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Abstract: Adulteration of meat products is a delicate issue for people around the globe. The mixing of
lard in meat causes a significant problem for end users who are sensitive to halal meat consumption.
Due to the highly similar lipid profiles of meat species, the identification of adulteration becomes
more difficult. Therefore, a comprehensive spectral detailing of meat species is required, which can
boost the adulteration detection process. The experiment was conducted by distributing samples
labeled as “Pure (80 samples)” and “Adulterated (90 samples)”. Lard was mixed with the ratio of
10–50% v/v with beef, lamb, and chicken samples to obtain adulterated samples. Functional groups
were discovered for pure pork, and two regions of difference (RoD) at wavenumbers 1700–1800 cm−1

and 2800–3000 cm−1 were identified using absorbance values from the FTIR spectrum for all samples.
The principal component analysis (PCA) described the studied adulteration using three principal
components with an explained variance of 97.31%. The multiclass support vector machine (M-SVM)
was trained to identify the sample class values as pure and adulterated clusters. The acquired overall
classification accuracy for a cluster of pure samples was 81.25%, whereas when the adulteration ratio
was above 10%, 71.21% overall accuracy was achieved for a group of adulterated samples. Beef and
lamb samples for both adulterated and pure classes had the highest classification accuracy value
of 85%, whereas chicken had the lowest value of 78% for each category. This paper introduces a
comprehensive spectrum analysis for pure and adulterated samples of beef, chicken, lamb, and lard.
Moreover, we present a rapid M-SVM model for an accurate classification of lard adulteration in
different samples despite its low-level presence.

Keywords: food adulteration; halal authentication; Fourier transform infrared (FTIR) spectroscopy;
principal component analysis (PCA); chemometric methods; multiclass support vector machine
(M-SVM)

1. Introduction

The verification of authenticity and the detection of adulterants are critical aspects of
food control, particularly in high-value items. As a measure of food quality and authen-
ticity, laboratory data as well as chemical, physical, and visual pictures of foodstuffs are
employed. The authenticity of the food is a major concern in the worldwide food industry;
with the abundance of packaged food with a lengthy supply chain on the market, food
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authenticity is still an issue, as introduced by Spink and Mayor [1]. Nowadays, manual in-
spection, which is highly impacted by subjective variables, is nevertheless used frequently
in quality evaluation. As a result, detecting pork in a variety of food items has become a
major research topic in many countries, particularly in those where religious laws restrict
the eating of pig products. Food adulterations may only financially impact a part of the
population, but others may be more seriously affected [2–4] due to food poisoning, their
religious views [5,6], etc. Some of the food tampering has been poisonous, for instance,
such as the addition of sawdust to make white bread [7,8], the melamine adulteration of
formula milk [7,9,10], the mixing of oil for engines with oil for human consumption in
Spain [11]; some cases also involved the misrepresentation of food ingredients such as the
UK horse meat issue in 2013 [12–15]. There are several ways of determining the provenance
of animal species in meat products that are based on nucleic acid resources, commonly
known as molecular techniques, which include DNA finger printing, PCR assays and
PCR simple sequence repeat (PCR-SSR) [16,17], chromatographic techniques, isotopic
techniques, vibrational and fluorescence spectroscopy, elemental techniques, nuclear mag-
netic resonance spectroscopy, sensory analysis, non-chromatographic mass spectrometry,
immunological techniques, along with chemometrics and bioinformatics [18]. However,
each methodology has its own set of drawbacks such as being costly, time-consuming,
and inefficient, as well as requiring a wide range of equipment and making it difficult to
understand the acquired data; moreover, most of these methods often require extensive
sample preparation or are very susceptible to impurities. Unless all the protocols are strictly
followed, they may lead to unpredictable outcomes. As a result, establishing a quick and
reliable identification procedure to recognize meat species is critical. To address these
restrictions, individuals have increasingly turned to spectroscopic methods in recent years.
Fourier transform infrared spectroscopy (FTIR) has been widely used in the identification
of agricultural commodities such as wine, olive oil, tea, and meat due to its quick and easy
operation [19–22]. Research into food-authentication vibrational spectroscopy technologies
today has been growing [22–26], partly because the sample preparation using the FTIR tech-
nique is relatively simple, results are relatively rapid, and this process is non-destructive
in nature. The FTIR spectroscopic methods are thus fast becoming popular [27–33]. Some
researchers have started to veer to Near Infrared (NIR) spectroscopy, mainly because its
feasibility would open the possibilities of making the food authentication instrumentation
set-up portable [28–30]. FTIR is quick and relatively inexpensive, with an easier sample
preparation and a non-destructive process [18,19,24,34]. FTIR spectroscopy can distinguish
meat and lard in meatball broth quickly and with high accuracy [19,21]; it has also been
used with chocolate [24,34] and vegetable oils [22]. Table 1 presents the summary of meth-
ods and adulterants used in the literature, along with the multivariate techniques used
for detecting the adulteration in different meat species. Therefore, the aim of this study
was to utilize in-depth FTIR spectral analysis to improve the accuracy of lard adulteration
detection by employing the classification of pure and adulterated samples combined with
an M-SVM analysis for lard adulterated in mixtures of beef, lamb, and chicken.

