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GABAergic inhibitory neurotransmission contributes to diverse aspects of brain
development and adult plasticity, including the expression of complex cognitive
processes. This is afforded for in part by the dynamic adaptations occurring at
inhibitory synapses, which show great heterogeneity both in terms of upstream signaling
and downstream effector mechanisms. Single-particle tracking and live imaging have
revealed that complex receptor-scaffold interactions critically determine adaptations
at GABAergic synapses. Super-resolution imaging studies have shown that protein
interactions at synaptic sites contribute to nano-scale scaffold re-arrangements through
post-translational modifications (PTMs), facilitating receptor and scaffold recruitment
to synaptic sites. Additionally, plasticity mechanisms may be affected by the protein
composition at individual synapses and the type of pre-synaptic input. This mini-review
article examines recent discoveries of plasticity mechanisms that are operational within
GABAergic synapses and discusses their contribution towards functional heterogeneity
in inhibitory neurotransmission.

Keywords: homeostatic plasticity, postsynaptic density, interneurons, gephyrin, post-transcriptional regulation,
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INTRODUCTION

The plasticity of individual synapses occurs downstream of activity or neuro-modulatory signaling
and must be reconciled with homeostatic mechanisms to maintain overall network function
(Abbott and Nelson, 2000). The inherent variability in functional connectivity between different
neuronal cell types within or between brain regions is becoming apparent. However, even at the
post-synaptic compartment level, individual synapses themselves exhibit functional diversity, and
the cellular processes that facilitate this heterogeneity of function is currently an exciting topic of
research. Unlike the mechanisms that have been described to influence specific aspects of excitatory
postsynaptic plasticity, mechanisms operational at GABAergic postsynaptic terminals are relatively
unexplored. Recent technological developments including single-particle tracking and super-
resolution imaging demonstrate that the inhibitory post-synapse is subject to dynamic activity-
dependent reorganization. Therefore, understanding the cellular mechanisms that contribute to
dynamics at GABAergic synapses will help to explain emergent functional heterogeneity.
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PRE-SYNAPTIC SPECIFICATION OF
GABAergic PLASTICITY

Pre-synaptically, a diverse pool of inhibitory interneurons
provides GABAergic input onto post-synaptic cells. These
interneurons differ in their spatial innervation patterns, firing
properties, and pre-synaptic release mechanisms (Pelkey et al.,
2017). Interestingly, recent data suggest that GABAergic
plasticity occurs differentially between synapses innervated
by distinct classes of interneurons. Pre-synaptic plasticity
importantly involves regulation of neurotransmitter release
onto the post-synaptic cell, often via modification of vesicular
release (McBain and Kauer, 2009). How this released GABA
is sensed and transduced to the target cell then depends on
post-synaptic signaling.

Distinct interneuron subclasses differentially target specific
neurons and sub-cellular compartments (e.g., soma, dendritic
shaft, dendritic spines, axon-initial segment, et cetera;
Figures 1A,A′). For example, cholecystokinin-positive (CCK+)
and parvalbumin-positive (PV+) basket cells target the soma
and proximal dendrites of neurons, whereas somatostatin-
positive (SST+) interneurons preferentially target both the shafts
and spines of dendrites. The mechanisms specifying different
innervation patterns are in part provided by the expression
of specific synaptic organizers by the post-synaptic cell. At
hippocampal perisomatic synapses, the dystrophin-glycoprotein
complex specifically organizes inputs from CCK+ interneurons
which target the peri-somatic domain (Früh et al., 2016;
Panzanelli et al., 2017). This complex is absent from distal
dendrites or the axon-initial segment, and genetic deletion of
this complex specifically affects CCK+ terminals. In contrast,
trans-synaptic organizers like L1CAM-AnkyrinG interactions
specify axo-axonic synapses onto the axon initial segment
(AIS), and organize the input-specific synaptic properties of
chandelier cells (Tai et al., 2019). Neuroligins which mediate
trans-synaptic interactions control spatial input specificity
and synaptic strength depending on the neuroligin isoform
expressed. While neuroligin 2 is required to form both PV+ and
SST+ synapses, neuroligin 3 can selectively regulate the strength
of SST+ synapses dependent on its expression level (Horn and
Nicoll, 2018). Moreover, PV+ and SST+ synapses are regulated
by distinct upstream signaling, with PV+ synapses being
more affected by cell-autonomous firing and SST+ synapses
affected by NMDA receptor (NMDAR)-driven glutamatergic
input (Horn and Nicoll, 2018). In another example, activation
of post-synaptic NMDARs signal downstream to the kinase
CaMKIIα, which then specifically drives inhibitory long-term
potentiation (iLTP) at SST+, but not PV+ synapses (Chiu
et al., 2018). The subunit composition of post-synaptic
GABAARs may also act as a substrate for synapse-specific
plasticity between these interneuron types, as post-synaptic
loss of the β3 subunit specifically affects PV+ driven input
(Nguyen and Nicoll, 2018). Interneuron-specific plasticity is also
represented at CCK+ synapses onto pyramidal cells, which are
regulated by retrograde signaling via cannabinoid type-1 (CB1)
receptors. These CB1 receptors are pre-synaptically enriched at
CCK+ synapses and participate in the depolarization-induced

