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The ubiquitin–proteasome system (UPS) plays a central role in a

wide range of fundamental cellular functions by ensuring

protein quality control and through maintaining a critical level of

important regulatory proteins. Viruses subvert or manipulate

this cellular machinery to favor viral propagation and to evade

host immune response. The UPS serves as a double-edged

sword in viral pathogenesis: on the one hand, the UPS is utilized

by many viruses to maintain proper function and level of viral

proteins; while on the other hand, the UPS constitutes a host

defense mechanism to eliminate viral components. To combat

this host anti-viral machinery, viruses have evolved to employ

the UPS to degrade or inactivate cellular proteins that limit viral

growth. This review will highlight our current knowledge

pertaining to the different roles for the UPS in viral

pathogenesis.
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Introduction
Viruses have evolved to exploit the host cellular machin-

ery to establish productive infection. In eukaryotic cells,

the ubiquitin–proteasome system (UPS) is the major

intracellular pathway for degradation and functional mod-

ification of cellular proteins. It plays a key role in the

regulation of many fundamental cellular processes, in-

cluding apoptosis, cell cycle regulation, signal transduc-

tion, antigen processing, and transcriptional regulation

[1]. Ubiquitin is a small (76 amino acids) and highly

conserved protein present in almost all eukaryotic cells.

For UPS-mediated proteolysis, protein substrates are first

labeled with ubiquitins (a process called ubiquitination),
www.sciencedirect.com 
and then recognized and degraded by the 26S proteasome

[1]. Ubiquitination occurs via a sequential reaction medi-

ated by three enzymes, i.e. the ubiquitin-activating en-

zyme (E1), the ubiquitin-conjugating enzyme (E2), and

the ubiquitin ligase (E3). The substrate specificity to the

ubiquitin conjugation system is determined by the E3

ligases [2]. After multiple rounds of ubiquitination, a

poly-ubiquitin chain is formed and serves as a signal

for substrate recognition and degradation by the 26S

proteasome. Ubiquitin is then released through the activ-

ities of deubiquitinating enzymes (DUBs) [1,2]. In addi-

tion to ubiquitin-dependent degradation, some cellular

proteins can also be destroyed by the proteasome in a

ubiquitin-independent manner. This process requires the

function of proteasome activator 28 (PA28, also known at

REG) [3].

Besides the role of poly-ubiquitination (most commonly

linked with lysine 48) in proteasomal degradation, ubi-

quitination is also involved in regulating protein function

without targeting for degradation. Mono-ubiquitination

or lysine 63-linked poly-ubiquitination has been shown to

play key roles in a wide range of cellular functions,

including protein subcellular localization, transcription,

DNA repair, and signal transduction [2,4]. Apart from

ubiquitination, target proteins can also be post-transla-

tionally modified by several ubiquitin-like proteins, such

as the small ubiquitin-like modifiers (SUMO, four iso-

forms are identified in humans, SUMO1, SUMO2, SU-

MO3, and SUMO4) [5,6] and the interferon-stimulated

gene 15 (ISG15) [7,8]. Protein modification mediated by

SUMO and ISG15 (termed sumoylation and ISGylation,

respectively) occurs in a matter similar to ubiquitination

that requires an enzymatic cascade of E1 (Aos1/Uba2

heterodimer for SUMO and UBE1L for ISG15), E2

(Ubc9 for SUMO; UbcH8 and UbcH6 for ISG15), and

E3 [5–8]. There are currently three identified SUMO

E3s, that is, RanBP2, PIAS and the Polycomb protein Pc2

[5,6] and three known ISG15 E3s, that is, HERC5,

HHARI, and TRIM25 [7,8]. These processes can be

reversed via the action of de-sumoylating or de-ISGylat-

ing enzymes. The sumoylation and ISGylation conjuga-

tion systems have been implicated in the regulation of

many cellular functions, including transcriptional regula-

tion, anti-viral immune response, signaling pathways, and

vesicular trafficking [5–8].

Accumulating evidence has pointed to important roles for

the host UPS in the regulation of viral pathogenesis. It has
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2 Viral pathogenesis
become increasingly evident that viruses interact with the

UPS at multiple levels. They can either directly encode

proteins with E3-like or DUB-like activities or modify

specific aspects of the host UPS function for their own

advantages [9–11]. The UPS plays a dual role in viral

pathogenesis: it has both pro-viral and anti-viral effects

[9–11]. The UPS can enhance the function of viral

proteins via post-translational modification mediated by

ubiquitin or ubiquitin-like proteins. It can also facilitate

viral infection through controlling the stability of both

viral and cellular proteins. However, on the other hand,

UPS-mediated viral protein degradation may also consti-

tute a host defense process against viral infections. Viruses

have developed sophisticated mechanisms to counteract

this anti-viral immune response. This review will focus on

how viruses evolve to interact with the host UPS to favor

their propagation, to escape host immune response, and

contribute to viral pathogenesis.

