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Abstract

In order to screen the candidate genes of Fenneropenaeus chinensis related to low-tempera-

ture tolerance, this research takes juvenile prawns of F. chinensis (P40) in low temperature

stress group (4˚C) and normal temperature group (18˚C) as experimental materials. The

results showed that a total of 127,939 Unigenes with average length of 1,190 bp were obtained

by assembly, of which 46% were annotated in the Nr database. A total of 1,698 differentially

expressed genes were screened by differential gene expression analysis, of which 920 genes

showed up-regulated expression and 778 genes showed down-regulated expression. Both

GO and KEGG enrichment analysis revealed that differentially expressed genes were enriched

in spliceosomes, ribosomes, bile secretion, ABC transport pathways, and cellular nitrogen

compound synthesis. A further in-depth analysis obtained 8 genes that may be associated with

low-temperature traits of F. chinensis. Five of them displayed up-regulated expression, includ-

ing ATP-binding cassette protein C, acid ceramidase, glutathione transferase, C-type lectin

and heat shock protein HSP70. The remaining three genes, γ-butyl betaine hydroxylase,

β-hexosaminidase A and long chain fatty acid-CoA ligase displayed down-regulated expres-

sion. Eight differentially expressed genes were randomly selected and the real time RT-PCR

verification showed that their expression levels were consistent with the sequencing results,

demonstrating the accuracy of the sequencing results. The results of this study provide basic

data for revealing the molecular mechanisms of F. chinensis in response to low temperature

stress and the molecular assisted breeding of F. chinensis in low temperature.

Introduction

As one of the most important Chinese native mariculture species, Chinese fleshy shrimp (Fen-
neropenaeus chinensis) belongs to Fenneropenaeus, Penaeidae, Decapoda and Crustacea. It’s
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naturally distributed in the Yellow Sea, Bohai Sea (including the North West coast of Korea

Peninsula), as well as Rongqiu Archipelago and Zhoushan Archipelago in the northern part of

the East China Sea. [1]. As early as the 1950s, China conducted research on the reproduction

and development of F. chinensis and carried out large-scale research on breeding and cultiva-

tion techniques for obtaining practical production techniques of this shrimp. In the late 1990s,

China began to conduct the selective breeding. New variety of F. chinensis named ‘Huanghai

No. 1’, ‘Huanghai No. 2’ and ‘Huanghai No. 3’ were cultivated [2–4].

The low-temperature tolerance traits have complex molecular regulation mechanisms

because they are controlled by minorgene [5]. In recent years, with the rapid development of

genomics and bioinformatics as well as other disciplines, high-throughput sequencing technol-

ogy has developed more and more maturely, and it is widely used in the research of functional

genes digging, molecular markers and signal transduction of aquatic animals. Huang et al. [6]

used RNA-seq technology to analyze the transcriptome sequences of Litopenaeus vannamei in

low temperature (13˚C) and normal temperature (28˚C) and obtained 72 differentially

expressed genes. They discovered that serine/threonine kinases signaling pathways may play

an important role in cold adaptation. Hu et al. [7] screened cold tolerance related genes of

Paralichthys olivaceus using transcriptome sequencing and cloned CIPR and HMGB1.

As a cold-water shrimp, Chinese fleshy shrimps (F. chinensis) can live in the temperatures

between 18˚C to 30˚C. The optimum temperature is 25˚C and the extreme survival tempera-

ture for the shrimp is 4˚C [8]. Meanwhile, the nursery temperature for F. chinensis shall be not

less than 14˚C. Therefore, the low temperature limits the breeding season and geographical

area of F. chinensis and affect the production and efficiency of cultivation. In order to explore

the molecular mechanisms of F. chinensis low temperature tolerance, differentially expressed

genes under low temperature stress and low-temperature-related metabolic pathways were

screened in the present study by comparing transcriptome information between 40-day

prawns in normal temperature group (18˚C) and low temperature groups (4˚C). The results

can provide theoretical basis for cultivation of new variety of F. chinensis with low-temperature

tolerance.

