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Breast cancer is one of the most common and heterogeneous malignancies.

Although the prognosis of breast cancer has improved with the develop-

ment of early screening, the mechanisms underlying tumorigenesis and pro-

gression remain incompletely understood. DNA methylation has been

implicated in tumorigenesis and tumor development and, in the present

study. we screened methylation-driven genes and explored their prognostic

values in breast cancer. RNA-sequencing (RNA-Seq) transcriptome data

and DNA methylation data of the TCGA-BRCA dataset were obtained

from The Cancer Genome Atlas. Differentially expressed genes and differ-

entially methylated genes were identified separately. The intersected 783

samples with both RNA-Seq data and DNA methylation data were

selected for further analysis. Fifty-six methylation-driven genes were identi-

fied using the MethylMix R package and 10 prognosis methylation-driven

genes (CDO1, CELF2, ITPAIPL1, KCNH8, PTK6, RAB25, RIC3, USP44,

ZSCAN1 and ZSCAN23) were further screened by combined methylation

and gene expression analysis. Based on the methylation data of the

screened 10 methylation-driven genes, six subgroups were identified with

the ConsensusClusterPlus R package. The protein levels of the 10 prognos-

tic methylation-driven genes were detected by immunohistochemical experi-

ments. Moreover, based on the RNA-Seq data, a signature calculating the

risk score of each patient was developed with stepwise regression. The risk

score and other clinical features (age and stage) were confirmed to be inde-

pendent prognostic factors by univariate and multivariate Cox regression

analyses. Finally, a prognostic nomogram incorporating all the significant

factors was integrated to predict the 3-, 5- and 7-year overall survival.

Taken together, the methylation-driven genes identified here may be poten-

tial biomarkers of breast cancer.

Breast cancer (BC) is one of the most common and

heterogeneous malignancy and has become the

main cause of cancer-associated death among

females in the world [1,2]. Clinically, the subtypes

of BC are commonly considered to include ER+,

PR+, HER2+ and triple negative breast cancer

(TNBC) [3]. Although the therapeutic methods and

prognosis of BC have been significantly improved

with the development of early screening, molecular

genetics and targeted therapies, the mechanisms of

the tumorigenesis and progression still remain rela-

tively unknown.

Abbreviations

BC, breast cancer; FDR, false discovery ratio; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; RNA-Seq, RNA

sequencing; ROC, receiver operating characteristic; TNBC, triple negative breast cancer.
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Genomic instability has a very important role in the

tumorigenesis and development of carcinogenesis [4].

DNA methylation is one type of epigenetic modifica-

tion associated with gene expression and genomic sta-

bility [5]. The alterations in DNA methylation

comprise early events in carcinogenesis, which is of

great clinical interest for potential biomarkers with

respect to diagnosis, prognosis, therapeutic classifica-

tion and follow-up after treatment [6]. For example,

methylation of the promoter for O6-methylguanine-

DNA methyltransferase has been well studied and

included in the NCCN clinical practice guidelines to

determine the therapeutic method in glioblastoma [7].

The clinical value of plasma septin9 for the detection

of asymptomatic colorectal cancer was revealed and

promoted an early diagnosis [8]. The methylation level

of serum biomarker EFC#93 was identified as a new

way of diagnosing and managing BC [9]. To date, our

understanding of methylation-driven genes in BC is

still lacking.

MethylMix is a bioinformatic tool applied to screen

hyper and hypo methylated genes [10]. According to a

beta mixture model, it screens methylation status and

compares this with the normal DNA methylation state

[11]. The negative correction between DNA methyla-

tion and RNA expression is also considered and calcu-

lated to improve the accuracy. ConsensusClusterPlus

also comprises a bioinformatic tool widely used in

studies of tumor classification [12].

In the present study, the MethylMix R package

was used to identify the methylation-driven genes.

Then, combined methylation and gene expression

analyses were performed to screen prognosis

biomarkers. Consensus clustering was applied with

the ConsensusClusterPlus R package to identify sub-

groups. Finally, the protein levels of the prognosis

methylation-driven genes were detected by immuno-

histochemical experiments. In total, 56 methylation-

driven genes were identified, of which 10 survival-

related genes were further explored in the molecular

tumor classification. Moreover, based on the RNA-

sequencing (RNA-Seq) data, a signature calculating

the risk score of each patient was developed with

stepwise regression. The risk score and other clinical

features (Age and Stage) were confirmed to be inde-

pendent prognostic factors by univariate and multi-

variate Cox regression analyses. Finally, a

prognostic nomogram incorporating all the signifi-

cant factors was integrated to predict the 3-, 5- and

7-year overall survival. Taken together, the screened

methylation-driven genes could be potential

biomarkers of BC.

