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Concordance of FDG PET/CT metabolic
tumour volume versus DW-MRI functional
tumour volume with T2-weighted
anatomical tumour volume in cervical
cancer
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Abstract

Background: 18F–fluoro-deoxyglucose positron emission tomography with computed tomography (FDG PET/CT)
has been employed to define radiotherapy targets using a threshold based on the standardised uptake value (SUV),
and has been described for use in cervical cancer. The aim of this study was to evaluate the concordance between
the metabolic tumour volume (MTV) measured on FDG PET/CT and the anatomical tumour volume (ATV) measured
on T2-weighted magnetic resonance imaging (T2W-MRI); and compared with the functional tumour volume (FTV)
measured on diffusion-weighted MRI (DW-MRI) in cervical cancer, taking the T2W-ATV as gold standard.

Methods: Consecutive newly diagnosed cervical cancer patients who underwent FDG PET/CT and DW-MRI were
retrospectively reviewed from June 2013 to July 2017.
Volumes of interest was inserted to the focal hypermetabolic activity corresponding to the cervical tumour on
FDG PET/CT with automated tumour contouring and manual adjustment, based on SUV 20%–80% thresholds of
the maximum SUV (SUVmax) to define the MTV20–80, with intervals of 5%.
Tumour areas were manually delineated on T2W-MRI and multiplied by slice thickness to calculate the ATV.
FTV were derived by manually delineating tumour area on ADC map, multiplied by the slice thickness to determine the
FTV(manual). Diffusion restricted areas was extracted from b0 and ADC map using K-means clustering to determine the
FTV(semi-automated).
The ATVs, FTVs and the MTVs at different thresholds were compared using the mean and correlated using Pearson’s
product-moment correlation.

Results: Twenty-nine patients were evaluated (median age 52 years). Paired difference of mean between ATV and MTV
was the closest and not statistically significant at MTV30 (−2.9cm

3, −5.2%, p = 0.301). This was less than the differences
between ATV and FTV(semi-automated) (25.0cm

3, 45.1%, p< 0.001) and FTV(manual) (11.2cm
3, 20.1%, p = 0.001). The correlation

of MTV30 with ATV was excellent (r = 0.968, p < 0.001) and better than that of the FTVs.
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Conclusions: Our study demonstrated that MTV30 was the only parameter investigated with no statistically significant
difference with ATV, had the least absolute difference from ATV, and showed excellent positive correlation with ATV,
suggesting its superiority as a functional imaging modality when compared with DW-MRI and supporting its use as a
surrogate for ATV for radiotherapy tumour contouring.

Keywords: Uterine cervical neoplasms, Positron-emission tomography, Fluorodeoxyglucose F18, Radiation oncology,
Image-guided radiotherapy, Intensity-modulated radiotherapy

Background
Precise determination of cervical tumour boundary is
important in radiotherapy to deliver the highest possible
radiation dose to cancerous tissues while minimizing
that to surrounding healthy tissues.
Given its superior soft tissue contrast, MRI is the

modality of choice for the anatomical delineation of
tumour outline and local tumour extent, especially in
determining whether parametrial invasion is present
to differentiate early from advanced stage disease. Despite
excellent spatial resolution, delineation of tumour extent
can be limited using conventional T2-weighted (T2W) se-
quences in certain scenarios, e.g. isointense tumours and
diffusely infiltrative lesions, in assessing response of tu-
mours to therapy and, in particular, in differentiating re-
sidual or recurrent disease from post-treatment fibrosis
due to the overlap of morphological appearances [1].
The clinical utilisation of functional imaging in gynaeco-