Materials and methods

Experimental materials

The experiment was conducted in the Marine Genetics and Breeding Center of the Ministry of

Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences

(Aoshanwei town, Jimo City, Qingdao) from April 2017 to June 2017. A total of 138 families of

40-day juvenile prawns belongs to G12 of new F. chinensis variety-‘Huanghai No. 2’ that pro-

duced in 2017 were selected as the experimental subjects with average body weight

0.150 ± 0.088g.

Low temperature stress experiment

The experimental material was treated with low temperature stress and sampled by a tempera-

ture-adjustable refrigerator. Thirty individual shrimps were randomly selected from each fam-

ily, and they were set up as the low temperature stress group (L) and same number of

individuals of each family were selected for the normal temperature control group (N). The

shrimps were cultivated in a 26.5 cm×20 cm×16.5 cm storage box. The water temperature in

the low temperature stress group (L) firstly decreased from room temperature of 18˚C to

14˚C, and then decreased at a rate of 2˚C per day until it dropped to 4˚C and maintained at

4˚C ± 0.5˚C. The water temperature in the normal temperature control group (N) was main-

tained at 18 ± 1˚C. During the cooling period, all shrimp family members were observed every
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two hours. The dead shrimps were collected and the time of death, family information, body

length, and body weight were recorded. In the low-temperature stress group (L), water temper-

ature was maintained at 4˚C ± 0.5˚C until 16 hours later. Three shrimps were randomly sam-

pled from each L and N group and stored in sample protector for RNA (Takara, Japan). The

cumulative survival time (CDH) of shrimp was calculated using ASReml-R (unpublished

data). Considering the CDH and shrimp number alive at last, the FCQAS17G120264Y family

with good performance of low-temperature tolerance traits were selected as target family.

Three individuals in group L and group N of this family were used for transcriptome sequenc-

ing analysis.

RNA extraction and transcriptome sequencing

Total RNA of each shrimp was extracted by the general Trizol method. RNA was examined for

its mass and concentration by 1% agarose gel electrophoresis and Nanodrop ND-1000 spectro-

photometer (Thermo, USA). The total RNA concentration shall be greater than 250 ng/μL.

OD260/OD280 is between 1.8 and 2.2, and OD260/OD230 value shall be greater than or equal to

2.0, ensuring that RNA is not degraded and polluted. Finally, Total RNA was sent to Beijing

Novogene company for Illumina HiSeq 2500 sequencing.

Sequencing data assembly and annotation

After the quality analysis, the sequences with linker, low quality, and a ratio of N (where N

indicates that the base information could not be determined) that was greater than 10% were

removed from the raw data of the sequencing, thus clean data was obtained. By using Trinity

software, non-parametric transcriptome splicing was performed using clean data. Each gene

took the longest sequence obtained by splicing as Unigene, i.e. the reference sequence [9].

Then the Unigene sequences were compared and annotated with seven databases respectively,

namely NCBI Nt, NCBI Nr, Pfam (http://pfam.sanger.ac.uk/), KOG (http://www.ncbi.nlm.

nih.gov/CO/), Swiss-prot (http://www.ebi.ac.uk/uniprot/), KEGG (http://www.genome.jp/

kegg/), and GO (http://www.geneontolorg.org/).

Differential expression analysis and GO/KEGG enrichment analysis

FPKM (expected number of Fragments Per Kilobase of transcript sequence per Millions base

pairs sequenced) refers to the number of fragments per Kilobase length from a gene in per mil-

lion fragments [10]. In this study, the expression of Unigene was calculated by FPKM method.

The unigenes using Trinity were used as the reference assembly for subsequent analysis (ref).

