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Enhanced Biological Response of 
AVS-Functionalized Ti-6Al-4V Alloy 
through Covalent Immobilization of 
Collagen
Parsa Rezvanian1,2, Rafael Daza1,2, Patricia A. López   1,2, Milagros Ramos1,3,4,  
Daniel González-Nieto1,3,4, Manuel Elices1,2, Gustavo V. Guinea1,2,3 & José Pérez-Rigueiro   1,2,3

This study presents the development of an efficient procedure for covalently immobilizing collagen 
molecules on AVS-functionalized Ti-6Al-4V samples, and the assessment of the survival and 
proliferation of cells cultured on these substrates. Activated Vapor Silanization (AVS) is a versatile 
functionalization technique that allows obtaining a high density of active amine groups on the 
surface. A procedure is presented to covalently bind collagen to the functional layer using EDC/NHS 
as cross-linker. The covalently bound collagen proteins are characterized by fluorescence microscopy 
and atomic force microscopy and their stability is tested. The effect of the cross-linker concentration 
on the process is assessed. The concentration of the cross-linker is optimized and a reliable cleaning 
protocol is developed for the removal of the excess of carbodiimide from the samples. The results 
demonstrate that the covalent immobilization of collagen type I on Ti-6Al-4V substrates, using the 
optimized protocol, increases the number of viable cells present on the material. Consequently, AVS 
in combination with the carbodiimide chemistry appears as a robust method for the immobilization of 
proteins and, for the first time, it is shown that it can be used to enhance the biological response to the 
material.

Titanium (Ti) and titanium alloys are among the most-commonly used biomaterials for hard tissue replace-
ment1,2. This choice is due to their good corrosion resistance, good mechanical properties and excellent biocom-
patibility1,3,4. However, the difficulty for establishing a direct contact with adjacent tissues has been a drawback 
for their application as implants5. Hence, a variety of surface engineering techniques have been proposed that, 
by modifying the morphological and chemical properties of the surface, intend to modulate the response of the 
body to the implanted titanium and to improve the interaction between the implant and bone tissue2,6,7. A prom-
ising approach consists of immobilizing biomolecules, so that specific responses in the tissue in contact with the 
implant are induced8,9. Extra cellular matrix (ECM) proteins are usual targets in this approach, since their biolog-
ical function implies an intimate interaction with cells10–12.

Collagen is the most abundant protein component of the ECM and was proven to support proliferation 
and differentiation of different cell lineages13,14. Fibroblast and osteoblast adhesion onto collagen is believed to 
be regulated by the recognition of the protein through specific proteins, such as α1β1 and α2β1 integrins15,16. 
Consequently, collagen has been used as a coating in an attempt to improve the biological properties of metallic 
biomaterials17–19. Although adsorption is the most simple procedure to cover a surface with any given protein, 
adsorbed proteins are not strongly bonded to the surface and variations in the environment can cause them to be 
easily desorbed20,21. Moreover, adsorbed collagen is highly susceptible to biodegradation16, and adsorption may 
lead to conformational changes which can affect its properties22.
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Covalent immobilization of proteins provides an alternative approach to modulate the biological response 
to materials. Covalent immobilization creates a stable link between the protein and the surface that is resistant 
to environmental changes and increases the stability of the immobilized protein23. However, there is a need to 
functionalize the surface of the metallic substrate with appropriate reactive groups. Subsequently, proteins can be 
covalently bound to these reactive groups using a cross-linker. Different strategies were proposed for the cova-
lent immobilization of biomolecules on metallic surfaces which include different functionalization procedures 
and active proteins. For instance, bone morphogenic proteins (BMP) have been immobilized on titanium after 
functionalizing the material through liquid phase silanization using a solution of 3-aminopropyltriethoxysilane 
(APTS) in toluene and carbonyl diimidazole as cross-linker24. Other examples of functionalization protocols 
include the functionalization in liquid phase by APTS in toluene using glutaraldehyde as cross-linker to immobi-
lize alkaline phosphatase and rat albumin on titanium25, functionalization with isocyanatopropyl-triethoxysilane 
(IPS) in toluene in combination with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) for immobiliza-
tion of collagen on stainless steel16 and functionalization with polydopamine using EDC as crosslinker for the 
immobilization of collagen on titanium22. The selection of the crosslinker was recognized as a critical point in the 
whole functionalization process since, for instance, it was found that glutaraldehyde might act as a cytotoxic agent 
in-vitro26. In contrast, carbodiimide cross-linkers are water-soluble and the excess molecules can be relatively 
easily removed27–29.

In this study, we use activated vapor silanization (AVS), a method developed by the authors that allows the 
surface functionalization of a wide range of materials30–32, in combination with the EDC/NHS chemistry to cova-
lently immobilize collagen on Ti-6Al-4V samples. The covalently immobilized collagen is characterized and its 
stability on the surface demonstrated. Finally, by performing in-vitro cell cultures, we address the hypothesis that 
the covalently immobilized collagen is able to enhance the adhesion and proliferation of mesenchymal stem cells 
on functionalized Ti-6Al-4V samples compared with the bare material.

Results
Collagen adsorption.  As a means to investigate the effect on cell behavior of a collagen type I coating on 
Ti-6Al-4V samples, collagen type I was adsorbed onto non-functionalized (bare) Ti-6Al-4V substrates, leading 
to the formation of a film (Col-ads). Figure 1 shows the calcein AM/propidium iodide stained MSC cells on bare 
Ti-6Al-4V, Col-ads and polystyrene control samples after 4 and 48 hours of seeding.

After 4 hours of seeding the cells are adhered to all samples, however the morphology of cells on Col-ads 
and control samples show a higher degree of extension of cellular processes, probably related with a dynamic 
cytoskeletal rearrangement, compared to the cells adhered on Ti-6Al-4V samples. The number of adhered cells 
on Col-ads samples is higher than that on bare Ti-6Al-4V, but lesser than on the controls (Fig. 2a). This trend in 
the number of cells on each sample remains consistent after 48 hours of seeding, demonstrating improved cell 
adhesion after 4 hours of seeding and a higher number of cells after 48 hours on Col-ads samples compared to 
bare Ti-6Al-4V. XTT assay performed at 48 hours after seeding also confirms the results of cell counting (Fig. 2b).