Viral degradation of cellular proteins by the
UPS
Some cellular proteins can function as restriction factors

to limit viral infection by directly inhibiting viral replica-

tion or through controlling the state of their infected cells,

in particular cell survival/apoptosis and cell cycle progres-

sion. For example, the tumor suppressor protein p53 has

been shown to block viral replication by suppressing viral

gene activation and/or through promoting host cell apo-

ptosis [12,13]. Viruses can recruit the cellular E3 ligases to

target anti-viral proteins for degradation. Several proteins

encoded by DNA tumor viruses, such as the human

papillomavirus (HPV) E6 and E7 proteins [14,15] and

the adenovirus E1B55k/E4orf6 proteins [16], have been

shown to induce the assembly of an E3 ligase complex

that contains both viral protein and cellular E3 to catalyze

the ubiquitination of p53 and subsequent degradation by

the proteasome. For instance, the HPV E6 protein binds

to the cellular E3 ligase E6-associated protein (E6AP) to

form an E3 complex to mediate p53 degradation [14]. In

addition to p53, the HPV E7 protein also targets another

tumor suppressor protein, retinoblastoma protein (pRb),

for proteasomal degradation, which is mediated through a

cullin E3 complex [17]. Beside ubiquitin conjugation, the

expression of p53 can also be regulated at the levels of

deubiquitinating and proteasome activity. It was shown

that the Epstein-Barr nuclear antigen 1 interacts with the

ubiquitin-specific protease 7 (USP7, a cellular DUB) to

enhance p53 degradation, presumably through inhibiting

the activity of USP7 and thereby preventing p53 deubi-

quitination [18]. In the case of coxsackievirus infection, it

was found that proteasome activator PA28g is relocated

from the nucleus to the cytoplasm where it facilitates the

turnover of p53 through the proteasome [19]. Another

example of viral manipulation of the UPS for cellular

protein degradation is provided by lentivirus destruction

of the SAMHD1 (sterile alpha motif domain- and histi-

dine-aspartate domain-containing protein 1) protein.
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SAMHD1 is a cellular deoxynucleoside (dNTP) tripho-

sphohydrolase that inhibits human immunodeficiency

virus (HIV) infection by suppressing the activity of re-

verse transcriptase through depleting cellular dNTPs

[20]. It has been recently demonstrated that the viral

protein X encoded by HIV-2 and some simian immuno-

deficiency virus redirects a cullin-RING E3 ligase to

SAMHD1 to target it for proteasomal degradation in

the nucleus [21�].

A common strategy for viral evasion of host immune

surveillance is to target host immune adaptor and signal-

ing molecules (e.g. molecules involved in type I interfer-

on (IFN) response and MHC class I antigen presentation)

for proteasomal degradation or to prevent the destruction

of immune-related transcription factor inhibitors (e.g.

IkBa, an inhibitor of the nuclear factor kappa B (NFkB)

by sequestering it in the cytoplasm). Early studies have

revealed that human cytomegalovirus (HCMV)-encoded

proteins, US2 and US11, induce the dislocation of MHC

class I from the endoplasmic reticulum to the cytosol,

where ubiquitination and proteasomal degradation of

MHC molecules take place [22,23]. Recent work has

identified additional cellular targets (integrin a-chains,

CD112, interleukin-12, PTPRJ (protein tyrosine phos-

phatase, receptor type, J), and thrombomodulin) for US2

protein, which are ubiquitinated and degraded through

the recruitment of the cellular E3 ligase (TRC8) [24�].
Together, these studies suggest that US2 acts as a deg-

radation hub modulating multiple host immune

responses to HCMV infection. In addition to MHC class

I, the Janus kinase-signal transducers and activators of

transcription  (JAK/STAT) and NFkB pathways also play

critical roles in host anti-viral defense. Viruses have

developed distinct mechanisms to utilize the UPS to

dampen these host innate immune responses. One such

example is the V protein of paramyxoviruses, including

mumps virus, simian virus 5, and parainfluenza virus type

2, which promotes UPS-dependent STAT degradation

through co-opting a host cellular E3 ligase [25–27].