Materials and methods

Data resources and analysis

RNA-Seq data (fragments per kilobase of transcript per

million mapped reads values) of the TCGA-BRAC dataset

and corresponding clinical information were obtained from

The Cancer Genome Atlas (cancergenome.nih.gov), involv-

ing 113 normal and 1109 tumor samples. DNA methylation

data (beta value) ranging from 0 to 1 (unmethylated to

totally methylated) of the TCGA-BRCA dataset were also

downloaded from The Cancer Genome Atlas, including 96

normal and 796 tumor samples. First, differentially

expressed genes were screened on the basis of a Wilcox test

in R, version 3.6.1 (R Foundation for Statistical Comput-

ing, Vienna, Austria) with a false discovery ratio (FDR)

< 0.05 and absolute log2 fold change > 1. DNA methyla-

tion data were merged using Perl, version 5.32.0 (https://

www.perl.org/get.html) and differentially methylated genes

were identified using a Wilcox test with FDR < 0.05 and

absolute log2 fold change > 0.5. Methylation-driven genes

are those genes for which the DNA methylation levels are

negatively correlated with the mRNA expression level after

linear regression analysis. Then, the intersected 783 samples

including both RNA expression data and DNA methyla-

tion data were selected. The MethylMix R package was

used to identify the methylation-driven genes with Pearson

correlation between the DNA methylation level and RNA

expression < �0.3 and P < 0.05. The methylation mixture

models were plotted via the MethylMix_PlotModel func-

tion within the MethylMix R package. Finally, a total of 56

methylation-driven genes were obtained. The heatmaps of

RNA expression and the methylation level of 56

methylation-driven genes were plotted using the R pheat-

map package in R, version 3.6.1.

Functional enrichment analysis

To reveal the function of the methylation-driven genes,

Gene Ontology (GO) enrichment analysis was performed

with the clusterProfiler R package and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment anal-

ysis was applied via ConsensusPathDB (http://cpdb.molge

n.mpg.de). P < 0.05 was used to distinguish significantly

enriched terms.

Combined gene expression and methylation

survival analysis

Gene expression and methylation survival analyses were

combined to identify potential biomarkers to predict the

prognosis. In total, 754 samples with an overall survival of

between 30 and 3650 days were selected into the survival

analysis at beginning. According to the median levels of the
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methylation data and RNA expression data of each gene,

patients were divided into hyper methylation, hypo methy-

lation, high expression and low expression groups. For

each gene, only the patients with hyper methylation and

low expression or hypo methylation and high expression

were included into the combined survival analysis. Kaplan–
Meier curve analysis was further performed to find progno-

sis genes with P < 0.05.

Molecular subtypes related to prognosis

Consensus clustering was conducted with the Consen-

susClusterPlus R package in R, version 3.6.1 to screen

BRCA subgroups according to the methylation data of the

prognosis methylation-driven genes. The algorithm started

with subsampling from the methylation data and every sub-

sample was separated into k groups by k-means. This was

repeated for 100 times to reach consensus values and get

the stability of the screened clusters. After ConsensusClus-

terPlus was applied, the cluster consensus and item-

consensus results were obtained.

Analysis of subgroups in survival and clinical

features

Survival analysis of subgroups were performed with the

survival R package. The differences among the clusters were

indicated with Kaplan–Meier plots. Boxplots of methyla-

tion levels were performed using the reshape2 R package.

Associations between clinical features (age, TNM, stage)

were plotted and different methylation level among clusters

were calculated by a Wilcox test with FDR < 0.05 and

delta beta > 0.1. The difference was plotted using the

pheatmap R package.

Immunohistochemistry (IHC)

For the purpose of revealing the different protein expres-

sion levels of the prognosis methylation-driven genes,

immunohistochemical experiments were performed. In

total, 42 tumor and adjacent normal tissues were collected

from our hospital. The study was approved by the

Research Ethics Committee of the Zhuhai People’s Hospi-

tal and informed written consent was obtained from each

patient. Methodologies in the present study conformed to

the standards set by the Declaration of Helsinki. All the tis-

sues were fixed with 4% neutral formaldehyde for 24 h.