Covalent immobilization of collagen.  Figure 3 shows fluorescence microscopy images of a functional-
ized Ti-6Al-4V sample incubated with collagen and EDC/NHS (Fig. 3c) compared to a bare (non-functionalized) 
Ti-6Al-4V sample, which was incubated with the same FITC-tagged collagen and EDC/NHS solution (Fig. 3a), 
and a functionalized Ti-6Al-4V sample incubated with FITC-tagged collagen, but without the addition of EDC/
NHS cross-linker in the solution (Fig. 3b). Collagen aggregates are apparent on the surface of all three samples, 
but the number of aggregates is higher on Col-imm-f (Fig. 3c) samples. After the treatment with SDS, it can be 

Figure 1.  Morphology of the MSC cells cultured on bare Ti-6Al-4V, adsorbed collagen on Ti-6Al-4V (Col-ads) 
and plastic control samples after 4 and 48 hour of seeding. Viable cells are stained green while the dead cells 
appear as red dots. Scale Bar: 100 μm.
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seen that fluorescence remains practically unchanged in the Col-imm-f (Fig. 3f), while a significant reduction is 
observed in the other two samples (Fig. 3d,e).

Figure 4 shows AFM topography images of the aforementioned samples. Before SDS treatment, the col-
lagen aggregates are clearly visible in all three samples. After the SDS treatment, a significant removal of 
non-immobilized collagen is observed in micrographs d and e, but not in the functionalized Ti-6Al-4V sample 
incubated with collagen and EDC/NHS (f). AFM topography images of a bare and functionalized Ti-6Al-4V are 
also shown in the Supplementary data Fig. 1 for comparison.

The ability of SDS to remove adsorbed protein from the bare material was assessed by forming films of 
FITC-tagged collagen on Ti-6Al-4V samples and, subsequently, incubating them with 10% SDS solution in PBS. 
The fluorescence microscopy images can be seen in Supplementary data Fig. 2. It can be seen that after the incu-
bation with SDS almost all the FITC-tagged collagen is removed from the substrate. On the other hand, the SDS 
treatment did not have any adverse effects on the amine functional layer. Since the layer is observed to be com-
pletely stable after the SDS treatment (Supplementary data Fig. 2).

Figure 2.  Number of cells obtained by (a) cell counting from micrographs after 4 and 48 hours of seeding, and 
(b) XTT reaction after 48 hours of seeding for MSC cells on bare Ti-6Al-4V, collagen adsorbed on Ti-6Al-4V 
(Col-ads) and control samples. *Denotes p < 0.05.

Figure 3.  Fluorescence microscopy images of samples incubated with FITC-tagged collagen on (a) bare Ti-
6Al-4V incubated with EDC/NHS cross-linker before SDS treatment and (d) after SDS treatment, (b) AVS-
functionalized Ti-6Al-4V without EDC/NHS cross-linker before SDS treatment and (e) after SDS treatment, 
and c) AVS-functionalized Ti-6Al-4V incubated with EDC/NHS cross-linker (Col-imm-f) before SDS 
treatment and (f) after SDS treatment. Scale Bar 100 μm.
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In order to determine the effect of EDC/NHS cross-linker concentration on the covalent binding of the 
protein, collagen was immobilized on functionalized Ti-6Al-4V samples, changing the concentration of the 
EDC/NHS cross-linker while keeping constant the concentration of collagen. Figure 5 shows fluorescence 
microscopy images of the FITC-tagged collagen covalently immobilized on functionalized Ti-6Al-4V sam-
ples using EDC/NHS concentrations of 2.5/0.63 mg/ml (1X), 0.25/0.063 mg/ml (1/10X) and 0.125/0.0315 mg/
ml (1/20X). Although, the fluorescence content appears higher on the 1X sample, even in case of the lowest 
EDC/NHS concentration (1/20X), a significant fluorescence is still observable on the surface of the samples. 
The presence of immobilized collagen even in the 1/20X samples is confirmed by the AFM topography images 
as shown in Fig. 6. The amount of immobilized collagen on 1X, 1/10X and 1/20X samples was determined 

Figure 4.  AFM topography images of samples incubated with FITC-tagged collagen on (a) bare Ti-6Al-4V 
incubated with EDC/NHS cross-linker before SDS treatment and (d) after SDS treatment, (b) AVS-
functionalized Ti-6Al-4V without EDC/NHS cross-linker before SDS treatment and (e) after SDS treatment, 
and (c) AVS-functionalized Ti-6Al-4V incubated with EDC/NHS cross-linker (Col-imm-f) before SDS 
treatment and (f) after SDS treatment. Scale Bar 5 µm.

Figure 5.  Fluorescence microscopy images of functionalized Ti-6Al-4V samples incubated with collagen and 
different concentrations of EDC/NHS. (a,d) 1X concentration of EDC/NHS (b,e) 1/10X concentration of EDC/
NHS (c,f) 1/20X concentration of EDC/NHS. (a,b,c) Scale Bar 1 mm and (d,e,f) Scale Bar: 100 μm.
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quantitatively by the Micro-BCA assay leading to the values: 0.20 ± 0.04 µg/mm2 (1X), 0.114 ± 0.009 µg/mm2 
(1/10X), 0.117 ± 0.009 µg/mm2 (1/20X).

In order to assess the cytocompatibility and the effect of covalently immobilized collagen on the surface of 
Ti-6Al-4V samples on cell behavior, in-vitro cell cultures were performed. The morphology of MSC cells on 1X, 
1/10X and 1/20X compared to bare Ti-6Al-4V and polystyrene controls at 4 and 48 hours after seeding can be 
seen in Fig. 7. The number of cells counted on each sample (Fig. 8a) demonstrated that at either time period, 
1/20X sample had significantly more attached cells compared to bare Ti-6Al-4V. The better adhesion of 1/20X 
group was translated into a higher number of viable cells at later time points, as confirmed by XTT assay (Fig. 8b).

Although at 4 hours after seeding the cells were adhered on all the samples, those on the samples contain-
ing immobilized collagen showed a more widespread morphology compared with bare Ti-6Al-4V samples. This 
observation was further supported by phalloidin/hoechst staining (Fig. 9) and cell surface area measurements 
(Fig. 10).