Similarly, the dengue virus NS5 protein was also found

to stimulate proteasomal degradation of STAT2, thus

blocking type I IFN signaling [28]. Moreover, it was

recently reported that the ORF61 protein encoded by

simian varicella virus and varicella zoster virus prevents

ubiquitination and degradation of IkBa, most likely

through interacting with b-transducin repeat containing

protein, a subunit of the Skp1-Cul1-F-box (SCF) E3

complex, thereby suppressing NFkB-mediated immune

responses [29�]. RNA silencing is an important host

defense mechanism against viral infection in plants

[30]. To combat this anti-viral immunity, several plant

viruses encode proteins to target key components of

RNA silencing, such as the ARGONAUTE1 protein

[31,32], for proteasomal degradation. Together, hijack-

ing the UPS is a common viral strategy to evade host

immune response.
www.sciencedirect.com
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In addition to its pro-viral function usurped by viruses as

discussed above, the UPS-mediated cellular protein deg-

radation may also represent a host defense mechanism

against viral infection. For example, the Rar1 protein, a

critical downstream product of the N gene of tobacco, was

shown to interact with SGT1, a highly conserved compo-

nent of SCF E3 complex, and COP9 signalosome, a multi-

protein complex involved in UPS-mediated protein

degradation [33]. Inhibition of SGT1 and COP9 abolishes

the N gene-mediated resistance to Tobacco mosaic virus,

suggesting a key role for the UPS in the regulation of plant

innate immune response [33,34]. Further study revealed

that this anti-viral effect can be counteracted by gemini-

virus-encoded C2 protein, which inhibits SCF activity and

interferes with the function of COP9 signalosome [35].

Viral protein degradation by the UPS
The UPS serves as either a pro-viral or anti-viral mecha-

nism in the context of controlling the levels of viral

proteins. Proper ratio of structural over non-structural viral

proteins is critical for productive viral infection [36,37].

Viruses have employed the UPS to keep some viral pro-

teins, mostly non-structural proteins, such as RdRp that has

been demonstrated to interfere with viral packaging and

even become anti-viral at high amounts [37,38], at a

relatively low level. Multiple studies have shown that

the abundance of RdRp encoded by Turnip yellow mosaic

virus [39], Sindbis virus [40], hepatitis C virus (HCV) [41],

and hepatitis A virus (HAV) [42] is tightly controlled via the

UPS. Similarly, previous reports on picornavirus have

revealed that the 3C protease of encephalomyocarditis

virus and HAV is rapidly degraded via the UPS and present

in low concentrations in infected cells [43–45]. Further-

more, HCV-encoded proteases NS2/3, were found to be

degraded following viral infection in a phosphorylation-

dependent manner mediated by casein kinase 2 [46].

Another example of viral non-structural protein degrada-

tion is provided by the HPV E7, which is ubiquitinated and

degraded through two independent pathways [47,48]. One

involves the IFN-g-inducible suppressor of cytokine sig-

naling-1 (SOCS1), a member of the STAT signaling path-

way, and takes place in the cytoplasm [47]. The other

requires the SCF E3 complex, which induces E7 ubiqui-

tination with the assistance of E2 enzyme UbcH7 and

subsequent degradation in the nucleus [48].

In addition to being a viral strategy for its effective

infection, it is also conceivable that maintaining a low

level of viral proteins represents a viral mechanism to

evade recognition by the host immune system. Alterna-

tively, degradation of viral proteins constitutes a host

defense mechanism. In the latter case, some viral struc-

tural proteins are demonstrated to be the targets of the

UPS. For example, West Nile virus capsid protein is

ubiquitinated by the cellular E3 ligase, Makorin ring

finger protein 1, followed by proteasomal degradation

[49]. It was also shown that the core protein of HCV is
www.sciencedirect.com 
degraded via proteasome in both ubiquitin-dependent

through recruiting E3 ligase E6AP and -independent

manner mediated by proteasome activator PA28g [50].

The movement proteins of several plant viruses are also

degraded through the UPS [51,52]. Moreover, it was

found that the host protein Rsp5p, a member of the

Nedd4 (neuronal precursor cell-expressed developmen-

tally downregulated 4) family of E3 ligases, binds to the

p92 replication protein of Tomato bushy stunt virus and

promotes its degradation and consequent inhibition of

viral replication [53]. Thus, degradation of some viral

proteins can also be a host anti-viral defense mechanism.