Sections (4 lm) were generated after dehydration and

paraffin embedding. Incubation with primary antibodies

including rabbit CDO1 antibody (dilution 1:200; Abcam,

Cambridge, MA, USA), rabbit CELF2 (ETR3) antibody

(dilution 1:100; Abcam), rabbit ITPRIPL1 antibody (dilu-

tion 1:200; Biolab, Beijing, China), rabbit KCNH8 anti-

body (dilution 1:200; Biolab), rabbit PTK6 antibody

(dilution 1:200; Abcam), rabbit RAB25 antibody (dilution

1:200; Biolab), rabbit RIC3 antibody (dilution 1:100;

Abcam), rabbit USP44 antibody (dilution 1:200; Abcam),

rabbit ZSCAN1 antibody (dilution 1:200; Abcam) and rab-

bit ZSCAN23 antibody (dilution 1:200; Abcam) was con-

ducted overnight at 4 °C. Phosphate-buffered saline

without primary antibody was used as the negative control.

DAB chromogenic reagent was applied to develop the stain

and hematoxylin was used to stain the nucleus. The sec-

tions were finally dehydrated and mounted with a neutral

resin onto slides. Digital photomicrographs of sections were

taken from representative areas at a fixed magnification of

2009. Positive staining in images was quantified as the inte-

gral optical density/area, which was expressed as the mean

density using IMAGE-PRO PLUS, version 6.0 (Media Cybernet-

ics, Inc., Bethesda, MD, USA). Then, the mean density val-

ues were analyzed with PRISM, version 8 (GraphPad

Software Inc., San Diego, CA, USA). A paired t-test was

conducted to compare the differential expressions between

tumor and normal tissues.

Integration and evaluation of the prognostic

nomogram

To further explore the prognostic value of the 10 identified

survival-related and methylation-driven genes, multivariate

Cox regression was performed to establish a nomogram.

First, a signature estimating the risk score of each patient

was constructed with stepwise regression based on the

RNA-Seq data. Then, the independence of the signature

and the other clinical features (Age and Stage) was con-

firmed by univariate and multivariate Cox regression analy-

ses with the survival R package. The hazard ratio and P-

values were plotted. Finally, a prognostic nomogram incor-

porating all the significant factors (P < 0.05) was integrated

to predict the 3-, 5- and 7-year overall survival with the

rms R package. The receiver operating characteristic (ROC)

3-, 5- and 7-year curves were plotted with the survivalROC

R package and the calibration were also carried out using

the rms R package to show the prognostic predictive accu-

racy of the nomogram.

Results

Screening of methylation-driven genes in BRCA

In total, 56 genes were screened and found to be

methylation-driven genes. Mix models were conducted

and performed to determine differential methylation

(log2 fold change > 0.5, P < 0.05, Cor < �0.3). The

details of 56 identified genes are shown in Table 1.

Mixture models were also plotted and the results indi-

cated that CDO1, CELF2, ITPRIPL1, KCNH8, RIC3,

USP44, ZSCAN1 and ZSCAN23 were
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hypermethylated and PTK6 and RAB25 were

hypomethylated in tumor samples (Fig. 1). The heat-

maps of RNA expression (Fig. 2A) and the

methylation level (Fig. 2B) of the 56 methylation-

driven genes were plotted with R pheatmap package in

R 3.6.1.

Table 1. Methylation-driven genes.