suppression of inhibition (DSI; Busquets-Garcia et al., 2018).
Interestingly pyramidal neuron activation was shown to affect
the expression of the intermediate early gene and transcription
factor NPAS4 to enhance inputs from CCK+ neurons to drive
DSI but failed to enhance PV+ neuron input (Hartzell et al.,
2018). This study provides a link between neuron activation
status and interneuron-specific inhibition via transcriptional
control, although which NPAS4-regulated synaptogenic
targets couple activity to synapse-specific recruitment are
currently undetermined. While the generality of input-specific
plasticity and description of underlying mechanisms remains
to be elaborated, it is clear that variation in synaptic protein
composition facilitates at least some forms of pre-synaptic input
specificity (Chiu et al., 2018).

IMPORTANCE OF RECEPTOR-SCAFFOLD
INTERACTIONS

The GABAergic post-synapse contains GABAA receptors
(GABAARs), post-synaptic scaffolding and signaling proteins,
and trans-synaptic adhesion molecules which facilitate effective
communication between the pre- and post-synapse for efficient
neurotransmission. GABAARs are composed of pentamers from
a family of subunits encoded by 19 distinct genes (subunits α1–6,
β1–3, γ1–3, δ, ε, π, ρ1–3, and τ). Although it has been recently
shown that many receptor subunits can access the synaptic
space (Hannan et al., 2019), the select interactions between
receptors and post-synaptic scaffolds such as gephyrin encourage
the retention of GABAARs composed of the combination of
α1–3 subunits along with β1–3 and γ2 subunits, whereas those
containing the subunits α4–6 and δ tend to be extra-synaptic
(Fritschy and Panzanelli, 2014; Hannan et al., 2019). GABAARs
are trafficked to the plasma membrane from cytoplasmic
pools, or diffuse laterally within the membrane in and out
of synapses to alter the local concentration of receptors and
therefore synaptic strength (Flores and Méndez, 2014; Petrini
and Barberis, 2014). Thus, control over the diffusion dynamics
of GABAARs is an important mechanism by which inhibitory
plasticity is achieved (Petrini and Barberis, 2014). In gephyrin-
containing GABAergic synapses, the magnitude of retention of
GABAARs scales with the size of gephyrin clusters (Specht et al.,
2013; Flores et al., 2015; Crosby et al., 2019). Consequently,
knockdown of gephyrin leads to a reduction in synaptic
receptors via decreased confinement of GABAARs (Jacob, 2005;
Thomas et al., 2005). Similarly, signaling which induces gephyrin
clustering is often coupled to increase in GABAAR clustering.
For example, activity induction in hippocampal slices leads
to inhibitory potentiation that is correlated to increases in
gephyrin cluster size concordant with mIPSC amplitude (Flores
et al., 2015). Additionally, during long-term potentiation of
GABAergic synapses (iLTP), synaptic gephyrin clusters show
increases in the number of gephyrin molecules at the same
time that extra-synaptic clusters shrink (Pennacchietti et al.,
2017). Due to the close and interrelated changes between
gephyrin clustering and those of GABAergic transmission
(Petrini et al., 2014; Flores et al., 2015; Specht, 2019), the
analysis of changes in both gephyrin and GABAAR synaptic
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FIGURE 1 | Sources of heterogeneity contributing to GABAergic synapse remodeling. (A) Basal synapse dynamics and responses to activity are distinct between
different neuronal sub-compartments such as the axon initial segment (AIS), perisomatic and dendritic synapses, and even between inhibitory synapses situated on
dendritic shafts vs. spines. (A′) Pre-synaptic interneuron subtypes innervate different neuronal sub-compartments. Interneuron subtypes innervating similar
compartments can also differ in their functional modulation, such as between synapses innervated by PV+ or CCK+ basket cells which both target the perisomatic
domain. (B) Many cellular mechanisms converge to achieve functional heterogeneity at GABAergic synapses: pre-synaptic interneurons specify some aspects of
synaptic protein composition as well as determine pre-synaptic GABA release and plasticity. These along with other upstream signals including neuronal activation
and intracellular calcium concentration can regulate post-translational modifications (PTMs) on both receptors and scaffolds which alter their dynamics as well as
sub-synaptic organization. This synaptic organization is further defined by local translation of nascent proteins as well as alternate splicing of transcripts conferring
specific properties to the synapse.
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organization can be used to understand mechanistic bases for
synapse alterations.