Table 1. Summary of food analyses using multivariate techniques with infrared spectroscopy for the detection of meat
species adulteration [35–40].

Method Meat Adulterant Analysis Technique

Fourier Transform Infrared Spectroscopy Palm Oil with Chicken Fat Linear Discriminant Analysis

E-Nose Lard, Chicken, and Beef K-Nearest Neighbors algorithm (KNN),
Support Vector Machine (SVM)

Fourier Transform Infrared Spectroscopy Beef Jerky with pork LDA, SIMCA, and SVM
Fourier Transform Infrared Spectroscopy Lard, Mutton, and Cow PLS Regression

Raman Spectroscopy Beef and Horsemeat PCA
Fourier Transform Infrared Spectroscopy Lard and Palm Oil PLS
Fourier Transform Infrared Spectroscopy Lard, Beef Meatballs PCA and PLS
Fourier Transform Infrared Spectroscopy Lard in Palm Oil PCA and PLS
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2. Materials and Methods
2.1. Meat Sample Collection

All meat samples were obtained from the local market at Seri Iskander in Malaysia.
After that, the meat was washed with purified water and cut into small parts (1 cm × 1 cm)
and held at −10 ◦C. Total samples were then divided into two different classes, as pure
and adulterated. There were 80 pure and 90 adulterated samples produced for the spectral
analysis. The sample preparation was designed to be straightforward, with no extra
chemical substances used. Beef, lamb, and chicken loin cuts were used, and all pork was
lean meat taken from chops.

2.2. Extraction Procedure and Sample Distribution

Lard and other animal body fats from meat such as chicken fat, beef fat, and mutton
fat were extracted according to the method stated by [34], with little variation. All samples
were gradually heated from 50 ◦C to 150 ◦C for 45 min until the fat was extracted from all
the samples on the petri dish. The discharged fat was then filtered as the concentration
contained solid minute particles. Moreover, samples were centrifuged at 3000 rpm for
20 min and filtered through Whatman filter paper. Pure fats produced by the extraction
process were then used to make adulterated samples. All the chemicals used in this
experiment were of analytical consistency. Pure and adulterated fats were then analyzed
using FTIR spectroscopy. The instrument used was Frontier FT-IR by PerkinElmer. The
optical system with KBr beam splitter was used to enable quality data collection over a
range of 8300–350 cm−1 at a best resolution of 0.4 cm. The resulting spectrum contained
2500 continuous values for one sample, with intervals of 0.8 cm−1. To guarantee that there
was no major fluctuation between each spectra scanned, each spectrum was recorded at
the same temperature. This procedure was required to remove any uncontrolled ambient
influences on the instrument and the sample.

2.3. Spectral Data Pre-Processing

Smoothing and normal variate transformation (SNV) were used as spectrum pre-
processing approaches in this investigation. The reflectance spectra were smoothed by
Savitzky-Golay smoothing using a second-order polynomial and a 5-point window to
eliminate the random disturbances caused by the system’s internal components. SNV was
used to adjust for scatter effects and reduce slope variation. The Savitzky-Golay smoothing
filter was used to increase the precision of the data without distorting the signal tendency.