logical malignancy is evolving [2–4]. In the era of more
sophisticated treatment options such as image-guided
adaptive radiotherapy, functional imaging techniques such
as diffusion-weighted MRI (DW-MRI) and 18F–fluoro-
deoxyglucose positron emission tomography integrated
with computed tomography (FDG PET/CT) have been
demonstrated to provide information for more precise
definition of radiation target [5–7]. DW-MRI allows
characterization of biological tissues based on their
water diffusion property that changes with the integrity
of cellular membranes and tissue cellularity [8]. Quanti-
tative assessment can be derived from the apparent co-
efficient diffusion (ADC) maps obtained from DW-MRI
[9]. For instance, ADC has been used to differentiate
between normal and cancerous cervical tissue, and the
latter was found to correlate negatively with tumour
cellular density and grading [10, 11]. Additional DW-MRI
has been demonstrated in the literature to outperform
T2W imaging alone in depicting local recurrence and dif-
ferentiating it from post-treatment changes such as fibrosis
[12–14]. The use of ADC for measuring target volumes
with different tissue characteristics for dose prescription in
image-guided adaptive brachytherapy [15] and various seg-
mentation methods with DW-MRI [16] have also been
studied. However, further investigation in its clinical appli-
cation to radiotherapy treatment planning is warranted.

FDG PET/CT utilises FDG, a glucose analogue, to pro-
vide valuable metabolic information based on the increased
glucose uptake and glycolysis of cancer cells, and can depict
metabolic abnormalities before morphological alterations
occur [17]. FDG PET/CT has been employed to define
radiotherapy targets using a threshold based on the stan-
dardised uptake value (SUV) for over a decade [18], and
that for cervical cancer has been recently demonstrated
[19]. Modification of radiation treatment volumes to FDG-
avid lymph nodes and primary tumour can facilitate the ac-
curate definition of tissues with metabolically active disease
and the avoidance of normal tissue; hence allowing dose
boosts to FDG-avid tumour volumes and lower doses to
the bone marrow, urinary bladder and rectum [20, 21].
Despite promising results of using functional imaging

to delineate radiation target in cervical cancer, the seg-
mentation methods and thresholds used are highly vari-
able in the literature. The aim of this study is to evaluate
the concordance between the metabolic tumour volume
(MTV) measured on FDG PET/CT and the anatomical
tumour volume (ATV) measured on T2W imaging; and
compared with the functional tumour volume (FTV)
measured on DW-MRI in cervical cancer, using the
T2W ATV as gold standard [22].

Methods
Patient selection
The retrospective study was reviewed by local institutional
review board and informed consent was waived. We
reviewed the local database and all consecutive patients
with newly diagnosed cervical cancers who underwent
both FDG PET/CT and MRI as pre-treatment imaging
from June 2013 to July 2017 were included. Cases with in-
complete inclusion of the tumour on MRI were excluded.
The median time difference between the two examina-
tions was 4 days (range 0 to 32).

FDG PET/CT
Patient preparation and image acquisition
Whole-body FDG PET/CT (coverage from the skull base
to the upper one third of the thighs) was performed on
a combined PET/CT scanner (Discovery VCT, 64 multislice
spiral CT; GE Healthcare Bio-Sciences Corp.), using a stan-
dardised protocol. After 6 h of fasting, 222–370 MBq
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(4.8 MBq/kg) of weight-adjusted FDG was administered
intravenously. Following a 60-min uptake time, whole-body
emission PET was obtained with 6 bed positions of 2 min
and 30 s acquisition time in each bed position. PET was at-
tenuated with CT data and reconstructed with an ordered-
subset expectation maximization iterative reconstruction
algorithm (14 subsets and 2 iterations) and subsequently
fused with CT images for further analysis. The CT imaging
parameters were as follows: 120 kVp; 200–400 mA; 0.5 s
per CT rotation; pitch, 0.984:1; and 2.5-mm intervals, with
or without 60–100 mL (1.5 mL/kg) intravenous contrast
medium.

Metabolic tumour volume (MTV)
Both SUV and volumetric analysis were performed using
Advantage Volume Share on ADW 4.7 workstation (GE
Healthcare, Chicago, Illinois, United States). Focal hyper-
metabolic activity in the uterine cervix corresponding to
the cervical tumour was visually identified, where a 3D vol-
ume of interest (VOI) was inserted (Fig. 1). Automated
tumour contouring with manual adjustment was performed
to include the boundaries of the lesion in the axial, coronal,
and sagittal planes, and to avoid the urinary bladder. SUV
measurement was performed by normalization of the
injected dose to lean body mass. Lean body mass was used
for normalization instead of total body mass because it is
less dependent on body habitus across populations [23].
Maximum SUV (SUVmax) was automatically generated.
MTV was measured using an SUV-based automated con-
touring program. The voxels presenting SUV ≥ 20% to 80%
thresholds of the SUVmax within the contouring margin
were incorporated to define the metabolic tumour volumes
(MTV20 to MTV80), with intervals of 5%.