Gene NormalMean TumorMean LogFC P-value Cor Cor P-value

KRT18 0.329288565 0.202682784 �0.700128865 5.95 9 10�50 �0.46026222 2.62 9 10�42

KRT19 0.58976045 0.370753249 �0.669669743 1.42 9 10�49 �0.458080769 7.09 9 10�42

MYT1 0.755584988 0.47380599 �0.673297602 7.19 9 10�48 �0.426940281 4.96 9 10�36

USP44 0.141956577 0.458665887 1.691993921 3.78 9 10�47 �0.443894753 3.88 9 10�39

HOTAIRM1 0.291265654 0.450730121 0.629928278 8.56 9 10�47 �0.327095945 5.56 9 10�21

PTK6 0.395896021 0.219152107 �0.853189015 1.25 9 10�46 �0.390133469 7.23 9 10�30

PABPC1P4 0.35120002 0.647831716 0.883326175 1.41 9 10�46 �0.54140562 7.76 9 10�61

ESR1 0.40608298 0.280693027 �0.532781338 1.73 9 10�45 �0.632629502 9.11 9 10�89

ITPRIPL1 0.17655506 0.431960116 1.290779939 6.65 9 10�45 �0.535318062 2.89 9 10�59

KIAA1614 0.148504365 0.296180674 0.995972166 9.98 9 10�45 �0.377010511 7.51 9 10�28

TRH 0.441624806 0.666929094 0.594712177 4.55 9 10�43 �0.408073715 8.93 9 10�33

NRN1 0.165863279 0.339178992 1.032052294 2.69 9 10�42 �0.317458357 8.58 9 10�20

ZNF677 0.098565169 0.310841881 1.657031076 8.88 9 10�42 �0.493584344 2.55 9 10�49

GYPC 0.152755786 0.437924855 1.519456306 1.06 9 10�41 �0.350691051 4.48 9 10�24

CRYAB 0.298461524 0.493277725 0.724855182 7.58 9 10�41 �0.498911217 1.63 9 10�50

SLC52A3 0.436090955 0.282171792 �0.628055295 1.29 9 10�40 �0.421303499 4.89 9 10�35

CX3CL1 0.463518271 0.661910544 0.514010045 9.28 9 10�40 �0.502901562 2.02 9 10�51

CDO1 0.182996461 0.446275462 1.286118734 1.70 9 10�39 �0.355442777 9.89 9 10�25

ZNF502 0.110905161 0.362792848 1.70981951 2.48 9 10�38 �0.712226828 3.69 9 10�122

EVC2 0.198045554 0.40545554 1.033711409 5.31 9 10�38 �0.377961792 5.40 9 10�28

ENPP2 0.375022803 0.631985993 0.752914261 1.42 9 10�37 �0.382410722 1.14 9 10�28

TAGLN 0.417883713 0.665980116 0.672377575 5.24 9 10�37 �0.437915997 5.06 9 10�38

KCNH8 0.039242282 0.177022811 2.173454448 1.61 9 10�35 �0.347504367 1.22 9 10�23

RIC3 0.087551313 0.22268933 1.346831712 1.79 9 10�33 �0.381288788 1.69 9 10�28

RAB25 0.519788747 0.338474059 �0.618880132 4.94 9 10�33 �0.425667179 8.34 9 10�36

ZSCAN23 0.080664858 0.27486574 1.768714896 2.69 9 10�32 �0.348353921 9.32 9 10�24

LIMD2 0.134231155 0.236071881 0.814506652 3.20 9 10�32 �0.367224203 2.09 9 10�26

SOSTDC1 0.388175221 0.652600903 0.749492958 1.18 9 10�31 �0.385249904 4.17 9 10�29

ID4 0.135846461 0.292724347 1.107565762 6.36 9 10�30 �0.381972433 1.33 9 10�28

SLC35G2 0.100068399 0.251833352 1.331482917 2.01 9 10�29 �0.346318429 1.76 9 10�23

TUBB6 0.329947095 0.532932501 0.691718105 2.40 9 10�29 �0.317971477 7.44 9 10�20

PRLR 0.429700621 0.299950452 �0.518607658 3.27 9 10�29 �0.448572298 5.01 9 10�40

CLIP4 0.313569663 0.496382902 0.662667435 5.01 9 10�29 �0.443070142 5.54 9 10�39

TLX1 0.250818649 0.403427496 0.685664795 1.50 9 10�28 �0.366244978 2.90 9 10�26

CDKL2 0.238525727 0.448014953 0.909402005 2.07 9 10�27 �0.433322832 3.52 9 10�37

STAT5A 0.255622595 0.391453537 0.614825713 1.14 9 10�25 �0.639086878 4.14 9 10�91

TLE4 0.049420326 0.10058383 1.02522197 2.05 9 10�25 �0.360809714 1.74 9 10�25

EPSTI1 0.218238641 0.40452927 0.890337528 1.56 9 10�23 �0.335922881 4.16 9 10�22

VIM 0.10964127 0.207963396 0.923538672 9.05 9 10�23 �0.409415054 5.32 9 10�33

BST2 0.423623437 0.276033797 �0.617937492 4.81 9 10�22 �0.449018168 4.12 9 10�40

CPNE8 0.076972633 0.211402103 1.457572213 5.07 9 10�22 �0.388142452 1.48 9 10�29

EMILIN2 0.290577049 0.449244164 0.628579004 3.19 9 10�21 �0.328991988 3.21 9 10�21

RRN3P1 0.167387934 0.313302674 0.904361542 4.06 9 10�21 �0.383765075 7.06 9 10�29

ZNF192P1 0.248588504 0.374008157 0.589310153 7.68 9 10�21 �0.3293247 2.91 9 10�21

FAXDC2 0.273979021 0.451638118 0.721101827 3.01 9 10�20 �0.325571946 8.63 9 10�21

ARHGAP10 0.212273292 0.359979536 0.761992029 3.73 9 10�20 �0.374922274 1.54 9 10�27