2.4. Preparing Mixture Samples

Lard was mixed with body fats of lamb, beef, and chicken to obtain a series of standard
or trained sets of 80 pure and 90 adulterated samples containing 10–50% v/v of lard in
lamb, beef, and chicken samples, as shown in Table 2. The following method is according
to Rohman et al. [23]. We prepared six pieces for each combination of lard mixed with a
defined percentage of lamb, chicken, and beef, with pork in the proportion of 10, 20, 30, 40,
and 50%, whereas B-50%, L-50%, and C-50% represent a 50-50 ratio of pork with beef, lamb,
and chicken, respectively; meanwhile, B-90%, L-90%, and C-90% indicate 10% lard with
90% of the respective species. The detailed distribution of samples is presented in Table 3.

Table 2. Distribution of adulterated and pure samples along with the number of pieces produced and spectra obtained for
individual species.

Meat Specie Number of Pieces Number of Samples Obtained Number of Spectra Obtained
Pure Samples Adulterated Samples (v/v)

Beef 20 10 × 2 = 20 15 × 2 = 30 50
Lamb 20 10 × 2 = 20 15 × 2 = 30 50
Pork

Chicken
20
20

10 × 2 = 20
10 × 2 = 20

-
15 × 2 = 30

20
50

Total 80 80 90 170



Foods 2021, 10, 2405 4 of 13

Table 3. Composition of adulterated samples with the ratio of lard mixed with samples of beef, lamb,
and chicken, represented by their initials (Lamb: L-90% to L50%, Beef: B-90% to B-50%, Chicken:
C-90% to C-50%).

Mixture
Samples Label Pork (v/v) Lamb (v/v) Beef (v/v) Chicken

(v/v)
Number of

Samples

L-90% 10% 90% - - 6
L-80% 20% 80% - - 6
L-70% 30% 70% - - 6
L-60% 40% 60% - - 6
L-50% 50% 50% - - 6
B-90% 10% - 90% - 6
B-80% 20% - 80% - 6
B-70% 30% - 70% - 6
B-60% 40% - 60% - 6
B-50% 50% - 50% - 6
C-90% 10% - - 90% 6
C-80% 20% - - 80% 6
C-70% 30% - - 70% 6
C-60% 40% - - 60% 6
C-50% 50% - - 50% 6

Total Mixture Samples 90

3. Results and Discussion

After a careful process of sample-making and data pre-processing, the obtained spec-
trum for both pure and adulterated samples was analyzed separately. The developed
workflow for further investigating the lard adulteration was carried out using a three-stage
process. In the first stage, identification of functional groups in lard samples without any
contamination was made. Secondly, pure spectral samples of beef, lamb, chicken, and lard
were analyzed by overlapping the spectrums and identifying the region of difference (RoD)
for highly significant regions. Moreover, the profiling of adulterated samples with the per-
centage difference for beef, lamb, and chicken was also carried out. After spectral analysis,
the third and final stage combined the multivariate analysis with M-SVM classification
for both pure and adulterated samples separately. Samples were divided into two classes,
‘Haram (lard)’ and ‘Halal (chicken, lamb, and beef)’, for M-SVM classification.

3.1. FTIR Spectra Analysis of Pure Samples

Amid the four different meat fats, the pure lard used in this study was evaluated and
analyzed separately using FTIR spectroscopy. The peak is shown in Figure 1 approximately
at wavenumber 2921 cm−1, which was due to the tensile vibration of C-H (Sp3) in = C-H
cis. The functional group-CH2 provided peaks at wavenumber 2853 cm−1 consecutively as
result of asymmetrical and symmetrical vibration. The peak showed the triglyceride ester
carbonyl (C=O) group at wavenumber 1750 cm−1.

In the fingerprint region, vibrations of the stretching mode from the C-O group
in esters were detected at wavenumber 1155 cm−1, while at wavenumber 1467 cm−1

the bending vibrations of the CH2 and CH3 aliphatic groups were detected, as shown
in Figure 1. Table 4 shows the details of wavenumber and the associated vibration of
functional groups for the pure lard sample.