MRI
Patient preparation and image acquisition
Patients were prepared for MRI after 6 h of fasting and
20 mg hyoscine butylbromide (Buscopan, Boehringer

Ingelheim, Germany) was given intramuscularly at the
start of each examination to reduce bowel peristalsis.
All examinations were performed on a 3.0-T MRI sys-
tem (Achieva 3.0 T TX, Philips Healthcare, Best, the
Netherlands) using a dedicated 16-channel phased array
torso coil.
The standard sequences included sagittal T2 W turbo

spin-echo (TSE) and an oblique axial T2W TSE (perpen-
dicular to the long axis of the cervix). Additional axial
T2W TSE was acquired to ensure the same anatomical
coverage and slice profile as the DW-MRI. Post-contrast
3D T1 W TSE was acquired after DW-MRI (Table 1).
DW-MRI was performed using single-shot spin-echo

echo-planar imaging, immediately after the axial T2W
TSE imaging. It was acquired in free breathing with
background body signal suppression (presaturation in-
version recovery fat suppression) and parallel imaging
with sensitivity encoding [SENSE] factor of 2 (Table 1).
Image acquisition with 13 b-values (0–1000 s/mm2) were
performed in the axial plane covering 20 slices to include
the entire cervical cancer, using motion-probing gradients
in three orthogonal axes to generate the geometric aver-
aged DW signal. The full inclusion of the entirety of the
tumour on the DW-MRI images was confirmed visually
for every case.

Anatomical tumour volume (ATV)
Tumour areas were manually delineated on T2W images
in sagittal and oblique axial planes and multiplied by the
slice thickness to calculate the sagittal and oblique axial
tumour volumes. Two reviewers, EL (8-year experience
in MRI with special interest in gynaecological oncology
imaging) and AL (5-year experience in MRI), separately
placed the ROIs on the T2W images in the sagittal and
oblique axial planes, respectively. The volumes were av-
eraged between the two reviewers to determine the
ATV.

Fig. 1 MTV was calculated by the thresholding method on FDG PET/CT. Focal activity in the uterine cervix was identified. A VOI was inserted
manually, carefully avoiding the urinary bladder. SUVmax was quantified by the software automatically. The tumour was outlined as the region
encompassed by a given fixed percent intensity level relative to the maximum activity in the tumour. 20% to 80% thresholds of the SUVmax
(MTV20 to MTV80) at intervals of 5% were used in this study. MTV: metabolic tumour volume; VOI: volume of interest; SUVmax: maximum
standardized uptake value
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Functional tumour volume (FTV)
Averaged DW signal was used to generate the ADC
maps using the Levenberg-Marquardt fitting algorithm
under the mono-exponential model described by the
function:

Sb
S0

¼ e−b∙ADC
� �

where Sb represents the mean signal intensity with the
diffusion gradient, b, S0 is the mean signal intensity
when b = 0 s/mm2. VOIs were manually drawn by two
reviewers, EL and AL, for each lesion. The first set of
VOIs were strict manual delineations of the tumour by
both reviewers and excluded the surrounding normal
tissue based on the hypointense signal of the tumour on
the ADC map with cross reference to the axial T2W im-
ages. FTV by the two reviewers was then calculated
using these VOIs multiplied by slice thickness. The volumes
were averaged between the two reviewers to determine the
FTV(manual). The second set of VOIs was drawn by the
same two reviewers, EL and AL, to include all of the
tumour and did not require exclusion of surrounding
normal tissue. Volumetric k-means clustering was then
used to automatically separate voxels in the tumour
volume into three groups based on S0 and ADC values.
These groups were defined as: solid tumour mass with
high cellularity having intermediate ADC and inter-
mediate S0 intensities; normal tissue with low cellularity
or cystic tissues having high ADC [5, 24] and high S0
intensities; fat and fibrotic tissues having low ADC low
S0 intensities. A study by Gong et al. [25] has shown
that slice-by-slice K-means clustering, using both S0 images
and ADC, is a promising method for reliable delineation of
heterogeneous tumours in patients with metastatic gastro-
intestinal stromal tumours. FTV(semi-automated) was calcu-
lated by discarding the fat and fibrotic cluster and the
normal tissue cluster, leaving the solid tumour mass cluster.
Parametric map generation and semi-automatic functional