VLDLR 0.149952822 0.235786142 0.652970253 2.93 9 10�18 �0.416664173 3.12 9 10�34

KLF11 0.180346594 0.269535726 0.579704334 1.12 9 10�17 �0.322517065 2.07 9 10�20

ZNF334 0.267950685 0.383554961 0.517465818 5.35 9 10�17 �0.339098105 1.60 9 10�22

WASF3 0.038890285 0.085068153 1.129209331 1.54 9 10�16 �0.322775349 1.92 9 10�20

CELF2 0.176608962 0.294642653 0.738407744 3.91 9 10�16 �0.323044228 1.78 9 10�20
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Fig. 1. The methylation mixture models plotted by MethylMix in BRCA. The red and green curves indicate the methylation level of the

cancer and the black line is the distribution in normal samples.
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Functional enrichment analysis

GO enrichment analysis results (Fig. 2C) showed that

gland development, growth hormone receptor signal-

ing pathway, lactation, mammary gland development

and the Janus kinase-signal transducer and activator

of transcription cascade in the growth hormone sig-

naling pathway were the most enriched functions.

KEGG pathway enrichment analysis (Fig. 2D)

showed that prolactin receptor signaling, nuclear sig-

naling by ERBB4, signaling by ERBB4 and the estro-

gen signaling pathway were the most enriched

pathways.

Combined gene expression and methylation

survival analysis

Kaplan–Meier curves indicated 10 genes were related

with the prognosis of BRCA (P < 0.05) (Fig. 3A).

According to the results, the hypermethylation and

low-expression survival rates of CDO1, CELF2,

ITPRIPL1, KCNH8, RIC3, USP44, ZSCAN1 and

ZSCAN23 were significantly lower. On the other hand,

the hypomethylation and high-expression survival rates

of PTK6 and RAB25 were significantly lower. Pearson

correlation between the DNA methylation level and

the RNA expression level revealed that there were

significant negative correlations with Cor < �0.3 and

P < 0.05 (Fig. 3B).

Identification and analysis of molecular subtypes

The variations among different clusters and average

cluster consensus were estimated to determine the

number of clusters. The criteria were followed with

higher consistency inside the cluster, lower variations

between different clusters and no obvious raise in the

area under the cumulative distribution function curve.

The area under the cumulative distribution function

curve started to stabilize after six clusters (Fig. 4A).

The consensus matrix represented the consensus for

k = 6 and showed a six-block structure (Fig. 4B). The

Kaplan-Meier plot displayed significant differences

among the six clusters (P < 0.001) and the clusters 5

and 6 had the worst outcome, whereas cluster 1 had

the best survival rate (Fig. 4C).

Different methylation levels of the six clusters were

calculated and plotted based on the methylation data

of the 10 screened methylation-driven genes (Fig. 4D).

Clusters 6 and 5 showed a higher methylation level

than the other clusters, whereas cluster 4 had the low-

est level. Associations between clinical features (Age,

TNM and Stage) and gene methylation level in

Fig. 2. Heatmap of methylation-driven genes and gene set enrichment analysis. (A) The hierarchical clustering heatmap of RNA expression.

(B) The hierarchical clustering heatmap of DNA methylation. (C) GO enrichment analysis. (D) KEGG enrichment analysis.
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different clusters were plotted (Fig. 4E). Different gene

methylation levels among clusters were calculated and

plotted (Fig. 4F). USP44 and ZSCAN23 showed the

greatest variant methylation levels, whereas ITPRIPL1

showed the lowest.

IHC analysis

The protein expression levels of the prognosis

methylation-driven genes were demonstrated by IHC

experiments. Representative images of IHC at 2009

were obtained (Fig. 5A–J). Clinicopathological charac-
teristics in the present study are shown in Table 2.