Viral protein modification by ubiquitin and
ubiquitin-like modifier
Post-translational modification of protein with ubiquitin

and ubiquitin-like proteins constitutes an important

mechanism to regulate viral protein function. Studies

from different groups have shown that ubiquitination

of the Gag protein of retroviruses is required for its

function in viral budding and release [54–56]. The late

budding domain in the Gag protein carries conserved

motifs, such as PPXY and PTAP, that recruit host WW

domain-containing HECT E3 ligase, Nedd4 to catalyze

the ubiquitination of Gag [57,58]. Other than Nedd4, the

tumor susceptibility gene 101 (Tsg101), also binds to the

consensus motif in Gag and such interaction is required

for viral budding and release [59,60]. Tsg101 is a protein

of the endosomal sorting complex required for transport

(ESCRT) complex and is involved in vacuolar protein

sorting and biogenesis of multivesicular body. Similarly, it

was found that the p33 replication protein of Tomato

bushy stunt virus is ubiquitinated and this modification

does not affect its stability, but instead enhances its inter-

action with ESCRT proteins, contributing to effective viral

replication [61,62]. Moreover, ubiquitination of the HIV-1

Tat protein and the human T-cell leukemia virus type

1 Tax protein was demonstrated to enhance their transac-

tivation activities without targeting them for degradation

[63,64]. The RNA-dependent RNA polymerase (RdRp)

encoded by coxsackievirus provides another example of

viral protein ubiquitination and activation during infection

[65]. Finally, certain viral structural proteins, such as the

envelope protein of severe acute respiratory syndrome

coronavirus (SARS-CoV) [66] and structural proteins of

several plant viruses [67], were also found to be ubiquiti-

nated although the functional consequence of such modi-

fication remains elusive.

Some viral functions also require SUMO modification.

For example, the immediate-early (IE) IE1 and IE2

proteins of HCMV are covalently modified by SUMO

following infection [68,69]. Although the exact role of

sumoylation in viral pathogenesis is still unclear, sumoy-

lation-resistant mutant of HCMV IE1 was found to ex-

hibit attenuated viral growth, indicating a role for SUMO

modification in regulating viral protein function and
Current Opinion in Virology 2016, 17:1–10
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replication [70]. The adenoviral E1B55k protein is another

example of viral protein modification by SUMO and this

modification appears to be required for its function in

modulating cell cycle progression and apoptosis as a

sumoylation-deficient mutant of E1B55k fails to interact

with p53 and inhibit p53-mediated transactivation [71,72].

Furthermore, it was reported that the papillomavirus E1

protein interacts with SUMO E2 enzyme Ubc9 and E3

enzyme PIAS to support viral replication and disruption of

their association leads to reduced viral virulence [73,74].

Besides animal viruses, viral protein modification by SU-

MO was also observed in plant viruses. It was found that
Figure 1
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the RepAC1/Rep protein, encoded by Tomato golden

mosaic virus and Tomato yellow leaf curl Sardinia virus,

binds to SCE1 (SUMO-conjugating enzyme), a plant ho-

mology to Ubc9, and sumoylation plays an important role in

viral replication [75]. It was also demonstrated that the

RdRp of Turnip mosaic virus undergoes SUMO modifica-

tion via its interaction with SCE1 and such modification is

required for viral infection [76�].

ISG15 and the ISGylation conjugation system represent

an important host defense mechanism against infection of

a broad spectrum of viruses, including Sindbis virus,
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Table 1

Interplay between the viruses and the ubiquitin–proteasome system

Function (confirmed or

proposed)

Virus Viral proteins that

manipulate the

UPS function

Target proteins (host

or viral proteins)

Actions of the UPS References

Pro-viral function through

regulating cellular protein

degradation

HPV E6, E7 p53, pRb Degradation (except

for IkBa whose

stability is enhanced)

[14,15,17]

Adenovirus E1B55k, E4orf6 p53 [16]

EBV EBNA1 p53 [18]

Coxsackievirus Vpx p53 [19]

HIV-1, HIV-2 US2, US11 SAMHD1 [20,21�]

HCMV V MHC-1, Integrin a-

chain, CD112, IL-12,

PTPRJ,

thrombomodulin

[22,23,24�]

Mumps virus, SV5, PIV5 NS5 STAT1, STAT2 [25–27]

Dengue virus ORF6 STAT2 [28]

SVV, VZV P25 IkBa [29�]

PVX P0 ARGONAUTE1 [31]

