ± 0.33 c watery

0.4 2,4-D 0.82 ± 0.07 b,c NR 100.00 ± 0.00 a 3.33 ± 1.52 16 ± 0.88 a watery

0.6 2,4-D 0.76 ± 0.03 b NR 100.00 ± 0.00 a 16.67 ± 1.15 14 ± 0.33 a watery

Data represent mean value ± standard error (SE) with 30 explants in each treatment. Means with different letters in
the same column are significantly different at p ≤ 0.05 according to Duncan’s multiple range test (DMRT). NR =
no response.

Table 2. Effect of combined TDZ and 2,4-D supplementation on the production of colored callus from
leaf explants of Azadirachta indica.

MS +
Hormone
(mg L−1)

Fresh Weight
(g) of Callus

Percentage of
(%) Explants

That
Produced A

Green Callus

Percentage of
(%) Explants

That
Produced A

Brown Callus

Percentage of
(%) Explants

That
Produced A

Cream Callus

Number of
Days for

Explants to
Respond

Callus
Texture

Control 0.22 ± 0.01 a,b NR 100.00 ± 0.00 b NR 41 ± 0.66 e watery

0.2 T + 0.2 D 0.43 ± 0.04 d 100.00 ± 0.00 a NR NR 32 ± 1.15 d compact

0.2 T + 0.4 D 0.31 ± 0.03 c 100.00 ± 0.00 a NR NR 29 ± 0.58 c,d compact

0.2 T + 0.6 D 0.56 ± 0.03 e 100.00 ± 0.00 a NR NR 29 ± 0.66 c,d compact

0.4 T + 0.2 D 0.34 ± 0.04 c 100.00 ± 0.00 a NR NR 31 ± 0.57 d compact

0.4 T + 0.4 D 0.34 ± 0.03 c 100.00 ± 0.00 a 100.00 ± 0.00 b NR 31 ± 0.57 d watery +
compact

0.4 T + 0.6 D 0.29 ± 0.03 b,c 100.00 ± 0.00 a 100.00 ± 0.00 b NR 31 ± 0.57 d watery +
compact

0.6 T + 0.2 D 0.19 ± 0.03 a 100.00 ± 0.00 a 100.00 ± 0.00 b NR 18 ± 1.52 a watery +
compact

0.6 T + 0.4 D 0.18 ± 0.02 a 100.00 ± 0.00 a 100.00 ± 0.00 b NR 23 ± 1.73 b watery +
compact

0.6 T + 0.6 D 0.16 ± 0.02 a 100.00 ± 0.00 a 100.00 ± 0.00 b NR 27 ± 1.00 c watery +
compact

Data represent mean value ± standard error (SE) with 30 explants in each treatment. Means with different letters in
the same column are significantly different at p ≤ 0.05 according to Duncan’s multiple range test (DMRT). NR = no
response; T = TDZ; D = 2,4-D.
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In this study, the production of callus was also initiated from the petioles of A. indica. Our results
showed that the initiation of callus formation from the petiole explants occurred faster when PGRs
were used singly, producing callus as early as five days after culture (Table 3), but the response time
was observed to increase when higher hormone concentrations were used. Similarly, petiole explants
cultured on media only with added TDZ produced exclusively green callus (Table 3). However, the
addition of 2,4-D to the petiole cultures was observed to yield both green and brown callus (Table 3).

Table 3. Effect of single TDZ and 2,4-D supplementation on the production of colored callus from
petiole explants of Azadirachta indica.

MS +
Hormone
(mg L−1)