HETEROGENEITY OF GABAergic
POST-SYNAPTIC REMODELING

While plasticity occurs at all synapses, basal synapse
characteristics such as size, strength, and composition are
variable, and therefore the extent of induced synaptic plasticity is
also variable. For example, spinal cord synapses contain over four
times as many gephyrin molecules per synapse and at a higher
density than cortical synapses (Specht et al., 2013). GABAergic
synaptic dynamics can even vary between compartments within
the same neuron, where spine synapses are more dynamic
than shaft synapses (Villa et al., 2016). Critically, the manner
in which inhibitory synapses remodel depends on the valency
of signaling received, where activity increases or decreases
can have similar or opposing effects on synaptic dynamics. A
strong pharmacological network activity increase can lead to a
reduction in the clustering of gephyrin, resulting in a decrease
of inhibitory synaptic currents in a NMDAR- and calcineurin-
dependent manner (Bannai et al., 2009). This contrasts with
data suggesting that activity increases lead to enhanced gephyrin
clustering and GABAAR synaptic accumulation through
CaMKII signaling (Flores et al., 2015). These differences have
been explained by the degree of activity-induction triggering
distinct calcium signaling pathways: whereas low calcium can act
to stabilize gephyrin and GABAARs at synapses, large increases
in calcium leads to reduced retention of GABAARs (Petrini and
Barberis, 2014; Bannai et al., 2015). Moreover, after induction
of activity paradigms such as iLTP, some but not all synapses
show re-arrangement of their nano-domains (Pennacchietti
et al., 2017), suggesting that even synaptic plasticity itself can
only occur where synapse-specific mechanisms allow for it.
How signaling then is organized to effect plasticity can only be
understood once upstream signaling effectors or downstream
signaling targets are identified.

MULTIPLE SIGNAL TRANSDUCTION
PATHWAYS MODULATE
RECEPTOR-SCAFFOLD INTERACTIONS

Direct modification of GABAARs, the interaction between
GABAARs and post-synaptic scaffolds, or the dynamics of
the post-synaptic scaffolds themselves could all contribute
to modulating synaptic receptor retention and therefore the
function of inhibitory synapses (Choquet and Triller, 2003;
Petrini and Barberis, 2014; Specht, 2019). Post-translational
modifications (PTMs) including protein phosphorylation,
SUMOylation, acetylation, palmitoylation, and nitrosylation,
are known to occur at the inhibitory post-synapse (Tyagarajan
and Fritschy, 2014) where they can effectively function via
altered receptor-scaffold interactions. Of these, modification
of GABAARs (Comenencia-Ortiz et al., 2014; Petrini and
Barberis, 2014) and gephyrin (Tyagarajan and Fritschy,
2014; Zacchi et al., 2014; Kasaragod and Schindelin, 2018)

are best described. Palmitoylation of both GABAARs and
gephyrin result in enhanced surface localization (Matt et al.,
2019), conversely ubiquitination (Luscher et al., 2011) or
SUMOylation (Ghosh et al., 2016) of these proteins results
in decreased synaptic accumulation. While phosphorylation
of GABAARs controls both surface trafficking and removal
(Comenencia-Ortiz et al., 2014), it also influences receptor
diffusion in and out of synapses via gephyrin-dependent
(Mukherjee et al., 2011) or independent mechanisms (Lévi
et al., 2015). Gephyrin itself is importantly regulated by
phosphorylation, which can lead to either reduced gephyrin
clustering (Tyagarajan et al., 2013), or enhanced gephyrin
clustering (Flores et al., 2015) depending on the specific amino
acid residue phosphorylated. Still, the molecular and biophysical
mechanisms transducing these phosphorylation events to effect
function are poorly understood.