volume segmentation were performed using in-house pro-
grams using MATLAB (The Mathworks Inc., Natick, MA,
USA) (Fig. 2). The volumes were averaged between the two
reviewers to determine the FTV(semi-automated).

Statistical analysis
The ATVs measured on T2W images, FTVs on DW-MRI
and the MTVs at different thresholds on FDG PET/CT were
compared. The ATVs, FTVs and MTVs were correlated
using Pearson’s product-moment correlation. R version 3.4.1

Table 1 Summary of MRI scan parameters

Sequences T2-Weighted TSE T2-Weighted SPAIR T2-Weighted TSE T2-Weighted TSE DWI CE 3D T1-weighted TSE

Plane Sagittal Coronal Axial Oblique Axial Axial 3D

TR/TE (ms) 4000/80 3500/80 2800/100 2800/100 2000/54 3/1.4

Turbo factor 30 21 12 14 NA NA

Field of view (mm) 240 × 240 230 × 230 402 × 300 220 × 220 406 × 300 370 × 203

Matrix size 480 × 298 352 × 300 787 × 600 316 × 311 168 × 124 248 × 134

Slice thickness (mm) 4 4 4 4 4 1.5

Intersection gap (mm) 0 0 0 0 0 0

Bandwidth (Hz/pixel) 230 186 169 162 15.3 724

Number of excitations 2 1 1 1 2 1

CE: contrast-enhanced, DWI: diffusion-weighted imaging; TR/TE: repetition time/echo; TSE: turbo spin echo

Fig. 2 A semi-automated method was used to extract diffusion
restricted areas from corresponding b0 and ADC map. VOIs were
manually inserted to include the entire tumour. Voxels were automatically
separated into 3 groups based on ADC values using a K-means clustering
method: solid tumour mass with high cellularity having intermediate ADC,
fat and fibrotic tissues having low ADC and normal tissue with low
cellularity or cystic tissues having high ADC. FTV(semi-automated) was
hence calculated by discarding the fat and fibrotic cluster and the
normal tissue cluster, leaving the solid tumour mass cluster. ADC:
apparent diffusion coefficient; FTV: functional tumour volume
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(R Foundation for Statistical Computing, Vienna, Austria)
was used for statistical analysis. A two-tailed p-value < 0.05
was considered statistically significant.

Results
Demographics
A total of 29 patients were evaluated with median age of
52 years (range 27–76 years). Further clinicopathological
characteristics were tabulated in Table 2.

Quantitative measurements
Mean SUVmax of the cervical tumours was 9.2, range 3.3–
16.7. Mean ADC of the cervical tumours was 0.934 +/−
0.120 mm2/s. The mean ATVs measured in sagittal and
oblique axial planes are 51.7 and 59.3 cm3 respectively.

Paired differences of mean between (ATV and FTV) vs
(ATV and MTV at different SUV thresholds)
The paired difference of mean between ATV and MTV30,
mathematically represented by mean ATV – mean MTV30,
was −2.9 cm3, −5.2%, p = 0.301. This difference was not sta-
tistically significant and was the closest to ATV compared
with all other FTVs and MTVs measured at other SUVmax
thresholds, including the differences between ATV and
FTV(semi-automated) (mean ATV – mean FTV(semi-automated) =
25.1 cm3, 45.1%, p < 0.001) and between ATV and
FTV(manual) (mean ATV – mean FTV(manual) = 11.2 cm3,
20.1%, p = 0.001). The means of the ATV, FTV(semi-auto-

mated), FTV(manual) and MTV20 to MTV80 (with intervals
of 5%) and the differences of their means with ATV are
shown in Table 3.