Although the phalloidin/hoechst analysis was not extended to longer incubation times, it is apparent from 
Fig. 7 that cells on 1X samples show a spherical morphology at 48 hours after seeding, in contrast to all the other 
samples which mostly exhibit cells with polygonal shapes.

Figure 6.  AFM topography images of functionalized Ti-6Al-4V samples incubated with collagen and 
different concentration of EDC/NHS at different scan sizes (a,d) 1X concentration of EDC/NHS, (b,e) 1/10X 
concentration of EDC/NHS, and (c,f) 1/20X concentration of EDC/NHS.

Figure 7.  MSC cells adhered on bare Ti-6Al-4V, functionalized Ti-6Al-4V with immobilized collagen 
containing 1X, 1/10X and 1/20X concentrations of EDC/NHS, and control sample at 4 and 48 hours after 
seeding. Viable cells are stained green, while the dead cells appear as red dots. Scale Bar 100 μm.
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Discussion
Although in a previous paper we showed the capability of AVS to effectively functionalize Ti-6Al-4V substrates, 
the enhancement of the biological response of biomaterials requires two additional steps: (1) using an adequate 
crosslinking chemistry to immobilize the biomolecule on the material, and (2) making a choice with regard to the 
biomolecule (or biomolecules) to be immobilized.

Collagen type I is a convenient choice due to its ubiquitous presence in the ECM and availability. 
Consequently, there are several studies on cell adhesion and proliferation on collagen coated Ti-alloy substrates. 
Ao et al. reported improved cell adhesion of human MSCs on collagen type I coated titanium after 4 hours of 
culture time33. Roehlecke et al. also demonstrated the enhanced cell adhesion and proliferation for collagen type 
I adsorbed onto titanium compared to bare titanium34, suggesting a possible positive effect of collagen on cell 
cycle evolution. It was also found that a collagen coating on titanium alloys promotes long and short term cell 
adhesion and proliferation of rat calvarial osteoblasts20. However, some contradictory results can be also found in 
the literature. Bierbaum et al. observed no improvement on cell proliferation after 2 days of culturing rat calvarial 
osteoblast on collagen type I coated Ti-6Al-4 V35.

Therefore, we decided to perform an initial assessment of the influence of a collagen coating on the survival 
and proliferation of murine MSC cells using collagen type I simply adsorbed on Ti-6Al-4V samples (Col-ads 
samples). As it can be seen in Fig. 2, the number of viable cells present on Col-ads samples is significantly higher 
than on bare Ti-6Al-4V at both time periods.

The enhanced cell adhesion and higher final number of cells on Ti-6Al-4V with an adsorbed collagen layer led 
to the development of a protocol to covalently immobilize the protein on the functionalized samples. Among the 
different possible choices, the EDC/NHS chemistry was employed due to its simplicity. Covalent immobilization 
proceeds by the initial formation of a semi-stable reactive ester between the –COOH groups of the glutamate or 
aspartate residues present in collagen36,37, and the NHS molecule. When the semi-stable ester comes into contact 
with an amine located on the functionalized surface of Ti-6Al-4V, a stable amide bond is created between the 
protein and the amine group37–40.

The stability of the covalently immobilized collagen was examined by exposing the samples to an SDS solution. 
It was observed that, in contrast to the results that showed the removal of adsorbed collagen on bare titanium 
samples upon SDS washing, no significant effect was observed on the covalently immobilized collagen samples 
(Col-imm-f) (Fig. 3c and f). Additionally, it was checked that the functional layer was not altered by exposure to 
an SDS solution and keeps its integrity even after the treatment, as shown in Supplementary data Fig. 2.

The in-vitro biological response of samples with immobilized collagen was assessed by cell culture of MSCs 
(Fig. 7). As it can be seen, at 4 hours after seeding all the functionalized samples show a relatively high number of 
adhered cells. However, depending on the concentration of EDC/NHS used, the response of the cells after 48 hours 
of seeding was quite different. In 1X samples, the number of cells declined at 48 hours after seeding, suggesting 
an inhibited cell proliferation and lower cell survival. Besides, the morphology of the cells on 1X samples show a 
dominantly circular morphology. This anomalous morphology can be explained by a possible cytotoxic effect of the 
EDC/NHS cross-linker. Despite the fact that there are several available studies which report no cytotoxic effect of 
carbodiimide cross-linker41–43, EDC in high concentrations might be toxic. This effect could be the result of DNA 
crosslinking caused by EDC, which is membrane-permeable, and would lead to the disturbance of the cell cycle44. 
Concentrations between 10 mM (1.9 mg/ml)37 and 1 mg/ml16 were reported to produce cytotoxic effects.

In contrast to the 1X samples, the number of cells on 1/10X and 1/20X samples grew after 48 hours of culture. In par-
ticular, it was shown that 1/20X samples not only showed better cell adhesion after 4 hours of cell seeding (p = 0.0143), 
but also a higher number of attached cells at 48 hours after seeding compared to bare Ti-6Al-4V (p = 0.0002).

Figure 8.  Number of MSC cells obtained by (a) cell counting from micrographs after 4 and 48 hours of seeding 
and (b) XTT reaction at 48 hours after seeding on bare Ti-6Al-4V, functionalized Ti-6Al-4V with immobilized 
collagen containing 1X, 1/10X and 1/20X concentrations of EDC/NHS, and control sample. *Denotes p < 0.05.
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The assessment of biological response of the functionalized samples was completed with the study of cell 
morphology at short incubation times. It was observed that after 4 hours of seeding, the cells growing on all func-
tionalized samples showed a slightly more extended cytoskeleton compared to bare Ti-6Al-4V. In particular, the 
measurements of the surface area of the cells adhered to the samples (Figs 9 and 10) demonstrated that the cells 
adhered on the plastic control samples possess the highest surface area, while those adhered on bare Ti-6Al-4V 
had a significantly lower surface area. The surface area of cells adhered on samples with immobilized collagen 
ranked between the polystyrene control and bare Ti-6Al-4V samples. It was observed that among these samples, 
the cells adhered on the 1/20X samples seem to possess a slightly higher average surface area.