The clean reads of each sample were mapped to ref. After comparing and collection of the

results, the number of read counts for each sample mapped to each gene was obtained and the

FPKM conversion was performed. According to the FPKM value, the edgR package in R lan-

guage was used to screen the genes that were significantly differently expressed. The screening

values were fold change>2 and P-value<0.05 [11]. Then GO and KEGG enrichment analysis

(false discovery rate, FDR�0.05) for differentially expressed genes were conducted by GOseq

R and KOBAS software packages [12,13].

Verification of transcriptome data by real time RT-PCR

Eight differentially expressed genes were randomly selected and specific primers were

designed using Primer 5.0 software (Table 1). These genes were submitted to Sangon Biotech

(Shanghai) Co, Ltd. for synthesis. By adopting TaKaRa relative fluorescence quantification kit,

real time RT-PCR confirmatory experiment set up 3 parallel groups for each sample with the
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18S rRNA as the reference gene. The dissolution curve was drawn after the reaction to ensure

the specificity and accuracy of amplification. By using of 2-44Ct method the relative expres-

sion of genes were analyzed [14], and compared with the sequencing data.

Results

Raw data assembly of sequencing

By the Illumina Hiseq 2500 sequencing for the total 6 samples in the low temperature group

and the normal temperature group, a total of 267,810,398 original sequences were obtained,

among which there were 257,507,504 clean reads and base Q30 (the value of Phred>30)

accounted for 91%. After Trinity splicing, a total of 247,911 transcripts were obtained, with a

splicing length ranged from 200 bp to 15,096 bp. There were 21,471 pri-miRNA with the aver-

age length of 759 bp. The N50 was 1,404 bp. Meanwhile, a total of 127,939 unigenes was

obtained with splicing length ranged from 200 bp to 15,096 bp. There were 21,438 unigenes

with length that was greater than 2,000 bp. The average length of unigenes were 1,190 bp, and

the N50 was 1,826 bp (Table 2).

Annotation of transcriptome data

In order to obtain comprehensive gene function information, we performed gene function

annotations (Table 3) on the transcriptome data of F. chinensis by seven databases including

Table 1. Genes and specific primers used for validation of RNA-seq data by real time RT-PCR.

Gene ID Sequence(5’-3’)

C-70339 ATGCTTGGTCTGCCCCC

CGACAGTCTTGAGCCTTCCTT

C-50465 CCATCACCAACGACAAGGG

TCCAGAGTGTTCTTCAGGCTCA

C-55918 CCGCTGAAGAGCACTGGAT

CGCTTTTTCGGCTGACTG

C-40114 CCTCATTGACTTGTTCTCGGTA

TTTCCTCTGGAGTGGTGGC

C-40552 GAGGGCATCTTTGAGCACAT

GCATCATCTCGGTAAGGGTAGT

C-60630 ACTCCGTCGCCGAGAGAC

CGAGGCTGGTGGTTGTTG

C-22506 CGACTCATTATGGGACGGATTA

CTTTGCCCTCGTGCTGG

C-31994 AGACACGCCTTCGTTATGGA

TGTAGACTTCGGGGACCTCA

18S rRNA GGGGAGGTAGTGACGAAAAAT

TATACGCTAGTGGAGCTGGAA

https://doi.org/10.1371/journal.pone.0211182.t001

Table 2. Assembly statistic of transcripts and unigenes.

Min Length Mean Length/bp Max Length/bp N50a N90a Total

Transcripts 201 759 15,056 1,404 275 247,911

Genes 201 1190 15,056 1,826 532 127,939

aN50/N90 was sorted by the length of the spliced transcripts from long to short, and the length of the transcripts was accumulated to a length of no less than 50%/90% of

the total spliced transcripts.

https://doi.org/10.1371/journal.pone.0211182.t002
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Nr, Nt, Pfam, KOG/COG, Swiss-prot, KEGG and GO. The results showed that 58,938 uni-

genes out of a total of 127,939 unigenes had annotations in the Nr database, accounting for

46.06%. A total of 10,129 unigenes were noted in the above seven databases, accounting for

7.91%. A total of 83,086 unigenes were annotated at least one database, accounting for 64.94%

of the total unigenes.