Fresh Weight
(g) of Callus

Percentage of
(%) Explants

That
Produced A

Green Callus

Percentage of
(%) Explants

That
Produced A

Brown Callus

Percentage of
(%) Explants

That
Produced A

Cream Callus

Number of
Days for

Explants to
Respond

Callus
Texture

Control NR NR NR NR NR NR

0.2 TDZ 0.56 ± 0.17 d 100 ± 0.00 a NR NR 5 ± 1.52 a compact

0.4 TDZ 0.30 ± 0.08 a,b 100 ± 0.00 a NR NR 5 ± 0.67 a compact

0.6 TDZ 0.35 ± 0.12 b 100 ± 0.00 a NR NR 9 ± 1.54 c compact

0.2 2,4-D 0.57 ± 0.18 d 100 ± 0.00 a 100 ± 0.00 a NR 8 ± 0.53 b watery

0.4 2,4-D 0.34 ± 0.15 a 100 ± 0.00 a 100 ± 0.00 a NR 11 ± 1.66 e watery

0.6 2,4-D 0.42 ± 0.17 c 100 ± 0.00 a 100 ± 0.00 a NR 10 ± 0.75 d watery

Data represent mean value ± standard error (SE) with 30 explants in each treatment. Means with different letters in
the same column are significantly different at p ≤ 0.05 according to Duncan’s multiple range test (DMRT). NR =
no response.

Petiole explants were also cultured on media supplemented with both TDZ and 2,4-D (Table 4).
Data analysis revealed that the combination of both TDZ and 2,4-D resulted in the formation of
green callus at all PGR concentrations tested. In contrast, brown callus were only formed at high
TDZ concentrations (0.4–0.6 mg L−1) and no formation of cream callus was seen from all single and
combined PGR treatments (Tables 3 and 4). Furthermore, the fresh weight of the callus produced from
all treatments were also recorded to determine the most optimum callus induction media (CM) and the
best explant type for callus production of this species. Overall, significantly higher callus biomass was
obtained when leaves were used as the explant source (Tables 1–4). Higher callus weights were also
observed when the plant hormones were applied singly compared to when both TDZ and 2,4-D were
used in combination (Tables 1–4). TDZ supplementation also resulted in better callogenesis from the
explants compared to 2,4-D, where MS media supplemented with only 0.6 mg L−1 TDZ was identified
as the most optimum callus induction media (CM) for A. indica, yielding 3.38 ± 0.08 g of callus from
leaf explants (Table 1).

Table 4. Effect of combined TDZ and 2,4-D supplementation on the production of colored callus from
petiole explants of Azadirachta indica.

MS +
Hormone
(mg L−1)

Fresh Weight
(g) of Callus

Percentage of
(%) Explants

That
Produced A

Green Callus

Percentage of
(%) Explants

That
Produced A

Brown Callus

Percentage of
(%) Explants

That
Produced A

Cream Callus

Number of
Days for

Explants to
Respond

Callus
Texture

Control NR NR NR NR NR NR

0.2 T + 0.2 D 0.20 ± 0.02 e 100 ± 0.00 a 100 ± 0.00 a NR 32 ± 1.15 b watery

0.2 T + 0.4 D 0.08 ± 0.00 d 100 ± 0.00 a NR NR 29 ± 1.15 b compact

0.2 T + 0.6 D 0.05 ± 0.00 c 100 ± 0.00 a NR NR 30 ± 0.58 b compact

0.4 T + 0.2 D 0.08 ± 0.01 d 100 ± 0.00 a NR NR 31 ± 0.58 b compact
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Table 4. Cont.

MS +
Hormone
(mg L−1)

Fresh Weight
(g) of Callus

Percentage of
(%) Explants

That
Produced A

Green Callus

Percentage of
(%) Explants

That
Produced A

Brown Callus

Percentage of
(%) Explants

That
Produced A

Cream Callus

Number of
Days for

Explants to
Respond

Callus
Texture

0.4 T + 0.4 D 0.05 ± 0.00 c 100 ± 0.00 a 100 ± 0.00 a NR 31 ± 2.10 5 watery +
compact

0.4 T + 0.6 D 0.04 ± 0.00 b,c 100 ± 0.00 a 100 ± 0.00 a NR 31 ± 1.90 d watery +
compact

0.6 T + 0.2 D 0.05 ± 0.00 c 100 ± 0.00 a 100 ± 0.00 b NR 18 ± 3.10 e watery +
compact

0.6 T + 0.4 D 0.05 ± 0.00 c 100 ± 0.00 a 100 ± 0.00 b NR 23 ± 1.73 f watery +
compact

0.6 T + 0.6 D 0.02 ± 0.02 b 100 ± 0.00 a 100 ± 0.00 b NR 27 ± 1.16 f watery +
compact

Data represent mean value ± standard error (SE) with 30 explants in each treatment. Means with different letters in
the same column are significantly different at p ≤ 0.05 according to Duncan’s multiple range test (DMRT). NR = no
response; T = TDZ; D = 2,4-D.