The observed increase in the cell surface area of the functionalized samples compared with bare Ti-6Al-4V 
can be interpreted as the result of a more extended cell cytoskeleton which, in turn, can contribute to an improved 
cell attachment to the substrates. It has been reported that the initial extent of adhesion and spreading of the cell 
can influence its subsequent survival and proliferation45, so that this result is consistent with the higher number 
of viable cells found on 1/20X at longer incubation times.

In our case we have found an optimal concentration of EDC of 0.125 mg/ml (1/20X), when combined with the 
cleaning process indicated in the Materials and Methods section. The comparison of the tests on 1/20X, 1/10X 
and 1X samples highlights the importance of cleaning as one of the critical steps in the whole functionalization 
process as suggested previously37,46.

Conclusion
In this work, we demonstrate the enhancement in cell adhesion and survival of MSCs on Ti-6Al-4V alloy induced 
by the covalent immobilization of collagen Type I on AVS-functionalized samples. An efficient protocol for the 
covalent binding of collagen to the amine functional layer based on the EDC/NHS chemistry is developed and 
complemented by a suitable cleaning process. The immobilization of collagen was characterized by fluorescence 
microscopy and atomic force microscopy, including its stability even after relatively harsh treatments, such as 
incubation with SDS.

The biological response was assessed by in-vitro cell culture experiments using MSCs. The results demon-
strated that even relatively low concentrations of EDC/NHS could cause cytotoxicity for cells 48 hours after 

Figure 9.  Fluorescence microscopy images of Phalloidin/Hoechst stained MSC cells adhered on bare Ti-
6Al-4V, functionalized Ti-6Al-4V with immobilized collagen containing 1X, 1/10X and 1/20X concentrations of 
EDC/NHS, and control sample after 4 hours of seeding. Scale Bar 20 μm.

Figure 10.  Surface area of MSCs on bare Ti-6Al-4V, functionalized Ti-6Al-4V with immobilized collagen 
containing 1X, 1/10X and 1/20X concentrations of EDC/NHS, and control sample after 4 hours of seeding. 
*Denotes p < 0.05 with respect to the control sample.
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seeding. Finally, an optimized protocol based on a reduced EDC/NHS concentration and an exhaustive cleaning 
procedure was defined and proven to lead to an increase in the cell number on the material compared with those 
observed on bare Ti-6Al-4V samples.

Although these results illustrate the robustness of the whole process that combines AVS-functionalization and 
protein covalent immobilization, they are far from exhausting all the possibilities of the technique. In this regard, 
it can be stressed that the AVS process is compatible not only with a wide range of biomaterials and processing 
methods, but also with a variety of crosslinkers and biomolecules. We believe that this versatility offers a great 
opportunity to improve the biological response of numerous biomaterials significantly with a minimum modifi-
cation of the fabrication procedures. This improvement, in turn, should reflect in an enhanced biocompatibility 
of implants and devices.

Materials and Methods
Substrate preparation.  Ti-6Al-4V substrates with dimensions of 10 × 10 × 1 mm were cut from an ingot 
of commercially available alloy. Subsequently, the substrates were subjected to a polishing process using sandpa-
pers grit No. 80, 400, 1200 and 4000 sequentially. Ultimately, the samples were cleaned by sonication in acetone, 
isopropanol and distilled water.

Adsorption of collagen on bare Ti-6Al-4V substrates.  In order to determine the effect exerted by the 
presence of collagen on Ti-6Al-4V substrates on cell adhesion/proliferation, initial tests with collagen adsorbed 
on bare (non-functionalized) Ti-6Al-4V substrates were conducted. Samples were incubated with a suspension of 
2.5 mg/ml collagen (Rat tail Collagen type I, Corning) in PBS (Na2HPO4 10 mM, KH2PO4 1.8 mM, NaCl 137 mM, 
KCl 2.7 mM, pH = 7.4). A solution of NaOH (Panreac) 1 M was added dropwise to the collagen suspension to 
adjust the pH in the range of 6.0–8.0. Subsequently, 100 µl of the suspension was deposited on the surface of each 
bare Ti-6Al-4V substrate and the substrates were incubated at 37 °C for 2 h in a wet chamber followed by 1 h 
incubation at 37 °C in a dry chamber. Finally, the samples were immersed in distilled water for 1 h to rehydrate the 
collagen films. These samples were named Col-ads.

Preparation of covalently immobilized collagen on functionalized Ti-6Al-4V substrates.  
Functionalization.  Functionalization of Ti-6Al-4V substrates was performed using an Activated Vapor 
Silanization (AVS) equipment as described elsewhere32. Briefly, 3-Aminopropyltriethoxysilane (APTS, Fluka) is 
put inside a closed chamber and evaporated. The vapor is carried by an argon flux (BIP, Purity ≥99, 9997%) to 
an activation chamber where the temperature rises to 750 °C. Afterwards, the activated APTS vapor impinges on 
the substrates in the deposition chamber. Finally, the vapor phase is evacuated from the system by a rotary pump. 
After functionalization with AVS, the substrates were cleaned by sonication with acetone and isopropanol, rinsed 
with distilled water, dried using an argon flux and stored in air.

In the AVS process there are four controllable parameters: Evaporation temperature of the APTS (Tevap), acti-
vation temperature of the APTS (Tact), pressure of argon (PAr) and time of deposition (t). For the functionaliza-
tion of the substrates used in this study, the processing parameters were chosen as: Tevap = 150 °C, Tact = 750 °C, 
PAr = 2mbar, t = 20 min. This choice of parameters was based on a previous study32 that established the optimized 
functionalization conditions. This process results in a homogenous and dense amino-functionalized surface on 
Ti-6Al-4V substrates.

Labeling collagen with FITC.  In order to assess the immobilization of the protein on the substrates, collagen 
molecules were tagged with fluorescein 5(6)-isothiocyanate (FITC, Fluka) which binds to the amine groups of 
the proteins. A suspension of collagen 2 mg/ml in PBS was prepared and FITC was added until a final FITC con-
centration of 0.5 mg/ml was reached.