Figure 2 below shows the FTIR spectra of pure samples overlapped for the identifica-
tion of wavenumbers, with associated peaks identified as the region of difference (RoD)
along with the fingerprint region. This spectrum can be divided into three regions to make
the analysis convenient: the first region range is at wavenumber 3000–2500 cm−1, the
second region range is 2000–2500 cm−1, the third region range is 1500–2000 cm−1, and to
conclude, the fingerprint region range is at wavenumber 1500–500 cm−1. Two separate
regions are highlighted with dotted lines (a and b), with the overlapping of pure samples
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for all species, as indicated in Figure 2, where the change in absorbance values is highly
prominent; wavenumbers associated with these two regions are in the spectrum ranges
of 1700–1800 cm−1 for RoD(a) and 2800–3000 cm−1 for RoD(b) respectively as shown in
Figure 3. The FTIR spectra of all the lipids obtained from different species were combined
and overlapped.
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Foods 2021, 10, 2405 6 of 13

Foods 2021, 10, x FOR PEER REVIEW 6 of 14 
 

 

690 1380 2070 2760

1.2

1.6

2.0

2.4

A
bs

or
ba

nc
e

Wavenumber (1/cm)

 Cow fat
 Chicken fat
 Lamb fat
 Lard

Fingerprint Region

Region of Difference (RoD) 

a b

 
Figure 2. Overlapped spectrum from FTIR covering 3500–650 cm−1, representing the fingerprint 
and functional group regions for pure samples of beef, lamb, lard, and chicken, with identification 
of potential regions of difference (RoD). 

 
Figure 3. RoD(a) Region of difference peaks zoomed in at wavenumber 1700–1800 cm−1 showing 
the absorbance value for pure samples denoted by a; lard has the lowest value among all samples. 
RoD(b) Zoomed-in peaks at wavenumber 2800–3000 cm−1 where peaks denoted as a, b, and c rep-
resent potential regions with difference in absorbance values for all samples. 

As the value for the adulteration of lard increases for both beef and chicken, the ab-
sorbance values merge with the lard, showing high contrast compared to lamb samples, 
which indicates negligible change when lard is mixed. This is clearly visible in the spectral 
analysis shown in Figure 4 for all the adulterated samples. The absorbance values in the 
region of RoD(b) are carefully analyzed, where the adulteration of lard can potentially be 
detected. This is shown in Table 5. On the other hand, beef samples are highly prone, and 
lard is detectable because of the significant change in absorbance value at the region of 
2800–3000 cm−1 in the spectrum, specifically at RoD(b) a and b, which represent regions at 
2840–2860 and 2900–2940 cm−1, respectively. Table 5 lists all the absorbance values at the 
peaks of RoD(b) in Figure 2; the percentage difference is calculated with respect to lard 
for peak absorbance in regions with high significance. 

Table 5. Absorbance values and percentage difference with respect to lard for adulterated samples of beef, lamb, and 
chicken in the region of RoD(b) at the highly significant region of 2800–3000 cm−1. 

Species Type Sample 
Absorbance Value at 

RoD(b)-a 
Absorbance Value at 

RoD(b)-b Percentage Difference w.r.t Pork 

Pure Lard Pork-100% 1.5963 1.75306 RoD(b)-a RoD(b)-b 

Adulterated Beef 
B-50% 1.6580 1.9154 3.79% 8.85% 
B-60% 1.8357 2.1793 13.95% 21.67% 

Figure 3. RoD(a) Region of difference peaks zoomed in at wavenumber 1700–1800 cm−1 showing the absorbance value
for pure samples denoted by a; lard has the lowest value among all samples. RoD(b) Zoomed-in peaks at wavenumber
2800–3000 cm−1 where peaks denoted as a, b, and c represent potential regions with difference in absorbance values for
all samples.