According to the results, all of the genes except

ZSCAN1 (Fig. 5I) were confirmed to have significantly

different expression (P < 0.05). Respectively, the

expression of CDO1 (Fig. 5A), CELF2 (Fig. 5B),

ITPRIPL1 (Fig. 5C), KCNH8 (Fig. 5D), RIC3

(Fig. 5G), USP44 (Fig. 5H) and ZSCAN23 (Fig. 5J)

was significantly lower in tumor tissues, whereas the

expression of PTK6 (Fig. 5E) and RAB25 (Fig. 5F)

was significantly higher in tumor tissues. In the tumor

group, CDO1, CELF2 and ITPRIPL1 were not

detected, KCNH8 and USP44 were mainly weakly

expressed, PTK6, RIC3 and ZSCAN23 were moder-

ately expressed, and RAB25 and ZSCAN1 were

strongly expressed. In the normal group, CELF2,

ITPRIPL1 and PTK6 were mainly weakly expressed,

CDO1, KCNH8, RAB25 and USP44 were moderately

expressed, and RIC3, ZSCAN1 and ZSCAN23 were

strongly expressed, respectively.

Integration and evaluation of the prognostic

nomogram

After the stepwise regression analysis, three genes were

included in the signature calculating the risk score of

each patient with the formula: risk score = (�1.01001 9

expression level of ITPRIPL1) + (�0.28248 9 expres-

sion level of ZSCAN1) + (�0.96202 9 expression level

of ZSCAN23). All of the three variables (Risk score, Age

and Stage) were indicated to be the significant factors

(P < 0.001) in the univariate and multivariate Cox

regression analyses (Fig. 6A,B). A prognostic nomo-

gram incorporating all three significant factors was inte-

grated to predict the 3-, 5- and 7-year overall survival

Fig. 3. The combined gene expression and methylation data analysis in BRCA. (A) Kaplan–Meier curve analysis of 10 methylation-driven

genes. (B) Pearson correlation analysis between methylation and gene expression. P < 0.05 indicates statistical significance.
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(Fig. 6C). The 3-, 5- and 7-year ROC curves were plot-

ted, with an area under the curve of 0.801, 0.745 and

0.764 (Fig. 6D). The calibration curve of 5 years was

plotted using the calibrate function and was well cali-

brated (Fig. 6E).

Discussion

Recently, DNA methylation has been widely recog-

nized as one important epigenetic modification and is

closely related to tumorigenesis. With the development

of genomic detection technology, the understanding of

the alterations in DNA methylation has greatly

improved [13,14]. Tumorigenesis occurs with extensive

DNA methylation changes [15]. Most of these changes

happen early in carcinogenesis, which makes DNA

methylation valuable for early screening, diagnosis,

prognosis, therapeutic classification and follow-up

after treatment [16]. Usually, DNA hypermethylation

of tumor suppressor genes or DNA hypomethylation

of oncogenes could lead to unfavorable outcomes in

patients. In the present study, 56 methylation-driven

genes in BC were screened and 10 of these were associ-

ated with the prognosis and tumor classification.

CDO1 (cysteine dioxygenase 1), initiating several

key metabolic pathways associated with pyruvate and

sulfurate compounds, is an important regulator of cel-

lular cysteine concentrations. In the present study,

CDO1 was a hypermethylated-low expression gene in

BC and this could result in the favorable survival of

BC patients. It has been implicated as a novel tumor

suppressor gene that is silenced by promoter methyla-

tion in many cancers. By analyzing differential RNA

expression profiles with or without treatment with 5-

aza-20-deoxycytidine, the frequency of CDO1 promoter

methylation was observed with a statistically signifi-

cant difference between normal and tumor tissues [17].

In particular, Tanaka et al. [18] reported that CDO1

was silenced at the mRNA level in six types of BC cell

lines. Overexpression of CDO1 decreased the growth

capacity.

CELF2 (CUGBP Elav-like family member 2) is one

type of RNA-binding protein [19]. In the present

study, CELF2 was a hypermethylated-low expression

gene in BC and this could result in the favorable sur-

vival of BC patients. Piqu�e et al. [20] demonstrated

that CELF2 was targeted by promoter

hypermethylation-associated transcriptional silencing

in BC. The restoration of CELF2 could inhibit tumor

growth and the epigenetic loss induced an aberrant

downstream pattern of alternative splicing. Rama-

lingam et al. [21] found that the expression of CELF2

Fig. 4. Identification and analysis of molecular subtypes. (A) Consensus among clusters for each category number k. (B) Color-coded

heatmap corresponding to the consensus matrix for k = 6 obtained by applying consensus clustering. (C) Kaplan–Meier survival analysis for

each DNA methylation subtype. (D) Box plot of DNA methylation levels of the six clusters. Cluster 6 has the highest methylation level. (E) A

corresponding heatmap of DNA methylation classification, TNM, Stage and Age. (F) Specific hyper/hypo-methylation-driven genes for each

DNA methylation cluster.
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was consistently reduced with neoplastic transforma-

tion, indicating that it might be a potential tumor sup-

pressor protein. Yeung et al. [22] revealed that CELF2

could interact with PREX2 and reduce the association

of PREX2 with PTEN, playing a tumor suppressor

role in PI3K signaling by antagonizing the oncogenic

effect of PREX2.