Correlation
The correlations of MTV20–50 with ATV were excellent
(r > 0.9, p < 0.001), and those of MTV30–40 were better
than that with FTV(semi-automated) and FTV(manual).
There was a gradual decline in correlation of MTVs

with ATV as the percentage threshold of SUVmax in-
creased (Table 4).

Discussion
Our study demonstrated that among all metabolic
threshold levels and FTV(semi-automated) and FTV(manual),
the MTV30 had the least absolute difference from ATV
and was the only parameter investigated which did not
show a statistically significant difference from ATV. In
addition, MTV30 showed excellent positive correlation
with ATV.
MRI is indispensable in the local disease assessment of

cervical cancer. The ability of combined functional volume
assessment and local disease extent using MRI alone could
present as a promising imaging algorithm for patients with
cervical cancer. However, the evidence to support this is
limited in the current literature and most studies have used
the manual segmentation method based on DW-MRI
images [26, 27].
The choice of imaging modality used in tumour con-

touring or segmentation technique can result in varying
derived tumour volume [16, 28, 29]. There is no consen-
sus of the methodology of tumour segmentation using
DW-MRI or ADC values. Clustering is a method, which
groups similar data, and the k-means algorithm is often
chosen for image segmentation and grouping voxels of
same signal intensities and has been used for classifica-
tion of functional imaging data [30]. This algorithm is

Table 2 Patient demographics including age, clinical tumour
staging and histological types

Median age in years (range) 52 (27–76)

No of patients,
n (%)

FIGO stage IB 8 (27.6%)

IIA 2 (6.9%)

IIB 7 (24.1%)

IIIB 10 (34.5%)

IVB 1 (3.4%)

Unstaged 1 (3.4%)

Histology Squamous cell carcinoma 16 (55.2%)

Adenocarcinoma 8 (27.6%)

Others 5 (17.2%)

Table 3 Means of the ATV, FTV(semi-automated), FTV(manual) and
MTV20 to MTV80

Mean (cm3) Paired difference with
mean ATV (cm3)

(%) p value

ATV 55.5

FTV(manual) 44.3 11.2 20.1% 0.001

FTV(semi-automated) 30.5 25.1 45.1% <0.001

PET MTV20 83.3 −27.8 −50.0% <0.001

PET MTV25 69.2 −13.7 −24.7% 0.001

PET MTV30 58.4 −2.9 −5.2% 0.301

PET MTV35 49.0 6.5 11.8% 0.026

PET MTV40 41.4 14.1 25.3% 0.001

PET MTV45 34.9 20.6 37.1% <0.001

PET MTV50 29.3 26.2 47.2% <0.001

PET MTV55 24.3 31.2 56.2% <0.001

PET MTV60 19.4 36.1 65.0% <0.001

PET MTV65 15.0 40.5 73.0% <0.001

PET MTV70 11.0 44.5 80.2% <0.001

PET MTV75 7.3 48.2 86.9% <0.001

PET MTV80 4.4 51.1 92.1% <0.001

The differences of their means with ATV. The paired difference of mean between
ATV and MTV30 was not statistically significant and was the closest to ATV
compared with all other FTVs and MTVs (BOLD)
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simple and efficient and has been shown to be able to
differentiate ADC values of benign and malignant patholo-
gies [24]. A recent study has shown that K-means clustering
using both S0 and ADC is a promising method for reliable
delineation of heterogeneous tumours in patients with
metastatic gastrointestinal stromal tumours [25]. The rela-
tive signal intensity [31] and region growing [32] methods
are alternative segmentation techniques which were de-
scribed to have limitations related to their dependence on
b-value and acquisition method for DW-MRI images, and
sensitivity to signal-to-noise ratio [16].
FDG PET/CT has the advantage of identifying the

metabolic activity and providing information on tumour
biology. It is increasingly recognized as a useful tool for
directing RT planning during intensity-modulated radi-
ation therapy, volumetric-modulated arc treatment [20]
and image-guided brachytherapy [33], thereby allowing
targeted dose escalation to target tissues with high meta-
bolic activity, and reducing dose to surrounding tissues
[34]. The utility of FDG PET/CT has been shown to lead
to less gastrointestinal toxicity in patients with gynaeco-
logical malignancies [35].
Various tumour segmentation techniques using FDG