Dialysis was employed in order to remove any free FITC molecules that had not reacted with the col-
lagen molecules. The collagen-FITC solution was put inside a dialysis membrane (Snakeskin dialysis tubing, 
Thermo Scientific) and dialysis was performed against 1 L of PBS as medium. The medium was changed every 
8 hours (three times in total). Before each change of the dialysis medium, 1 ml of the PBS medium was meas-
ured with an spectrophotomer (Halo RB-10) at a wavelength of 490 nm, and absorbance was compared to an 
absorbance-concentration standard curve to determine the concentration of free FITC molecules. The dialysis 
process was stopped when the concentration of FITC in the medium was determined to be below the resolution 
of the spectrophotometer (less than 0.005).

Covalent immobilization of FITC-labeled collagen.  After the completion of the dialysis process, a solution of 
4-Morpholine-ethanesulfonic acid (MES, Sigma-Aldrich) 0.2 M, pH = 6.0 was added to the collagen-FITC 
solution to a final concentration of collagen of 1 mg/ml. The functionalized samples were incubated with 
1 ml of the solution of collagen in MES for 1 h. Subsequently, a solution of N-(3-Dimethylaminopropyl)-
N′-ethylcarbodiimide hydrochloride (EDC, Sigma-Aldrich) and N-Hydroxysuccinimide (NHS, Aldrich) in MES 
0.1 M, pH = 6.0 was added to the samples to obtain a final concentration of 2.5 mg/ml EDC, 0.63 mg/ml NHS 
(hereafter referred to as 1X concentration) and the incubation was continued for 4 h. Finally, the samples were 
removed from the solution and gently rinsed with distilled water to remove any non-adhered collagen. These 
samples were named Col-imm-f.

In order to determine the effect of the EDC/NHS cross-linker concentration on the process, different concen-
trations of EDC/NHS were used taking the 1X concentration as reference, and named 1/10X (one tenth of the 
reference concentration) and 1/20X (one twentieth of the reference concentration).
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To eliminate the non-covalently bound collagen present on the surface, some samples were immersed in a 
solution of 10% sodium dodecyl sulfate (SDS, Fisher scientific) in PBS. The samples were sonicated initially for 1 h 
in the SDS solution, then the SDS solution was changed and the samples were incubated overnight.

Covalent immobilization of collagen on functionalized Ti-6Al-4V substrates for cell cultures (Col-imm).  
Functionalized Ti-6Al-4 V samples were incubated with 75 µl of a 3.26 mg/ml collagen suspension in MES buffer 
(0.1 M, pH = 0.6) for 1 h. Subsequently, 25 µl of the EDC/NHS solution were added onto the substrates and the 
incubation continued for 4 h. The final concentrations were: Collagen 2.5 mg/ml, MES 0.1 M, (pH = 0.6), EDC 
2.5 mg/ml and NHS 0.63 mg/ml. These concentrations correspond to the 1X concentration of EDC/NHS. In some 
samples, the initial concentration of EDC/NHS was modified correspondingly to produce the 1/10X and 1/20X 
samples.

Finally, in order to remove any free cross-linker molecules still present, the samples were cleaned in PBS 
(10 mM, pH = 7.4), MES (0.1 M, pH = 6.0) and Dulbecco’s Modified Eagle Medium (DMEM, pH = 7.4) for 5 h, 
72 h and 24 h, respectively.

Characterization.  Fluorescence microscopy.  In order to visualize the FITC-tagged collagen aggregates on 
the substrates, fluorescence microscopy was used. Samples were observed using an inverted microscope (Leica 
DMIRB) equipped with a digital camera (Leica DC100) at an emission wavelength of 520 nm for FITC. The 
observation conditions were: exposure time: 1.3 ms, gain: 2.1X and gamma: 0.68.

Atomic force microscopy.  The topography of samples was studied by atomic force microscopy (Cervantes AFM, 
Nanotec S.L.). Profile data and roughness were analyzed using WSxM 5.0 software. AFM measurements were 
performed in air using a pyramidal cantilever (Olympus OMCL RC800, semi-angle 39°, nominal resonance fre-
quency 69 KHz) in dynamic mode.

In-vitro cell cultures.  Bone marrow (BM) murine mesenchymal stem cells (MSC) were used as cell model. 
Isolation and expansion of BM cells were performed on fibronectin-coated wells (Corning Inc., NY) in Iscove’s 
Modified Dulbecco’s Medium (IMDM, HyClone) supplemented with 20% of MSC stimulatory supplements 
(Stem Cell Technologies), 100 μmol/L 2-mercaptoethanol (Sigma), 100 IU/mL penicillin (Sigma), 0.1 mg/mL 
streptomycin (GIBCO), 2 mmol/L L- glutamine (GIBCO), 10 ng/mL human PDGF-BB (Peprotech), and 10 ng/
mL rm-EGF (Peprotech). Adherent cell clusters were grown for a minimum of 5 passages. After this step, cells 
were regularly maintained in DMEM (HyClone) supplemented with 10% fetal bovine serum (FBS, HyClone) 
and 1% penicillin/streptomycin (Sigma). Cells were detached from the cultures dishes when necessary using 
Trypsin-EDTA (HyClone). All experiments were performed on MSC in passages 5 through 15. Prior to culturing, 
substrates were placed in p24 multiwells and were sterilized using UV irradiation for 20 min on each side. Cells 
were seeded on the substrates in a concentration of 50000 cells/ml (0.5 ml per well). The cells were maintained in 
an incubator at 37 °C in a humidified atmosphere of 5% CO2. Cells seeded on empty wells were used as controls 
and each experiment was done twice with duplicate samples.

Although one of the advantages of using MSC is their ability to differentiate to a number of cell lineages, 
including osteoblasts and chondrocytes47, it was considered that a proper analysis of this process was more ade-
quate for a future experimental campaign. Following this rationale, the present study is focused on the survival 
and proliferation of MSC on biofunctionalized and bare Ti-6Al-4V substrates.

Cell Viability.  To perform a live/dead assay, calcein AM /propidium iodide staining was used. Staining was done 
either at 4 or 48 hours after seeding. Cells were incubated with a combined solution of 1 μl/ml of calcein acetox-
ymethyl (Calcein AM, Life Technologies, 0.5 µg/µl in DMSO) and 1 μl/ml of propidium iodide (Sigma-Aldrich, 
750 µM in PBS) in DMEM for 30 min. Cells were observed using a fluorescence microscope (Leica DMIRB). At 
least three representative images were captured of each sample.