Enamovirus ARGONAUTE1 [32]

Pro-viral function via

maintaining proper levels

of viral proteins

TYMV, SINV, HCV, HAV RdRp Degradation [39–42]

EMCV, HAV 3 C [43–45]

HCV NS2/3 [46]

HPV E7 [47,48]

Pro-viral function through

enhancing viral protein

activities by ubiquitination

or sumoylation

Retroviruses Gag Ubiquitination [54–56]

TYMV p33 [61,62]

HIV-1 Tat [63]

HTLV-1 Tax [64]

Coxsackievirus RdRp [65]

SARS-CoV Envelope protein [66]

BSMV, BMV, CPMV, SPMV,

CPSMV,

Structural protein [67]

HCMV IE1, IE2 Sumoylation [68–70]

Adenovirus E1B55k [71,72]

Papilomavirus E1 [73,74]

TGMV & TYLCSV RepAC1/Rep [75]

TMV RdRp [76�]

Anti-viral function through

degradation of viral

proteins

WNV Capsid protein Degradation [49]

HCV Core protein [50]

TYMV, TMV Movement protein [51,52]

TBSV p92 [53]

Anti-viral function via

suppressing viral protein

activity by ISGylation

Influenza A virus NS1 ISGylation [83]

HPV L1 [84]

Coxsackievirus 2A [85��]
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Table 1 (Continued )

Function (confirmed or

proposed)

Virus Viral proteins that

manipulate the

UPS function

Target proteins (host

or viral proteins)

Actions of the UPS References

Pro-viral function by

counteracting the post-

translational modification

of signaling molecules

involved in innate immunity

HSV-1 UL36 TRAF3 De-ubiquitination [89�]

KSHV ORF64 RIG-I [90]

SARS-CoV PLpro Signaling molecules

involved in innate

immunity

[96�]

Nairoviruses, Arteriviruses Ovarian tumor

domain protease

[97,98]

Influenza B virus NS1 Signaling molecules

involved in innate

immunity

De-ISGylation [94]

Vaccinia virus E3 [95]

SARS-CoV PLpro [96�]

Nairoviruses, Arteriviruses Ovarian tumor

domain protease

[97]

Abbreviations: HPV, human papillomavirus; EBV, Epstein-Barr virus; HIV, human immunodeficiency virus; HCMV, human cytomegalovirus; SV5, simian virus 5; PIV5, parainfluenza virus 5; SVV,

simian varicella virus; VZV, varicella zoster virus; PVX, potato virus X; TYMV, turnip yellow mosaic virus; SINV, Sindbis virus; HCV, hepatitis C virus; HAV, hepatitis A virus; EMCV,

encephalomyocarditis virus; HTLV-1, human T-cell lymphotropic virus-1; SARS-CoV, severe acute respiratory syndrome coronavirus; BSMV, barley stripe mosaic virus; BMV, brome mosaic

virus; CPMV, cowpea mosaic virus; SPMV, satellite panicum mosaic virus; CPSMV, cowpea severe mosaic virus; TGMV, tomato golden mosaic virus; TYLCSV, tomato yellow leaf curl Sardinia virus;

TMV, Tobacco mosaic virus; WNV, West Nile virus; TBSV, Tomato bushy stunt virus; HSV-1, herpes simplex virus-1; KSHV, Kaposi’s sarcoma-associated herpesvirus; pRb, retinoblastoma protein;

EBNA1, Epstein-Barr nuclear antigen 1; Vpx, viral protein x; SAMHD1, sterile alpha motif domain- and histidine-aspartate domain-containing protein 1; MHC-1, major histocompatibility-1; IL-12,

interleukin-12; PTPRJ, protein tyrosine phosphatase, receptor type, J; STAT, signal transducers and activators of transcription; PLpro, papain-like protease; TRAF3, TNF receptor associated factor

3; RIG-I, retinoic acid inducible gene 1; RdRp, RNA-dependent RNA polymerase.
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Ebola virus, influenza virus, coxsackievirus, vaccinia virus,

vesicular stomatitis virus, Sendai virus, Newcastle disease

virus, HPV, HIV-1, dengue virus, West Nile virus, and

Japanese encephalitis virus [77��]. Expression of ISG15 is

highly inducible by type I IFN upon viral infection [7].