3.2. Extraction and Quantification of Azadirachtin (AZA) from Colored Callus

The comparison of AZA content between green, brown and cream colored callus was carried
out. Total AZA was extracted using absolute methanol, followed by liquid–liquid extraction using
dichloromethane according to the protocol described by Singh and Chaturvedi [35]. We had previously
reported that the colored callus of A. indica exhibits a wide range of biological actions such as radical
scavenging and cytotoxic activities [38]. Due to these promising bioactivities, the colored callus obtained
in this study (green, brown and cream) were evaluated for the presence of AZA, which is the most
abundant bioactive compound of this species. The content of AZA in the colored callus extracts was
quantified using HPLC (Figure 2). Based on the results, it was observed that green callus extract
contained the highest level of AZA (214.53 ± 33.63 mg g−1 DW), followed by brown callus extract
(51.56 ± 7.22 mg g−1 DW) and cream callus extract (28.49 ± 4.66 mg g−1 DW). These results are parallel
to previously reported biochemical activities, which showed that green callus extracts possessed the
highest bioactive compound content, antioxidant and cytotoxic potentials [38].
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3.3. Toxicity Effects of Azadirachta indica Extracts on Zebrafish Embryos

A. indica extracts have been widely commercialized and used as a natural pesticide to protect
plants from pest attacks. Thus, in this study, the possible toxicity of green callus extract was evaluated
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and compared to a common commercial chemical pesticide, chlorpyrifos, at its recommended field
concentration (31.75 µg mL−1). Untreated embryos had a 100% survival rate throughout the analysis
(Figure 3). Embryos treated with A. indica callus extracts at concentrations <4000 µg mL−1 had a high
survival rate (90%), while embryos treated with 5000 µg mL−1 extract yielded a low survival rate
(<10%) at 24 hpe which further declined to less than 5% after 72 hpe. In contrast, embryos exposed
to chlorpyrifos at the recommended field concentration (31.75 µg mL−1) had a 0% survival rate after
24 hpe. Based on data analysis, the median lethal concentration (LC50 value) of the A. indica callus
extracts was determined to be 4606 µg mL−1 (Figure 4), which was thus considered as non-toxic [37].
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Figure 4. Effect of Azadirachta indica extracts (500–5000 µg mL−1) on the mortality rate of
zebrafish embryos after 120 h post exposure (hpe). The median lethal concentration (LC50) value of
Azadirachta indica extract resulting in 50% mortality of zebrafish embryos was 4606 µg mL−1.

The hatching rate of zebrafish embryos upon treatment with A. indica callus extracts (500–5000 µg
mL−1) was observed until 120 hpe (Figure 5). Results showed that the embryos treated with A. indica
callus extracts at concentrations below 4000 µg mL−1 were able to hatch into larvae. In contrast,
zebrafish embryos treated with 5000 µg mL−1 A. indica callus extract had a 0% hatching rate, similar to
those treated with chlorpyrifos. Since the heart is the first organ to function during the development
of many model organisms, including zebrafish [39], the heart rate of the resulting larvae was also
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monitored. Figure 6 depicts the heart rate of zebrafish larvae at 96 hpe after treatment with A. indica
callus extracts, where the normal heart rate was recorded at 136 beats min−1. This data is in accordance
with a previous report which indicated that the zebrafish normal embryonic heart rate is much closer
to that of humans at 120–180 beats per minute [40]. Nevertheless, since A. indica callus extract at
5000 µg mL−1 resulted in a high mortality rate (>90%) at 96 hpe, the heart rates of zebrafish larvae at
this concentration and those treated with chlorpyrifos solution were not determined.

Plants 2020, 9, x FOR PEER REVIEW 10 of 17 

 

A. indica callus extracts, where the normal heart rate was recorded at 136 beats min−1. This data is in 
accordance with a previous report which indicated that the zebrafish normal embryonic heart rate is 
much closer to that of humans at 120–180 beats per minute [40]. Nevertheless, since A. indica callus 
extract at 5000 µg mL−1 resulted in a high mortality rate (>90%) at 96 hpe, the heart rates of zebrafish 
larvae at this concentration and those treated with chlorpyrifos solution were not determined. 