Screening of differentially expressed genes

In this study, edgeR was used to compare the differences in gene expression abundances

between the low temperature group (4˚C) and the normal temperature group (18˚C), and then

the differentially expressed gene volcano plots were drawn. As shown in Fig 1, a total of 1,698

diferentially expressed genes were screened, of which 920 genes showed up-regulated expres-

sion under low temperature stress and 778 genes showed down-regulated expression under

low temperature stress. A total of 67% of the differentially expressed genes were annotated in

the Nr database.

Analysis of the most enriched GO terms

GOseq method was used in the study of this paper to enrich the 1,698 screened differentially

expressed genes into 30 GO terms, and to count the number of genes in each GO term that

were significantly enriched. The results are displayed as a histogram as shown in Fig 2. The dif-

ferentially expressed genes are distributed in biological processes, cell classifications, and

molecular functions, mainly in biological processes. In the biological processes, the three most

abundantly differentially expressed genes are cellular nitrogen compound biosynthetic pro-

cess, regulation of nitrogen compound metabolic process and regulation of nucleobase-con-

taining compound metabolic process. In the cell classification, most of them are ribosomes. In

molecular functions, the structural molecule activity contains the most differentially expressed

genes.

Enrichment analysis of KEGG differentially expressed genes

In vivo, different genes coordinate to exercise their biological functions. Through the signifi-

cant enrichment of metabolic Pathway can determine the major biochemical metabolic path-

ways and signal transduction pathways involved in differentially expressed genes [13]. KEGG

is the main public database of Pathway. It compares the differentially expressed genes with the

KEGG database, and selects the most significant top 20 enrichment pathways for scatter plots

Table 3. Transcriptome data in seven databases in the annotate success rate statistics.

Number of Genes Percentage (%)

Nr 58,938 46.06

Nt 32,904 25.71

KEGG 32,108 25.09

Swiss-prot 50,232 39.26

Pfam 62,335 48.72

GO 63,360 49.52

KOG 28,091 21.95

Seven Databases 10,129 7.91

At least one Database 83,086 64.94

Total unigenes 127,939 100

https://doi.org/10.1371/journal.pone.0211182.t003
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(Fig 3). Differentially expressed genes are abundant in Spliceosomes, Ribosomes, Bile Secre-

tion, and ABC transporters.

Candidate genes under low temperature

The study comprehensively analyzed the gene’s differential expression fold (the higher the dif-

ferential expression fold, the more significant the difference is) and the significant four path-

ways for differentially expressed gene enrichment, including ABC transport, sphingolipid

metabolism, and glycosphingolipid biosynthetic pathway-Global Series, as well as genes

involved in cold and environmental stress regulation reported in the References [15–28]. In

the end, eight genes related to low temperature tolerance of Chinese fleshy shrimp were

screened out from 1,698 differentially expressed genes, of which 5 showed up-regulated

expression and 3 showed down-regulated expression (Table 4).

Verification of transcriptome data by real time RT-PCR

Eight different genes were randomly selected, including three low-temperature candidate

genes of ATP-binding cassette protein C, hypothetical protein: γ-butyrobetaine dioxygenase,

Fig 1. The ‘volcano plot’ of differentially expressed genes. The red dots represent genes with up-regulated expression. The green dots represent genes with down-

regulated expression. The blue dots represent non differentially expressed genes.

https://doi.org/10.1371/journal.pone.0211182.g001
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and heat shock protein HSP70. Specific primers were designed for the experiment. The differ-

entially expressed genes screened based on transcriptome data were verified by real time

RT-PCR method. As shown in Fig 4, C-70339, C-50465, C-55918, C-40114, C-40552, and C-

60630 all display up-regulated expression in real time RT-PCR and RNA-seq, while C-22506

and C-31994 show down-regulated expression in real time RT-PCR and RNA-seq, which also

proves that the transcriptome data used in this study are reliable.