Recent efforts towards describing post-synaptic dynamics
have employed live-imaging and super-resolution microscopy
to determine real-time and nano-scale re-organization of the
post-synapse (Specht et al., 2013; Pennacchietti et al., 2017;
Battaglia et al., 2018; Crosby et al., 2019). These studies
demonstrate that gephyrin is arranged in nano-domains within
the post-synapse, and also that it can cluster at extra-
synaptic sites previously overlooked by conventional microscopy
(reviewed by Specht, 2019). Recently, gephyrin nano-domains
were directly shown to overlap with the nano-domains of
GABAARs as well as those of pre-synaptic vesicle release sites
clearly demonstrating that synaptic gephyrin nano-domains
represent functional organizational units (Crosby et al., 2019). In
this context, the impact of gephyrin upon GABAARs has been
shown by perturbing gephyrin clustering via overexpression of
dominant-negative gephyrin, which causes a reduction in the
number and size of GABAAR nano-domains (Crosby et al., 2019)
and functionally reduces the dwell time of GABAARs at synaptic
sites (Battaglia et al., 2018).

PTMs have now been shown to control gephyrin
nano-domain structure and GABAAR retention at synapses.
A recent study has found that phosphorylation of gephyrin
at serine 268 (regulated by ERK1/2; Tyagarajan et al., 2013)
results in increased nano-domain compaction and a reduction in
GABAAR synaptic dwell time (Battaglia et al., 2018). Conversely
preventing phosphorylation at residue serine 270 (regulated by
GSK3β or CDK5; Tyagarajan et al., 2011; Kuhse et al., 2012)
causes a decrease in gephyrin scaffold compaction, while also
increasing the scaffold size. Interestingly gephyrin mutations
additionally altered GABAAR dynamics outside of synaptic
sites, suggesting that gephyrin is involved in extra-synaptic
receptor scaffolding regulated by phosphorylation of distinct
serine residues (Battaglia et al., 2018). Taken together PTMs
such as phosphorylation provide a link between upstream
signaling cascades and functional plasticity at the post-synapse
via receptor-scaffold interactions. Phospho-proteomic analyses
of synaptic proteins indicate that more than just gephyrin and
GABAARs are dynamically phosphorylated, and that altered
brain states such as sleep deprivation (Wang et al., 2018) or
induction of learning lead to broad phosphorylation changes
(Kähne et al., 2016). Learning paradigms can alter the abundance

Frontiers in Molecular Neuroscience | www.frontiersin.org 4 August 2019 | Volume 12 | Article 187

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Campbell and Tyagarajan Heterogeneity of GABAergic Plasticity

of kinases and phosphatases which regulate the phospho-status
of synaptic proteins including those which signal to GABAARs
and gephyrin (Šmidák et al., 2016). Therefore, differential
phosphorylation of inhibitory synaptic protein networks may
serve as a substrate underlying synapse-specific or broader
network form of plasticity.