 
Figure 5. Hatching rate of zebrafish embryos after 0 to 120 hours post exposure with Azadirachta indica 
callus extracts at concentrations of 500–5000 µg mL−1. 

 
Figure 6. Effect of Azadirachta indica callus extracts at concentrations of 500–4000 µg mL−1 on heart rate 
of zebrafish larvae at 96 hours post exposure. 

Furthermore, the possible morphological defects of the embryos and larvae were also monitored 
and measured until 120 hpe. Results showed that there were no teratogenic defects observed in the 
embryos and larvae treated with A. indica callus extracts at all concentrations from 0 to 120 hpe 
(Figure 7). Exposure to A. indica callus extract at 5000 µg mL−1 inhibited the hatching of the embryos 
and killed the unhatched larvae (Figure 7c). On the other hand, treatment with 31.75 µg mL−1 
chlorpyrifos caused coagulation after 24 hpe (Figure 7d). 

Figure 5. Hatching rate of zebrafish embryos after 0 to 120 hours post exposure with Azadirachta indica
callus extracts at concentrations of 500–5000 µg mL−1.

Plants 2020, 9, x FOR PEER REVIEW 10 of 17 

 

A. indica callus extracts, where the normal heart rate was recorded at 136 beats min−1. This data is in 
accordance with a previous report which indicated that the zebrafish normal embryonic heart rate is 
much closer to that of humans at 120–180 beats per minute [40]. Nevertheless, since A. indica callus 
extract at 5000 µg mL−1 resulted in a high mortality rate (>90%) at 96 hpe, the heart rates of zebrafish 
larvae at this concentration and those treated with chlorpyrifos solution were not determined. 

 
Figure 5. Hatching rate of zebrafish embryos after 0 to 120 hours post exposure with Azadirachta indica 
callus extracts at concentrations of 500–5000 µg mL−1. 

 
Figure 6. Effect of Azadirachta indica callus extracts at concentrations of 500–4000 µg mL−1 on heart rate 
of zebrafish larvae at 96 hours post exposure. 

Furthermore, the possible morphological defects of the embryos and larvae were also monitored 
and measured until 120 hpe. Results showed that there were no teratogenic defects observed in the 
embryos and larvae treated with A. indica callus extracts at all concentrations from 0 to 120 hpe 
(Figure 7). Exposure to A. indica callus extract at 5000 µg mL−1 inhibited the hatching of the embryos 
and killed the unhatched larvae (Figure 7c). On the other hand, treatment with 31.75 µg mL−1 
chlorpyrifos caused coagulation after 24 hpe (Figure 7d). 
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of zebrafish larvae at 96 hours post exposure.

Furthermore, the possible morphological defects of the embryos and larvae were also monitored
and measured until 120 hpe. Results showed that there were no teratogenic defects observed in the
embryos and larvae treated with A. indica callus extracts at all concentrations from 0 to 120 hpe (Figure 7).
Exposure to A. indica callus extract at 5000 µg mL−1 inhibited the hatching of the embryos and killed
the unhatched larvae (Figure 7c). On the other hand, treatment with 31.75 µg mL−1 chlorpyrifos caused
coagulation after 24 hpe (Figure 7d).
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Figure 7. The effect of A. indica callus extracts and chlorpyrifos on zebrafish morphology. (a) Untreated;
(b) 1000 µg mL−1 A. indica callus extract; (c) 5000 µg mL−1 A. indica callus extract; (d) 31.75 µg mL−1

chlorpyrifos at various time points: (i) 24 hpe, (ii) 48 hpe, (iii) 72 hpe, and (iv) 120 hpe. Images were
captured using an inverted microscope at 100× (i) and 40×magnification (ii–iv).