As the value for the adulteration of lard increases for both beef and chicken, the
absorbance values merge with the lard, showing high contrast compared to lamb samples,
which indicates negligible change when lard is mixed. This is clearly visible in the spectral
analysis shown in Figure 4 for all the adulterated samples. The absorbance values in the
region of RoD(b) are carefully analyzed, where the adulteration of lard can potentially be
detected. This is shown in Table 5. On the other hand, beef samples are highly prone, and
lard is detectable because of the significant change in absorbance value at the region of
2800–3000 cm−1 in the spectrum, specifically at RoD(b) a and b, which represent regions at
2840–2860 and 2900–2940 cm−1, respectively. Table 5 lists all the absorbance values at the
peaks of RoD(b) in Figure 2; the percentage difference is calculated with respect to lard for
peak absorbance in regions with high significance.

The highest proximity of absorbance values to pure lard can be seen in the samples of
B-50%, C-90%, C-80%, and C-50%, for both regions RoD(b)-a and RoD(b)-b. At the same
time, adulterated beef shows a pattern of variation according to the adulteration percent-
age of lard. Beef samples with 10% adulteration (B-90%) have an approximate percentage
difference of 7–14%, while beef with 50% adulteration (B-50%) shows approximately 3–8%
change for both regions. All samples containing adulterated chicken from C-50% to C-90%
show the lowest percentage difference as compared to lamb and beef. This reveals the
highest similarity to be between chicken and lard, which could present some difficulty in
detecting the adulteration of lard in chicken irrespective of the percentage mixing. More-
over, adulterated lamb samples depict minor variation in absorbance values throughout the
mixing samples (L-50% to L-90%) and have the highest percentage difference as compared
to pure lard.

3.2. Results of Principal Component Analysis

Pure lard, along with other samples of beef, chicken, and lamb, was classified using
the chemometric of PCA. PCA is used to reduce the dimension of the spectral signal. The
wavenumber regions for PCA were also optimized. To confirm the separation based on
adulterant type, the raw data (eigenvectors of the covariance matrix) was subjected to
principal component analysis (PCA). Further explanation on PCA is at Appendix A.1
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Table 5. Absorbance values and percentage difference with respect to lard for adulterated samples of beef, lamb, and
chicken in the region of RoD(b) at the highly significant region of 2800–3000 cm−1.

Species Type Sample Absorbance Value at
RoD(b)-a

Absorbance Value
at RoD(b)-b Percentage Difference w.r.t Pork

Pure Lard Pork-100% 1.5963 1.75306 RoD(b)-a RoD(b)-b

Adulterated Beef

B-50% 1.6580 1.9154 3.79% 8.85%
B-60% 1.8357 2.1793 13.95% 21.67%
B-70% 1.8310 2.1784 13.69% 21.63%
B-80% 1.7611 2.0906 9.81% 17.56%
B-90% 1.7262 2.0227 7.81% 14.28%

Adulterated Chicken

C-50% 1.5256 1.8577 4.52% 5.79%
C-60% 1.5289 1.8737 4.31% 6.65%
C-70% 1.5312 1.8868 4.16% 7.34%

1.5358 1.8995 3.86% 8.01%
C-90% 1.5358 1.8995 3.86% 8.01%

Adulterated Lamb

L-50% 1.8739 2.2576 15.99% 25.15%
L-60% 1.8739 2.2576 15.99% 25.15%
L-70% 1.8739 2.2576 15.99% 25.15%
L-80% 1.8739 2.2576 15.99% 25.15%
L-90% 1.8710 2.2396 15.84% 24.37%

It is possible to observe a distinct split depending on the level of adulteration by show-
ing the scores of the first two main components (Figure 5), which represent 99.36 percent
of data variance. Only a little amount of overlap exists between the chicken samples that
have been tainted with pork. The selection of wavenumbers was based on their ability to
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provide a useful classification between samples, as seen in Figure 5. The PCA plot showed
clusters of samples based on their similarity with the first main component (PC1) and
the second main component (PC2), which provided a good separation between the lamb,
beef, and pork groups but was unable to separate pork and chicken. The percentage (%)
variability of PC1 and PC2 was 97.31% and 2.05%, respectively. PC1 comprised the most
variation of the data, as shown in Table 6.
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Figure 5. Principal component analysis plot showing the similarity between pork, chicken, lamb,
and beef samples with adulterated mixtures. C1–C5 (10–50% Pork), B1–B5 (10–50% Pork), L1–L5
(10–50% Pork).