ITPRIPL1 (inositol 1,4,5-trisphosphate receptor-

interacting protein-like 1) was a hypermethylated-low

expression gene in BC and this could result in the

favorable survival of BC patients. It was identified as

a methylation-driven gene and acted as an independent

biomarker for the prognosis of lung adenocarcinoma

by using bioinformatics methods [23]. However, little

is known of the function and mechanism of ITPRIPL1

in cancer research.

KCNH8 (potassium voltage-gated channel subfamily

H member 8) was a hypermethylated-low expression

gene in BC and this could result in the favorable sur-

vival of BC patients. It could exhibit RNA polymerase

II cis-regulatory region sequence-specific DNA binding

activity and voltage-gated potassium channel activity.

Using quantitative MethyLight assays, KCNH8 was

found to affect hypermethylation frequencies in lung

tumor samples from 117 clinically well-characterized

NSCLC patients [24]. In prostate cancer, KCNH8 was

identified as a novel outlier gene with potential rear-

rangement and confirmed the association with primary

Fig. 5. IHC analysis. (A) CDO1. (B) CELF2. (C) ITPRIPL1. (D) KCNH8. (E) PTK6. (F) RAB25. (G) RIC3. (H) USP44. (I) ZSCAN1. (J) ZSCAN23.

Integrated optical density (IOD) values in tumor and normal tissues. Paired t-test; P < 0.05 indicates statistical significance. Data are the

mean � SD. Representative images at a fixed magnification of 2009. Scale bars = 50 µm.

Table 2. Clinicopathological characteristics.

Characteristics

Number of

cases

%

(percentage)

Age

≥ 60 17 40.48

< 60 25 59.52

Pathological types

Non-invasive 3 7.14

Invasive with special type 8 19.05

Invasive with no special

type

31 73.81

Tumor stage

III–IV 29 69.05

I–II 13 30.95

Grade

III–IV 32 76.19

I–II 10 23.81

Subtype

Luminal A 19 45.24

Luminal B 10 23.81

Her2+ 8 19.05

TNBC 5 11.90
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and metastatic prostate samples [25]. However, there

are very few studies of KCNH8 in BC.

PTK6 (protein tyrosine kinase 6) plays a role as an

intracellular signal transducer in epithelial tissues. It

was a hypomethylated-high expression gene in BC and

this could result in the unfavorable survival of BC

patients. In mammary epithelial cells, overexpression

of PTK6 could cause sensitization of the cells to epi-

dermal growth factor and lead to a partially trans-

formed phenotype. Ito et al. [26] reported that PTK6

was expressed in approximately 70% of TNBCs and

kinase-active PTK6 suppressed E-cadherin expression,

promoted cell migration and played an important role

in promoting an epithelial-mesenchymal transition. In

ER+ Luminal BC cells, enhanced expression of PTK6

promoted the growth of ER+ BC cells, including

tamoxifen-treated cells [27]. However, another study

suggested that the BC cell growth was independent of

PTK6 kinase activity. The tumor cell growth inhibition

showed no correlation with PTK6 kinase activity

inhibition, nor with total or activated PTK6 protein

levels [28].

RAB25 is a member of the RAS oncogene family.

In the present study, RAB25 was a hypomethylated-

high expression gene in BC and this could result in the

unfavorable survival of BC patients. Overexpression of

RAB25 was correlated with poor prognosis and

aggressiveness of renal, lung, breast, ovarian and other

cancers [29]. Mitra et al. [30] reported that RAB25

was amplified and enhanced aggressiveness in luminal

B cancers, whereas, in claudin-low tumors, RAB25 is

lost, indicating possible anti-tumor functions. In a ret-

rospective study, the expression of RAB25 was evalu-

ated by IHC in 57 primary BC samples. The results

obtained indicated that the expression of RAB25 was

correlated with clinicopathologic variables and differ-

ent molecular subtypes[31].