4. Discussion

In this study, the leaf and petiole of A. indica were examined for their response when cultured on
different types of plant growth regulators (TDZ and 2,4-D) at various concentrations, either singly
or in combination. In most plant species, leaf explants have been shown to initiate the production of
genetically identical cells by eliminating tissue culture-induced variability [41,42]. Plants naturally
have the potential to facilitate alterations in their biological system towards any variations in their
surrounding environments. Plant hormones and regulators are the key elements in the regulation of
these environmental and developmental stimuli. Auxins and cytokinins are the most essential plant
hormones as they are involved in regulating cell proliferation and differentiation which also explains the
induction of meristematic activities. Exogenous PGRs such as cytokinins affect vascular differentiation
and dedifferentiation in plant cells, which explains the formation of callus from the explants of A. indica.
It has been reported that endogenous auxins such as Indole-3-acetic acid (IAA) start to accumulate at
the petiole and basal internode once the explants are excised from the intact plant [43]. These explain
the ability of both the leaf and petiole of A. indica to form dedifferentiated cells under in vitro conditions.
Based on these results, leaf explants of A. indica had the optimum proliferation rate by producing 3.38
± 0.08 g fresh weight of callus when supplemented with 0.6 mg L−1 TDZ, which was significantly
higher compared to the callus biomass produced by petiole explants in all treatments. The varied
callus induction ability between plant growth regulators can be explained by incompatible biochemical
dissolution of bonds in the plant cell wall and different sensitivities towards cellular mechanisms [44].
This outcome was also supported by several studies which suggested young leaf explants are suitable
for callus induction of most woody plants and shrubs such as Litchi chinensis, Mesua ferrea, Alstonia
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scholaris, Tylophora indica and Digitalis mariana [45–48]. Basically, leaf explants have the ability to
adapt under in vitro conditions and attain competency to actively undergo mitotic divisions when
supplemented with exogenous auxin and cytokinin [49,50]. However, it is worth noting that the use of
growth media without PGR is preferred in tissue culture of endangered plants [51] as PGRs invoke
callogenesis and the emergence of shoots from callus with a high incidence of hyperhydricity [52].

Even though several studies have been carried out on micropropagation of A. indica, very few
studies have reported on the callus induction of this species in recent years. Our results showed that
the application of TDZ singly at a concentration of 0.6 mg L−1 yielded optimum callus generation
in A. indica. This is in contrast to a previously published report where 2,4-D was reported to cause
optimum callus formation in A. indica either when applied singly or in combination with other plant
growth hormones [13,53]. Nevertheless, very few studies have reported on the role of TDZ in the
induction of callus formation in neem. So far, only one study has reported on the effect of combined
TDZ and 2,4-D treatments on callus induction from neem leaves, although there are multiple reports
on the in vitro effect of TDZ on other plants [54–56]. Akula et al. [30] reported that combinations of
2.3–4.5 mM TDZ and 0.5 mM 2,4-D yielded the highest formation levels of callus from neem leaves, in
contrast to the findings of this study. The nature of TDZ hormone as substituted phenylurea promotes
cell regeneration by its competency to accumulate endogenous cytokinin and facilitate the translocation
of auxin, thus controlling the auxin/cytokinin ratio to promote callus growth. The rate of response is
also solely dependent on the physiological state and metabolic rate of the explant [45,57]. In agreement
with the outcomes of this study, several studies have reported that TDZ hormone tends to produce
green and compact callus [58,59]. Meanwhile, similar to our results, supplementation of 2,4-D at
various concentrations has been reported to induce the formation of soft and yellowish callus [55,56,60].

Although AZA has been recognized as an effective biodegradable pesticide [61], the current
method of solvent extraction of this compound from the seeds of this species is unable to produce a
sufficient economic yield of AZA. This is largely due to low variable yield, poor quality control, the
presence of impurities and occurrence of diseases in the species [62]. Yield and purity improvement of
AZA through conventional breeding have not produced positive results, mainly due to its recalcitrant
properties. As a valuable alternative, plant tissue culture provides techniques for the possible mass
production of in vitro neem cells, which can be utilized to mass-produce cell suspensions to serve
as a channel for the substantial production of AZA. The current study provides the first report on
the formation of callus of various colors (green, brown and cream) in neem, as well as the AZA
content of the colored extracts. It was observed that green callus contained the highest amount of AZA
(214.53 ± 33.63 mg g−1 DW) compared to brown and cream callus. The difference in AZA content
among the colored callus extracts might be explained by various factors, such as the variation in organ
differentiation type, totipotency, different levels of endogenous hormone activity or other cytoplasmic
and physiological factors [59]. Several studies have suggested that the type and concentration of
plant growth hormones could regulate the accumulation of bioactive compounds in plant tissue
culture systems. For example, Grzegorczyk-Karolak et al. [63] mentioned that TDZ was most effective
among other tested cytokinins in elevating secondary metabolite synthesis in shoot cultures of
Scutellaria altissima. The significantly higher production of AZA in green callus (initiated by TDZ
hormone application) highlights the potential of TDZ as a multi-purpose hormone to serve as an
elicitor for secondary metabolite production in neem.