Table 6. Percentage of variance for each PCA component contributing to the variation of the classification.

Principal Component Variance Contribution

PC1 97.31%
PC2 2.05%
PC3 0.64%

The FTIR spectra of the pure pork sample were compared with those of adulterated
beef, chicken, and lamb. Three dimensional plots are shown in Figure 6. The PCA analysis
shows the PCA projection divided into three dimensions for better analysis.

Figure 6a shows the distribution of samples across the first principal component
using 1D spectra of the pure samples for beef, lamb, chicken, and pork, where chicken
and pork samples overlap and correlate highly coupled values of absorbance with similar
wavenumbers. At the same time, Figure 6b depicts the samples at PC1 and PC2 using 2D
representation for all the adulterated species. Figure 6c combines all the three principal
components using 3D for all the adulterated samples. The regions in these figures are
separated based on the adulteration quantity, starting with slightly mixed, i.e., 10%, to
highly adulterated, i.e., 50%. In the first projection, the plotted points representing the
samples of chicken, beef, and lamb are scattered, and they are far from the pork group. The
closer the dots of chicken, beef, and lamb are to the pork samples, the more significant the
quantity of lard is in pure samples.

3.3. Multiclass Support Vector Machine Classification

The data obtained from the previous processes were divided into testing data (30%)
and training data (70%), and subsequently evaluated with the classification model. The data
acquired from the FTIR spectroscope was analyzed using the scikit-learn machine learning
library in Python. The radial basis function (RBF) was used as the kernel function of SVM
using the grid search method. To add an extra validation step to our model, we used the
confusion matrix for both multiclass datasets, as shown in Tables 7 and 8. The confusion



Foods 2021, 10, 2405 9 of 13

matrix projects the true data against predicted data. In our study, we divided the problem
into two different sections: one identified pure samples correctly, and the other predicted
the adulterated samples. The learning rate was 0.0001, and the regularization parameter λ
was set to 1/epochs. Table 7 illustrates the user, producer, and overall accuracy of the pure
samples data set. Details of the SVM is explained at Appendix A.2. Pure samples of beef
and lamb using optimal parameters produced the highest accuracy (85%) among all the
samples. Furthermore, pure samples of chicken had the lowest accuracy of 75%, whereas
pure pork was significantly better than chicken, with 80% accuracy. Moreover, Figure 7
shows a confusion matrix using a 10-fold cross-validation for the pure samples where the
a, b, and c rows represent the true label; meanwhile, according to the model prediction, the
a, b, and c columns represent the number of predicted sets for each respective class.
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Table 7. Sensitivity, precision, and classification accuracy for pure samples of beef, lamb, chicken,
and pork.

Classified as User Accuracy
(Sensitivity)

Producer Accuracy
(Precision) Overall Accuracy

Beef 85% 85.00%

81.25%
Lamb 85% 85.00%

Chicken 78% 75.00%
Pork 76% 80.00%

Table 8. Sensitivity, precision, and classification accuracy for adulterated samples of beef, chicken,
and lamb.

Classified as User Accuracy
(Sensitivity)

Producer Accuracy
(Precision) Overall Accuracy

a = AdulteratedBeef 68.86% 73.33%
72.2%b = AdulteratedLamb 67.19% 76.66%

c = AdulteratedChicken 83.20% 66.00%
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Figure 7. Heatmap confusion matrix of multiclass classification for pure samples of beef, chicken,
lamb, and pork showing the predicted and true labels.

The predicted labels for pure samples shown in Figure 7 misclassified three samples
of pure chicken as pure pork, while two samples of pure pork were falsely labeled as
chicken. Moreover, beef and lamb both had three label misclassifications, one for each
species of meat.