Discussion

Analysis on transcriptome of F. chinensis of low-temperature stress

It was reported that Illumina Hiseq 2500 was used in researches successfully such as small

RNA, targeted sequencing, exons, transcriptome, metagenome, expression profile, genome

sequencing, and long fragment sequencing and this technique is applicable to any species in

the study of the group [15–16, 29–30]. In order to screen more genes that are specifically

Fig 2. GO enrichment results of differentially expressed genes under cold challenge.

https://doi.org/10.1371/journal.pone.0211182.g002
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expressed under low temperature stress, the Chinese fleshy shrimp family with good low tem-

perature tolerance was selected in this study according to the cumulative survival time (CDH).

CDH can not only distinguish the different death temperatures, but also measure death at dif-

ferent time points at the same temperature [31–33], so it can accurately indicate the low-tem-

perature traits.

Fig 3. KEGG enrichment results of differentially expressed genes under cold challenge. The vertical axis indicates the name of pathway, and the horizontal axis

indicates the corresponding Rich factor of the pathway. The size of q-value is represented by the color of dots. The smaller the q-value, the closer the color is to red. The

number of differentially expressed genes contained in each pathway is represented by the size of dots.

https://doi.org/10.1371/journal.pone.0211182.g003
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Using Illumina Hiseq 2500 for high-throughput sequencing analysis of six individual shrimps

with good tolerance to low temperature traits that belongs to the Chinese juvenile prawn family

FCQAS17G120264Y, a total of 127,939 unigenes were obtained, of which 46% of the unigenes

were annotated in the Nr database. A total of 1698 differentially expressed genes were obtained

by differential gene expression analysis, of which 67% of the differentially expressed genes were

annotated in the Nr database, which greatly enriched the transcriptome data pool of the Chinese

fleshy shrimp. The functional annotations showed that differentially expressed genes were

enriched in spliceosome, ribosome, bile secretion and ABC transport pathways, and the synthesis

of cellular nitrogen compounds under low temperature stress. The current study have shown

that temperature can affect the digestive system of F. chinensis, L. vannamei, Scophthalmus maxi-
mus, and Epinephelussp [17–20], while the ABC Transporters participate in the absorption, accu-

mulation, and excretion of various toxic substances and play an important role in the immune

defense process [21]. It is speculated that low temperature stress will cause differential expression

of some genes in Chinese fleshy shrimp, and affect the digestive system, immune system and syn-

thesis of nitrogen compounds such as fatty acids, amino acids and carbohydrates in cells.

Candidate genes of F. chinensis in low temperature

Antifreeze protein (AFP)/Antifreeze glycoprotein (AFGP) found in fish is an early discovery

of genes associated with low temperature tolerance traits [22]. There is still no report on the

Table 4. Candidate genes in low temperature.

Gene ID Gene Name log2FoldChange Regulation

C-55918 AATP binding cassette protein C, ABCC3 10.76253558 up

C-66341 Acid ceramidase, ASAH 10.59060336 up

C-39485 Glutathione S- transferase, GST 10.05836163 up

C-49823 C-type lectin 11.85426777 up

C-50465 Heat shock protein HSP70 6.384243125 up

C-22506 hypothetical protein: γ-Butyl Betaine Dioxygenase -11.03745747 down

C-58687 β-Hexosaminidase A, HEXA -6.023347561 down

C-67709 Long chain fatty acid-CoA ligase, ACSBG2 -11.55664899 down

https://doi.org/10.1371/journal.pone.0211182.t004

Fig 4. Verification of differentially expressed genes using real time RT-PCR.

https://doi.org/10.1371/journal.pone.0211182.g004
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studies of related genes of juvenile prawn’s resistance to low temperatures currently. However,

Peng Jinxia, Yin Qin et al. [23–27] studied and screened several genes related to low-tempera-

ture traits of L. vannamei, including heat shock protein genes (HSPB1, HSP10, TCP-1-Beta),

metallothioneins Gene (MT), coat protein gene (COPE), DEAD-box RNA helicase gene, and ade-
nylyltransferase (ANT2) [23–27]. Among them, ANT2 gene and heat shock protein gene have

also been reported to be related to low temperature response in various aquatic animals such

as Scylla paramamosain, Dissostichus mawsoni, and GIFT Oreochromis niloticus. [28, 34–35].