Although the exact mechanism on how auxins such as 2,4-D influence the biosynthesis of secondary
metabolites has not been fully understood, it had been reported to yield inhibitory effects on the
production of anthocyanins [64]. This may explain why significantly lower levels of AZA were obtained
in brown and cream callus produced through supplementation with 2 4-D. Nevertheless, the exact
mechanism on how auxins influence the biosynthesis of secondary metabolites has not been fully
understood. In addition, alterations in the carbon cycle of secondary metabolism, down-regulated
key enzymes, irregular transport mechanisms and catabolism may also lead to the low production of
AZA [65].
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However, contrasting effects of combinatory PGR treatments on callus morphology and
accumulation of AZA might be associated with various phenomena that took place during neem cell
proliferation. Ontogenetic alterations that occur during the development of plant cells in artificial
environments and defense mechanisms against added growth hormones are some known factors that
influence the biosynthesis of compounds [66].

Although auxins such as 2,4-D have been reported to yield inhibitory effects on the production
of secondary metabolites such as anthocyanins [64], the exact mechanism of how PGRs influence
the biosynthesis of secondary metabolites has not been fully understood. Lower levels of AZA in
brown and cream callus resulting from the addition of 2,4-D might be caused by the action of 2,4-D
towards inhibiting the synthesis of secondary metabolites. Alterations in the carbon cycle of secondary
metabolism, down-regulated key enzymes, irregular transport mechanisms and catabolism may lead
to the low production of AZA [65].

Moreover, as pesticides are usually applied onto plants in farms through manual or automated
spraying, the effects on their human handlers are often neglected. Also, if not used sparingly, pesticide
runoff may flow into nearby lakes and rivers and affect aquatic animal inhabitants. Thus, in order to
assess this, the toxicity of A. indica callus extracts were analyzed using zebrafish (Danio rerio) embryos.
Zebrafish embryos/larvae were used as an animal model in this study as they offer several advantages
and have been accepted as a reliable system to analyze any potential risks to human and ecological
receptors [67,68]. The toxicity of the callus extracts was also compared to a commonly used chemical
pesticide (chlorpyrifos at its recommended field concentration of 31.75 µg mL−1) to compare the safety
of both on human handlers and other organisms. Data analysis revealed that A. indica callus extracts
obtained in this study were not toxic, with an LC50 value of 4606 µg mL−1, while chlorpyrifos at
31.75 µg mL−1 may potentially cause harm to its human handlers and aquatic animals. Thus, it can be
deduced that the green callus obtained in this study has the potential to be utilized for the production
of a sustainable and environmentally friendly pesticide (recommended field concentration of AZA
biopesticide is 95.39 µg mL−1). Meanwhile, human handlers working with chlorpyrifos are advised to
wear proper attire and protective gear, and to use this pesticide sparingly.

5. Conclusions

The results of the present study show that different plant growth regulators (TDZ and 2,4-D)
yielded differential results influencing the growth and development of callus in neem. When singly
applied, 0.6 mg L−1 of TDZ has been determined as the most optimum callus induction media,
producing 3.38 ± 0.08 g of green callus from leaf explants. Moreover, green callus were also observed to
contain significantly higher amounts of azadirachtin (AZA) and its extracts were found to be non-toxic
to zebrafish. Overall, this study delivers valuable insights into the potential improvisation of A. indica
callus for the large scale production of biological materials containing valuable biochemical compounds
(e.g., AZA) under controlled environments.
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