Table 8 shows the confusion matrix for the multiclass SVM of adulterated data samples.
The adulterated data set contained all the samples that were adulterated with different
proportions of lard. The AdulteratedBeef sample included samples with a v/v ratio from B-
50% to B-90%. The producer accuracy was highest for AdulteratedLamb at 76.6%, whereas
AdulteratedBeef had the second-highest value of 73.3%. The spectrum of lamb had no
change in absorbance value when it was adulterated, irrespective of the adulteration
ratio, which was also validated by the SVM classifier by getting the maximum number of
correctly classified labels, as shown in Figure 8.
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AdulteratedChicken samples, with 20 correctly classified samples, produced the
lowest precision accuracy of 66% due to its high variation in absorbance values, as shown
in Figure 8.

4. Conclusions

FTIR spectroscopy, coupled with the multivariate and M-SVM methods, seems to be an
efficient and rapid technique for the discrimination of lard from other meat samples. In this
paper, we demonstrated the identification and discrimination of lard from beef, chicken,
and lamb fats in meat mixtures. FTIR spectral analysis in combination with Principal
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Component Analysis (PCA) and M-SVM have shown that pure lard fat has unique peaks
that can distinguish the pork from beef, chicken, and lamb meat at wavenumbers 1155 cm−1,
1467 cm−1, 1750 cm−1, and 2921 cm−1. The absorbance values indicate a direct correlation
between lard and other species. The PCA results show that adulteration in chicken meat is
positively correlated with pork meat, while lamb is negatively correlated with respect to
lard. The SVM model produced an overall prediction accuracy of 81.25% for pure samples,
and for adulterated samples, it showed a 72.2% prediction accuracy. The overall accuracy
was computed using the sensitivity and precision values. The model accurately classified
the pure samples better than the adulterated samples due to a smaller number of samples
and the minimalistic difference in absorbance values of the spectrum. Thus, this study has
the potential to establish as a rapid method for halal authentication and could revolutionize
the in-line quality control in the meat industry. For future work, the FTIR profiles for pure
and adulterated samples can be increased, and deep learning may be applied for detecting
an adulteration quantity of less than 10%.
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Appendix A

Appendix A.1. Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique that is particularly
useful in reducing observations that have many dimensions. This technique consists of
transforming dimensions of a dataset into a new but smaller set of uncorrelated dimensions
called principal components (PCs). An array of (qij) values can be normalized using the
equation below:

Xij = qij − qj (A1)

The data given to us is the array element data corresponding to the variable Xij, and
the mean value of the variable qj. Then, using the new dataset array, a correlation matrix is
constructed so that information about how the variables in the dataset are correlated can
be obtained. To create our new correlation matrix X with the new correlation coefficients
Xij, the following formula is used:

R = XT•X (A2)

Only the principal components that explain the greatest amount of data in the original
are determined using the equation below:

S = V•Q (A3)

where S is the matrix data, known as Score; V is the eigenvectors; and Q is the original
data array. The matrix S (Score) will now represent the data in a way that each column
represents the projection of the initial data Q.
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Appendix A.2. Support Vector Machine Classification

Most machine learning techniques have been created and statistically verified for
linearly separable data. For the reduction of dimensionality, linear classifiers such as
Support Vector Machines (SVMs) or the (conventional) Principal Component Analysis
(PCA) are common examples. However, to efficiently accomplish tasks involving pattern
analysis and discovery, most real-world data require non-linear approaches. By incorpo-
rating the kernel trick, the SVM approach has improved over time. To detect a pattern in
non-linear separable data, the kernel method effectively translates the input data to higher
dimensions. When the training data has many variables in comparison to the number of
observations, SVMs are an excellent classification approach. In SVM, every sample x that
consists of n variables is treated as an n-dimensional vector. Prediction performance can
be assessed using the following three indicators: sensitivity (User Accuracy), precision
(Producer Accuracy), and overall accuracy. Precision is the proportion of appropriately
positive labels produced by our software to all positive labels produced. The ratio of the
exactly positive labels identified by our algorithm to all positive labels is referred to as
sensitivity. Accuracy is the proportion of correctly categorized topics to the total number of
issues. Equations (A4)–(A6) present the formula for Precision, Accuracy, and Sensitivity.

Sensitivity =
True Positive

Predicted Results
(A4)

Precision =
True Positive

Actual Results
(A5)

Overall Accuracy =
True Positive + True Negative

Total
(A6)
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