SYNAPTIC COMPOSITION CHANGES MAY
DRIVE SYNAPSE REMODELING

Models for receptor-scaffold interactions propose that modifying
the number of scaffolds or the affinity of receptor-scaffold
binding will define the equilibrium governing immobilization
of receptors at the synapse (Choquet and Triller, 2003; Specht,
2019). Therefore, heterogeneity in synaptic protein composition
between areas of the nervous system, within microcircuits, and
even within the same cell may explain resulting differences
in synaptic plasticity. While the contribution of a handful
of inhibitory synaptic proteins such as collybistin, gephyrin,
and neuroligins to GABAARs dynamics and inhibitory synapse
function have been identified (Fritschy et al., 2012; Tyagarajan
and Fritschy, 2014; Groeneweg et al., 2018), recent unbiased
screens have greatly expanded the pool of potential regulatory
proteins. Immunoprecipitation or proximity ligation-based
detection of the protein identity of post-synaptic interacting
complexes has been performed for gephyrin, collybistin, InSyn1
(Uezu et al., 2016), neuroligin 2 (Kang et al., 2014), GABA
receptors (Nakamura et al., 2016; Ge et al., 2018), as well
as for the inhibitory synaptic cleft (Loh et al., 2016). These
efforts have uncovered hundreds of novel inhibitory synaptic
proteins including scaffolding proteins, kinases, and components
of signal transduction cascades. For example, the tetraspanin
protein LHFPL4 was identified as a novel binding partner
of neuroligin 2 (Yamasaki et al., 2017), disruption of which
results in severe inhibitory synapse deficits leading to death (Wu
et al., 2018). Interestingly this protein was shown to mediate
cell-types-specific regulation, affecting synapses in pyramidal
cells but not interneurons (Davenport et al., 2017). Comparative
analysis of proteomes between excitatory synapses have shown
regional (Roy et al., 2018), activity-, and state-dependent
alterations in plasticity proteins (Lautz et al., 2018). Currently,
similar condition-dependent information specific to GABAergic
synapses is lacking, and moreover how the protein composition
of these synapse is modified dynamically is only starting to
be understood.

POST-TRANSCRIPTIONAL CONTROL
OVER GABAergic SYNAPSES

Recent data suggests that local translation of mRNA coding for
synaptic proteins could offer a way to acutely modify synaptic
composition in a synapse-specific manner (Rangaraju et al.,
2017). In fact, a plethora of inhibitory synaptic mRNA transcripts
have been identified as present at the synapse including those
coding for GABAARs and adaptor proteins (Cajigas et al.,
2012; Zappulo et al., 2017). Recently, it was found that 75% of
inhibitory synaptic terminals possess translational machinery,

and 40% of these terminals exhibit active translation at a
given time (Hafner et al., 2019), although the identity and
inhibitory synapse specificity of these newly-translated proteins
are unknown. Functionally, disruption of the localization of
synaptic mRNA transcripts can affect synapse organization.
For example, synaptic accumulation of mRNA coding for the
α2 GABAAR subunit is disrupted in a loss-of-function mouse
model null for the RNA binding protein NONO, leading to
a reduction in synaptic GABAARs and gephyrin clustering
(Mircsof et al., 2015). Alternative splicing of mRNA coding for
synaptic proteins provides an additional mechanism to generate
heterogeneity in synaptic signaling. Splicing of neurexins has
been shown to be important for excitatory synapse specification,
differentially affecting NMDAR or AMPAR driven transmission
(Dai et al., 2019), and leading to synaptic and behavioral
dysfunction when splicing is disrupted (Traunmüller et al.,
2016). Recently, alternative splicing of inhibitory synaptic
proteins was shown to coordinate spatial GABAergic synapse
organization. Splice isoforms of collybistin, a core component
of inhibitory synapses was found to control dendritic inhibitory
synapse patterning along the proximal-distal axis (de Groot
et al., 2017). Collybistin was later identified as a target for
alternative splicing by the RNA binding protein Sam68, which
was also shown to control splicing of gephyrin mRNA at the
C4 splice cassette known to control post-synaptic clustering
(Witte et al., 2019). Whether splicing of mRNA coding for
inhibitory proteins occurs locally at individual synaptic sites
and contributes to synapse-specific protein composition is
currently unknown.

CONCLUSION

The findings highlighted in this mini-review article (summarized
in Figure 1B) reveals a shift in thinking about how inhibitory
synaptic plasticity occurs. Beyond simple measurements of
changes in post-synaptic currents, advances in microscopic
imaging technology, RNA sequencing, mass spectrometry, and
molecular visualization tools enable the investigation of how
plasticity manifests within and between individual synapses.
While future interrogation of plasticity will undoubtedly
uncover new mechanisms underlying synapse remodeling,
they also allow us to fully appreciate the heterogeneity in
synaptic function, between different brain circuits, neuronal
compartments, individual synapses, and now even within
sub-synaptic nano-domains.
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