Animal studies have shown that mice with ISG15�/� or

UBE1L�/� (which lack the ISG15 conjugating enzyme)

are more susceptible to various viral infections and develop

more severe tissue damage [78–80]. The mechanism of the

anti-viral property of ISG15 remains largely unclear. Re-

cent studies suggest that it involves the protective function

of unconjugated ISG15 against viral infection and post-

translational modification of both host and viral proteins

[77��]. It has been shown that expression of ISG15 blocks

the activity of Nedd4, thereby inhibiting ubiquitination of

HIV-1 Gag and Tsg101 proteins and Ebola viral matrix

proteins (VP40), which are necessary for viral budding/

release [81,82]. Moreover, viral protein ISGylation has

been revealed to also contribute to the type I IFN-medi-

ated anti-viral response. Although the precise mechanisms

remain to be established, available evidence supports a

loss-of-function mechanism of ISG15 modified viral pro-

teins. It was reported that ISGylation of the influenza A

virus NS1 protein via the function of the E3 ligase UERC5

results in impaired viral replication [83]. Similarly, modifi-

cation of the HPV L1 capsid protein by ISG15 is linked to

decreased viral production [84]. In coxsackievirus infec-

tion, it was found that ISG15 modification of 2A protease

attenuates its activity in cleaving host eukaryotic transla-

tion initiation factor 4G, thereby counteracting host trans-

lation shutoff during viral infection [85��].

Viral modulation of host protein modification
by ubiquitin and ubiquitin-like modifier
In addition to their role in regulating viral protein func-

tion, modification by ubiquitination and sumoylation has

emerged as a central host anti-viral mechanism through

modulating the function of key signaling molecules in-

volved in innate immunity, such the pattern recognition

receptor signaling pathway and the NFkB pathway (see

reviews [86,87��,88��] for the details). There is increasing

evidence that viruses have evolved strategies to block

these processes to evade host innate immune responses.

For example, herpes simplex virus 1 encodes the largest

tegument protein, UL36, which acts as a DUB to remove

ubiquitin chains from TNF receptor associated factor 3

(TRAF3) and consequently inhibits IFN-b signaling

[89�]. Similarly, the ORF64 protein encoded by Kaposi’s

sarcoma-associated herpesvirus hydrolyzes ubiquitin

chains from retinoic acid inducible gene 1 (RIG-I), result-

ing in decreased production of IFN [90].

Besides viral proteins, a number of anti-viral host proteins,

such as interferon regulatory factor 3 [91], RIG-I [92], and

protein kinase R [93], have been shown to undergo ISGy-

lation, resulting in a gain-of-function of these proteins and

consequent anti-viral immune response. To overcome host
www.sciencedirect.com 
innate defense, viruses have evolved to interfere with the

ISG15 conjugation system to antagonize its anti-viral ac-

tivity. For instance, it was reported that the influenza B

virus NS1 [94] and vaccinia E3 protein [95] interact with

ISG15 to prevent it from binding to UBE1L, thus inhibit-

ing the formation of ISG15 conjugates. Furthermore, some

viruses can encode their own deISGylating enzyme to

disrupt ISG15 conjugation. For example, the papain-like

protease of SARS-CoV [96�] and the ovarian tumor do-

main-containing protease of nairoviruses and arteriviruses

[97,98] possess both deISGylating and deubiquitinating

activity that counteracts the post-translational modification

of signaling molecules involved in the innate immune

response.

Conclusion
Growing evidence has indicated a dual role for the UPS in

viral pathogenesis (summarized in Figure 1 and Table 1).

The UPS may represent a host defense mechanism

against viral infection, or they may be hijacked by the

virus to enhance its infectivity. Viral manipulation of the

UPS has emerged as a central immune evasion mecha-

nism. Viruses evolve to inhibit many facets of the host

anti-viral immune response. In some cases, viruses produce

proteins to mimic the function of the UPS or to redirect the

cellular E3 to allow for targeted degradation of cellular

factors or viral proteins that might hinder viral replication.

In others cases, they encode proteins to interfere with the

host ubiquitin or ubiquitin-like (e.g. SUMO and ISG15)

conjugation system to inactivate the host anti-viral signal-

ing pathways. In many cases, these mechanisms work

together to dynamically modulate the function of the

UPS to gain maximal viral infection. A better understand-

ing of the complicated interaction between the virus and

the host UPS with further identification of the new targets

for viral E3s or DUBs and careful characterization of the

functional consequence of the ubiquitin modification or

degradation events will provide novel insights into the

mechanism of viral pathogenesis, facilitate the discovery of

new immune modulators, and promote the development of

efficient antiviral interventions.
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