Phalloidin/Hoechst staining.  To observe the morphology of cells adhered on different substrates, actin filaments 
of the cells were stained with phalloidin tetramethylrhodamine B isothiocyanate (Phalloidin-TRITC, Sigma) and 
the nuclei counterstained with hoechst 33258 (Molecular Probes). Prior to staining, the samples were washed 
with PBS and cells were fixed in a solution of paraformaldehyde 4%. Afterwards, the fixed cells were rinsed with 
PBS once more, permeabilized using a solution of 0.1% triton X-100 and stained with a combined solution of 
2 µg/ml phalloidin and 0.2 mg/ml hoechst in PBS. Finally, the samples were observed in a fluorescence micro-
scope (Leica DMIRB) equipped with a digital camera (Leica DC100) at emission wavelengths 570 and 461 nm for 
phalloidin and hoechst, respectively.

In order to compare the level of cell spreading on each sample, the phalloidin/hoechst images obtained after 
4 hours of seeding were analyzed. For each sample, 10 individual and perfectly separate cells were selected at ran-
dom and the surface area of each cell was measured.

Cell proliferation assay.  Cell proliferation on each sample after 48 hours of seeding was assessed by 2,3-bis-
(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT, Applichem) following manufacturer’s 
instructions. The absorbance of each well was measured spectrophotometrically at 450 nm by using an ELX808 
microplate reader (BioTeK). For comparative reasons, the absorbance values were normalized according to the 
surface area of each sample.

The maximum duration of the cell viability and proliferation assays was fixed to 48 h for two main reasons. 
Firstly, the results obtained at 48 h of incubation are less likely to be affected by the possible contact inhibition 
effect, when the cell density is high48. This effect might be important at longer incubation times when comparing 
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the number of cells grown on the polystyrene control samples and those on the other substrates. Secondly, the 
large number of trials performed in order to obtain reliable data from the cell culture experiments, especially dur-
ing the development of the cleaning protocol, converted the duration of these experiments in a critical parameter 
for the development of an efficient experimental campaign. A duration of 48 h for cell culturing was selected as a 
convenient time that allows studying the survival and proliferation of cells, while preventing contact inhibition 
and, simultaneously, keeping the time required for the experimental work within a reasonable limit. This range of 
cell culture times was used by other authors that assessed the in vitro response of cells to different materials11,49,50.

Protein quantification.  The amount of proteins immobilized on 1X, 1/10X and 1/20X samples after completing 
the cleaning process was measured using Micro-BCA protein assay kit (Thermo Scientific). The samples were 
incubated with the working solution of the kit (A:B:C:PBS = 25:24:1:50) for 1 h at 60 °C followed by equilibration 
at room temperature for 30 min. The absorbance values were obtained at 562 nm and compared with a standard 
curve obtained from serial dilutions of bovine serum albumin in PBS. The assay was done with duplicate samples 
for each concentration.

Image analysis.  Image J software was used for image analysis, counting the number of viable cells and meas-
uring cell surface area.

Statistical analysis.  To perform statistical analysis IBM SPSS Statistics 20 software was used. Statistical 
significance was determined using a one-way ANOVA followed by a Games-Howell post-hoc test. p < 0.05 was 
considered significant. All data are presented as mean value ± standard error.

Data availability statement.  No datasets were generated or analysed during the current study.

References
	 1.	 Geetha, M., Singh, A. K., Asokamani, R. & Gogia, A. K. Ti based biomaterials, the ultimate choice for orthopaedic implants - A 

review. Progress in Materials Science 54, 397–425 (2009).
	 2.	 Brunette, D. M., Tengvall, P., Textor, M. & Thomsen, P. In Titanium in Medicine: MaterialScience, Surface Science, Engineering, 

Biological Responses and Medical Applications (Springer Science & Business Media, 2012).
	 3.	 Martin, J. Y. et al. Effect of Titanium Surface-Roughness on Proliferation, Differentiation, and Protein-Synthesis of Human 

Osteoblast-Like Cells (Mg63). J. Biomed. Mater. Res. 29, 389–401 (1995).
	 4.	 Davies, J. E. In vitro modeling of the bone/implant interface. Anat. Rec. 245, 426–445 (1996).
	 5.	 Le Guehennec, L., Soueidan, A., Layrolle, P. & Amouriq, Y. Surface treatments of titanium dental implants for rapid osseointegration. 

Dental Materials 23, 844–854 (2007).
	 6.	 Anselme, K. et al. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J. 

Biomed. Mater. Res. 49, 155–166 (2000).
	 7.	 Sinha, R. K., Morris, F., Shah, S. A. & Tuan, R. S. Surface-Composition of Orthopedic Implant Metals Regulates Cell Attachment, 

Spreading, and Cytoskeletal Organization of Primary Human Osteoblasts In-Vitro. Clin. Orthop. 258–272 (1994).
	 8.	 Castner, D. G. & Ratner, B. D. Biomedical surface science: Foundations to frontiers. Surf. Sci. 500, 28–60 (2002).
	 9.	 Yoshida, E., Yoshimura, Y., Uo, M., Yoshinari, M. & Hayakawa, T. Influence of nanometer smoothness and fibronectin 

immobilization of titanium surface on MC3T3-E1 cell behavior. Journal of Biomedical Materials Research Part a 100A, 1556–1564 
(2012).

	10.	 Yamamoto, M., Yamato, M., Aoyagi, M. & Yamamoto, K. Identification of Integrins Involved in Cell-Adhesion to Native and 
Denatured Type-I Collagens and the Phenotypic Transition of Rabbit Arterial Smooth-Muscle Cells. Exp. Cell Res. 219, 249–256 
(1995).

	11.	 Nagai, M. et al. In vitro study of collagen coating of titanium implants for initial cell attachment. Dent. Mater. J. 21, 250–260 (2002).
	12.	 Wang, Q. Q., Li, W. & Yang, B. C. Regulation on the biocompatibility of bioactive titanium metals by type I collagen. Journal of 

Biomedical Materials Research Part a 99A, 125–134 (2011).
	13.	 Knight, C. G. et al. The collagen-binding A-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) recognize the same specific 

amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275, 35–40 (2000).
	14.	 Koblinski, J. E., Wu, M., Demeler, B., Jacob, K. & Kleinman, H. K. Matrix cell adhesion activation by non-adhesion proteins. J. Cell. 