RIC3 (RIC3 acetylcholine receptor chaperone) was

a hypermethylated-low expression gene in BC and this

could result in the favorable survival of BC patients. It

Fig. 6. Integration and evaluation of the prognostic nomogram. (A) The P-values and hazard ratios (HRs) in the univariate Cox regression

analysis. (B) The P-values and HRs in the multivariate Cox regression analysis. (C) The prognostic nomogram to predict the 3-, 5- and 7-year

overall survival. (D) The ROC curves of 3-, 5- and 7-year overall survival. (E) The calibration curve of 5-year overall survival. P < 0.05 indicates

statistical significance.
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could encode a member of the resistance to inhibitors

of the cholinesterase 3-like family, which may have

functions including inflammation control. In human

lymphocytes and macrophages, immune activation

could lead to dynamic changes in RIC3 expression and

RIC3 was found to show a strong correction with

inflammatory processes [32]. In another study, RIC3-

TCRBC2 fusion was identified by RNA-Seq in T-cell

lymphoblastic lymphoma, which might be a strong dri-

ver for neoplasia-associated mutations [33]. No study

has yet focused on the relationships of RIC3 and any

other cancer.

USP44 (ubiquitin carboxyl-terminal hydrolase 44) is

a protease that functions as a deubiquitinating enzyme.

The present study indicated that it was a

hypermethylated-low expression gene in BC and this

could result in the favorable survival of BC patients.

USP44 was identified as a key regulator of anaphase-

promoting complex activation [34]. In BC, Liu et al.

[35] reported that USP44 silencing induced spindle

multipolarity, abated vasculogenic mimicry, reduced

transendothelial migration and decreased interleukin-6

and interleukin-8 levels in BC stem cells. Lan et al.

[36] indicated that USP44 contributed to N-CoR func-

tions with respect to regulating gene expression and

was required for the efficient invasiveness of TNBC

cells. Sloane et al. [37] reported that the USP44 CpG

Island was hypermethylated in colorectal cancer cell

lines.

ZSCAN1 (zinc finger and SCAN domain-containing

protein 1) and ZSCAN23 (zinc finger and SCAN

domain-containing protein 23) belong to the same gene

family. In the present study, these two genes were

hypermethylated-low expression genes in BC and this

could result in the favorable survival of BC patients.

However, the protein level of ZSCAN1 was not found

to demonstrate a significant difference. On the whole,

the understanding of these two genes is quite limited.

In a study identifying DNA methylation markers for

the detection of high-grade cervical intraepithelial neo-

plasia, the SOX1/ZSCAN1 panel (84%, 167/200) had

a higher sensitivity and specificity compared to the

others [38]. The role of ZSCAN23 in cancer has not

yet been reported.

With these 10 survival-related and methylation-

driven genes, a signature estimating the risk score of

each patient was constructed with stepwise regression

based on the RNA-Seq data. It was confirmed to be

an independent prognosis factor by univariate and

multivariate Cox regression analyses. A prognostic

nomogram including over 700 BC patients was further

integrated to predict the 3-, 5- and 7-year overall

survival. The area under the curve values of the 3-, 5-

and 7-year ROC curves were 0.801, 0.745 and 0.764,

which demonstrated good prediction ability.

In conclusion, the DNA methylation levels of these

10 methylation-driven genes (CDO1, CELF2,

ITPAIPL1, KCNH8, PTK6, RAB25, RIC3, USP44,

ZSCAN1 and ZSCAN23) were negatively correlated

with the mRNA expression level after linear regres-

sion analysis with the MethylMix R package. Using

the ConsensusClusterPlus R package, six subgroups

were identified with a significantly different prognosis

based on the methylation data. The protein levels

were confirmed by IHC and nine of 10 (i.e. except

ZSCAN1) showed statistical differences. The progno-

sis values of the 10 identified methylation-driven

genes in BC were explored. Finally, a prognostic

nomogram including over 700 BC patients was fur-

ther integrated to predict the 3-, 5- and 7-year overall

survival with good prediction ability. Taken together,

the screened methylation-driven genes could be poten-

tial biomarkers of BC.

However, there are also some limitations to the pre-

sent study. For example, the results of the study are

mainly based on the bioinformatic analysis. The DNA

methylation changes, gene functions and mechanisms

of the methylation-driven genes could be better

revealed in additional experiments. Moreover, the pre-

diction ability of the integrated prognostic nomogram

requires more research to be validated for clinical

practice.
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