PET/CT exist: manual contouring, which consists of visual
assessment for determining tumour outline; thresholding,
which uses a minimum SUV value to identify target; and
gradient edge detection, in which tumour delineation is

based on the changes in signal across a given area
[36]. As SUV thresholding has been the focus in initial
investigative approaches and is the most commonly
employed method of FDG/PET-based tumour volume
segmentation [18], it was the segmentation technique
of choice in this study.
Volume concordance between FDG PET/CT, and T2W

and DW-MRI imaging in cervical cancer has been previ-
ously observed [26, 27, 37], and tumour sub-volumes with
increased metabolic activity on FDG PET/CT was found to
have greater cell density by DW-MRI [38]. Zhang et al. sug-
gested that PET-measured gross tumour volume using an
SUVmax threshold method may increase the accuracy in
target volume delineation when performed on a sequential
FDG PET/MRI platform [37]. SUV-based primary squa-
mous histology cervical tumour volume estimation at 30%
to 35% of SUVmax values correlated significantly with
volume on MRI [27]. In a hybrid FDG PET/MRI study,
volume measurement using 35% or 40% thresholds of the
SUVmax has been found to display a strong concordance
with the tumour volumes measured on T2W and DW-
MRI in cervical cancer [27, 37].
In our study, the mean of differences between ATV

and MTV was the smallest with MTV30, concordant
with previous literature [27]. Although DW-MRI also
gives information on tumour cellularity and the semi-
automated method may potentially reduce processing
time and inter-observer variability, our study suggested
that the FTVs, regardless of the segmentation methods,
borne larger differences from the ATV than MTV30 did.
Moreover, contouring based on FDG PET/CT can be
performed in a semi-automated fashion and this feature
is readily available on standard workstation, which is
easy to use, providing the merit of reducing the time re-
quired for processing, and potentially also improving inter-
observer agreement, as shown previously by studies on
tumour delineation for rectal and lung cancers [39–41].
Furthermore, MTV30, having the least absolute differ-

ence from ATV, being the only parameter investigated
with no statistically significant difference from ATV, and
having an excellent positive correlation with ATV sup-
ported its use as a surrogate for ATV for radiotherapy
tumour contouring and dose escalation; with the benefit
of having metabolic information available for character-
izing the biological features of the tumour and optimiz-
ing the use of individualized, conformal and biologically
effective radiation therapy.

Conclusion
In conclusion, MTV delineation on FDG PET/CT ap-
pears promising and superior as a functional imaging
modality when compared with DW-MRI in tumour con-
touring with MTV30 being the best correlate to ATV.

Table 4 Correlation of MTVs at all SUVmax thresholds were
significantly correlated with T2W anatomical volume and with
DW-MRI functional volume (p < 0.05)

Pearson’s product-moment
correlation (r)

p value

ATV 1.000

FTV(manual) 0.963 <0.001

FTV(semi-automated) 0.956 <0.001

PET MTV20 0.955 <0.001

PET MTV25 0.962 <0.001

PET MTV30 0.968 <0.001

PET MTV35 0.975 <0.001

PET MTV40 0.968 <0.001

PET MTV45 0.948 <0.001

PET MTV50 0.921 <0.001

PET MTV55 0.877 <0.001

PET MTV60 0.830 <0.001

PET MTV65 0.803 <0.001

PET MTV70 0.777 <0.001

PET MTV75 0.777 <0.001

PET MTV80 0.781 <0.001

Pearson correlation coefficient (r) larger than 0.9 are highlighted in bold. ATV:
anatomical tumour volume; FTV: functional tumour volume; MTV: metabolic
tumour volume
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