Sci. 118, 2965–2974 (2005).
	15.	 Marin-Pareja, N., Salvagni, E., Guillem-Marti, J., Aparicio, C. & Ginebra, M. Collagen-functionalised titanium surfaces for biological 

sealing of dental implants: Effect of immobilisation process on fibroblasts response. Colloids and Surfaces B-Biointerfaces 122, 
601–610 (2014).

	16.	 Muller, R. et al. Surface engineering of stainless steel materials by covalent collagen immobilization to improve implant 
biocompatibility. Biomaterials 26, 6962–6972 (2005).

	17.	 Grinnell, F. & Feld, M. K. Fibronectin Adsorption on Hydrophilic and Hydrophobic Surfaces Detected by Antibody-Binding and 
Analyzed during Cell-Adhesion in Serum-Containing Medium. J. Biol. Chem. 257, 4888–4893 (1982).

	18.	 van den Dolder, J. et al. Effect of fibronectin- and collagen I-coated titanium fiber mesh on proliferation and differentiation of 
osteogenic cells. Tissue Eng. 9, 505–515 (2003).

	19.	 Hayashi, J. et al. MC3T3-E1 cell response to hydroxyapatite and alpha-type alumina adsorbed with bovine serum albumin. 
Bioceramics 24 529–530, 365– 369 (2013).

	20.	 Geissler, U. et al. Collagen type I-coating of Ti6Al4V promotes adhesion of osteoblasts. J. Biomed. Mater. Res. 51, 752–760 (2000).
	21.	 Becker, D. et al. Proliferation and differentiation of rat calvarial osteoblasts on type I collagen-coated titanium alloy. J. Biomed. Mater. 

Res. 59, 516–527 (2002).
	22.	 Yu, X., Walsh, J. & Wei, M. Covalent immobilization of collagen on titanium through polydopamine coating to improve cellular 

performances of MC3T3-E1 cells. Rsc Advances 4, 7185–7192 (2014).
	23.	 Mueller, R. et al. Influence of surface pretreatment of titanium- and cobalt-based biomaterials on covalent immobilization of fibrillar 

collagen. Biomaterials 27, 4059–4068 (2006).
	24.	 Jennissen, H. P., Zumbrink, T., Chatzinikolaidou, M. & Steppuhn, J. Biocoating of implants with mediator molecules: Surface 

enhancement of metals by treatment with chromosulfuric acid. Materialwissenschaft Und Werkstofftechnik 30, 838–845 (1999).
	25.	 Nanci, A. et al. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J. Biomed. Mater. Res. 

40, 324–335 (1998).
	26.	 Vanluyn, M. J. A. et al. Relations between Invitro Cytotoxicity and Cross-Linked Dermal Sheep Collagens. J. Biomed. Mater. Res. 26, 

1091–1110 (1992).



www.nature.com/scientificreports/

1 1SCieNtifiC REPOrts |  (2018) 8:3337  | DOI:10.1038/s41598-018-21685-3

	27.	 Ahmad, Z. et al. Effect of 1-ethyl -3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide concentrations on the 
mechanical and biological characteristics of cross-linked collagen fibres for tendon repair. Regenerative Biomaterials 2, 77–85 (2015).

	28.	 Vandenberg, E., Elwing, H., Askendal, A. & Lundstrom, I. Protein Immobilization to 3-Aminopropyl Triethoxy Silane 
Glutaraldehyde Surfaces - Characterization by Detergent Washing. J. Colloid Interface Sci. 143, 327–335 (1991).

	29.	 Bax, D. V., McKenzie, D. R., Weiss, A. S. & Bilek, M. M. M. The linker-free covalent attachment of collagen to plasma immersion ion 
implantation treated polytetrafluoroethylene and subsequent cell-binding activity. Biomaterials 31, 2526–2534 (2010).

	30.	 Martin-Palma, R. J., Manso, M., Perez-Rigueiro, J., Garcia-Ruiz, J. P. & Martinez-Duart, J. M. Surface biofunctionalization of 
materials by amine groups. J. Mater. Res. 19, 2415–2420 (2004).

	31.	 Arroyo-Hernandez, M. et al. Characterization of biofunctional thin films deposited by activated vapor silanization. J. Mater. Res. 23, 
1931–1939 (2008).

	32.	 Rezvanian, P. et al. Development of a versatile procedure for the biofunctionalization of Ti-6Al-4V implants. Appl. Surf. Sci. 387, 
652–660 (2016).

	33.	 Ao, H. et al. Improved hMSC functions on titanium coatings by type I collagen immobilization. Journal of Biomedical Materials 
Research Part a 102, 204–214 (2014).

	34.	 Roehlecke, C. et al. Synergistic effect of titanium alloy and collagen type I on cell adhesion, proliferation and differentiation of 
osteoblast-like cells. Cells Tissues Organs (Print) 168, 178–187 (2001).

	35.	 Bierbaum, S. et al. Modification of Ti6Al4V surfaces using collagen I, III, and fibronectin. II. Influence on osteoblast responses. 
Journal of Biomedical Materials Research Part a 67A, 431–438 (2003).

	36.	 Kim, D. & Herr, A. E. Protein immobilization techniques for microfluidic assays. Biomicrofluidics 7, 041501 (2013).
	37.	 Powell, H. M. & Boyce, S. T. EDC cross-linking improves skin substitute strength and stability. Biomaterials 27, 5821–5827 (2006).
	38.	 Yang, C. Enhanced physicochemical properties of collagen by using EDC/NHS-crosslinking. Bull. Mater. Sci. 35, 913–918 (2012).
	39.	 Angele, P. et al. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials 

25, 2831–2841 (2004).
	40.	 Damink, L. H. H. O. et al. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 17, 765–773 

(1996).
	41.	 Park, S. N., Park, J. C., Kim, H. O., Song, M. J. & Suh, H. Characterization of porous collagen/hyaluronic acid scaffold modified by 