In this study, eight genes tolerance to low temperature Chinese fleshy shrimp were screened

by analyzing the transcriptome information of the shrimps under low temperature stress. The

ATP-binding cassette protein is encoded by the ABC gene and participates in the ABC trans-

port mechanism in vivo. Fang Caiwang et al. found that the ABC transporter showed up-regu-

lated expression when the scallop was exposed to cadmium stress, thus protecting the body

from heavy metal toxicity [36]. It is consistent with the results of the study in this paper. Gluta-
thione transferase (GST) can remove the excess free radicals (ROS) from the body and prevent

oxidative damage. GST has been found to help plants resist environmental stresses such as

hypothermia and is associated with resistance of Venerupis philippinarum to heavy metal stress

[37–38]. The study in this paper found that GST expression increased under low temperature

stress. It is speculated that low temperature induces a large number of ROS produced in the

body, and high expression of GST can reduce the oxidative damage caused by low temperature.

As an immune factor, C-type lectin plays an important role in innate immune defense [39].

Studies by Xia Dandan et al. showed that low or high temperature stress can cause changes in

the expression of C-type lectin in S. maximus [40]. This study showed that C-type lectin was

up-regulated under low temperature conditions. It was hypothesized that low temperature

could damage the immune system of Chinese fleshy shrimp and cause increased expression of

C-type lectin. Gamma-butyrobetaine hydroxylase is a key enzyme for the synthesis of L-carni-

tine in vivo. The main function of L-carnitine is to promote β-oxidation of long-chain fatty

acids across the mitochondrial inner membrane and provide energy to cells. It has been

researched that found L-carnitine is involved in cold stress responses in fish [41]. Heat shock

proteins are a group of widely-existing heat stress proteins that are involved in the regulation

of response to low temperature stress in shrimps of L. vannamei [23–24]. β -hexosaminidase A
(β-HEXA) is a key enzyme in the Glycosaminoglycan Biosynthetic Pathway-Global Series. The

phingoglycolipids have been reported to be involved in cell signal transduction and drought

stress [42–43]. This study showed that β-HEXA is down-regulated under low temperature

stress, suggesting that low temperature stress can hinder cell signal transduction. Acid cerami-
dase (ASAH) is involved in the regulation of the body’s sphingolipid metabolism pathway, and

it can be converted to sphingosine-1-phosphate hydrolysis of ceramide, and then regulate cell

growth, aging, apoptosis and other functions. Studies have found that ASAH is associated with

drought stress in plants [44]. The long-chain fatty acid-CoA ligase (ACSBG2) can regulate the

biosynthesis of fatty acids and down-regulates them under low temperature stress. It is specu-

lated that Chinese juvenile shrimp can increase the mobility of biofilm by reducing the synthe-

sis of long chain fatty acids, thus responding to low temperature stress [45]. Therefore, these

differentially expressed genes are closely related to low-temperature tolerance traits of Chinese

juvenile shrimps. However, further verification is needed for more in-depth studies.

Research meaning

Basing on transcriptome sequencing, this paper provided a comprehensive investigation of the

differentially expressed genes of F. chinensis under low temperature stress. The research results

are crucial for clarifying the molecular mechanism of low temperature tolerance of F. chinensis
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in obtaining the low temperature-resistance related genes. It will also provide theoretical sup-

port for low temperature molecularly assisted breeding of F. chinensis in China.
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