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials 23, 1205–1212 (2002).
	42.	 Osborne, C. S., Reid, W. H. & Grant, M. H. Investigation into cell growth on collagen/chondroitin-6-sulphate gels: The effect of 

crosslinking agents and diamines. Journal of Materials Science-Materials in Medicine 8, 179–184 (1997).
	43.	 Pieper, J. S., Oosterhof, A., Dijkstra, P. J., Veerkamp, J. H. & van Kuppevelt, T. H. Preparation and characterization of porous 

crosslinked collagenous matrices containing bioavailable chondroitin sulphate. Biomaterials 20, 847–858 (1999).
	44.	 Moshnikova, A. B. et al. Cytotoxic activity of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide is underlain by DNA interchain 

cross-linking. Cellular and Molecular Life Sciences 63, 229–234 (2006).
	45.	 Bacakova, L., Filova, E., Parizek, M., Ruml, T. & Svorcik, V. Modulation of cell adhesion, proliferation and differentiation on 

materials designed for body implants. Biotechnol. Adv. 29, 739–767 (2011).
	46.	 Hanthamrongwit, M., Reid, W. H. & Grant, M. H. Chondroitin-6-sulphate incorporated into collagen gels for the growth of human 

keratinocytes: The effect of cross-linking agents and diamines. Biomaterials 17, 775–780 (1996).
	47.	 Gonzalez-Nieto, D. et al. Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of 

hematopoietic stem cells and progenitors. Blood 119, 5144–5154 (2012).
	48.	 Abercrombie, M. Contact Inhibition in Tissue Culture. In Vitro-Journal of the Tissue Culture Association 6, 128– 142  (1970).
	49.	 Cooper, L. F., Handelman, B., McCormack, S. M. & Guckes, A. D. Binding of murine osteoblastic cells to titanium disks and collagen 

I gels: implications for alternative interpretations of osseointegration. Int. J. Oral Maxillofac. Implants 8, 264–72 (1993).
	50.	 Pugdee, K. et al. Gene expression of MC3T3-E1 cells on fibronectin-immobilized titanium using tresyl chloride activation technique. 

Dent. Mater. J. 26, 647–655 (2007).

Acknowledgements
The work was funded by the Ministry of Economy and Competitiveness in Spain through Projects MAT2016-
75544-C2-1-R and MAT2016-79832-R.

Author Contributions
P.R. performed the experimental work with the help of P.A.L., and wrote the first version of the manuscript. R.D. 
obtained the AFM images. M.R. and D.G.-N. obtained the cells and supervised the cell culture experiments. M.E. 
and G.V.G. contributed to the data analysis and reviewed the experiments. J.P.-R. proposed the experiments and 
coordinated the work.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-21685-3.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-21685-3
http://creativecommons.org/licenses/by/4.0/

	Enhanced Biological Response of AVS-Functionalized Ti-6Al-4V Alloy through Covalent Immobilization of Collagen

	Results

	Collagen adsorption. 
	Covalent immobilization of collagen. 

	Discussion

	Conclusion

	Materials and Methods

	Substrate preparation. 
	Adsorption of collagen on bare Ti-6Al-4V substrates. 
	Preparation of covalently immobilized collagen on functionalized Ti-6Al-4V substrates. 
	Functionalization. 
	Labeling collagen with FITC. 
	Covalent immobilization of FITC-labeled collagen. 
	Covalent immobilization of collagen on functionalized Ti-6Al-4V substrates for cell cultures (Col-imm). 

	Characterization. 
	Fluorescence microscopy. 
	Atomic force microscopy. 
	In-vitro cell cultures. 
	Cell Viability. 
	Phalloidin/Hoechst staining. 
	Cell proliferation assay. 
	Protein quantification. 

	Image analysis. 
	Statistical analysis. 
	Data availability statement. 

	Acknowledgements

	Figure 1 Morphology of the MSC cells cultured on bare Ti-6Al-4V, adsorbed collagen on Ti-6Al-4V (Col-ads) and plastic control samples after 4 and 48 hour of seeding.
	Figure 2 Number of cells obtained by (a) cell counting from micrographs after 4 and 48 hours of seeding, and (b) XTT reaction after 48 hours of seeding for MSC cells on bare Ti-6Al-4V, collagen adsorbed on Ti-6Al-4V (Col-ads) and control samples.
	Figure 3 Fluorescence microscopy images of samples incubated with FITC-tagged collagen on (a) bare Ti-6Al-4V incubated with EDC/NHS cross-linker before SDS treatment and (d) after SDS treatment, (b) AVS-functionalized Ti-6Al-4V without EDC/NHS cross-linke
	Figure 4 AFM topography images of samples incubated with FITC-tagged collagen on (a) bare Ti-6Al-4V incubated with EDC/NHS cross-linker before SDS treatment and (d) after SDS treatment, (b) AVS-functionalized Ti-6Al-4V without EDC/NHS cross-linker before 
	Figure 5 Fluorescence microscopy images of functionalized Ti-6Al-4V samples incubated with collagen and different concentrations of EDC/NHS.
	Figure 6 AFM topography images of functionalized Ti-6Al-4V samples incubated with collagen and different concentration of EDC/NHS at different scan sizes (a,d) 1X concentration of EDC/NHS, (b,e) 1/10X concentration of EDC/NHS, and (c,f) 1/20X concentratio
	Figure 7 MSC cells adhered on bare Ti-6Al-4V, functionalized Ti-6Al-4V with immobilized collagen containing 1X, 1/10X and 1/20X concentrations of EDC/NHS, and control sample at 4 and 48 hours after seeding.
	Figure 8 Number of MSC cells obtained by (a) cell counting from micrographs after 4 and 48 hours of seeding and (b) XTT reaction at 48 hours after seeding on bare Ti-6Al-4V, functionalized Ti-6Al-4V with immobilized collagen containing 1X, 1/10X and 1/20X
	Figure 9 Fluorescence microscopy images of Phalloidin/Hoechst stained MSC cells adhered on bare Ti-6Al-4V, functionalized Ti-6Al-4V with immobilized collagen containing 1X, 1/10X and 1/20X concentrations of EDC/NHS, and control sample after 4 hours of see
	Figure 10 Surface area of MSCs on bare Ti-6Al-4V, functionalized Ti-6Al-4V with immobilized collagen containing 1X, 1/10X and 1/20X concentrations of EDC/NHS, and control sample after 4 hours of seeding.




