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Background: Natural-cycle in vitro fertilization (NC-IVF) is an in vitro fertilization (IVF) cycle
without gonadotropins or any other stimulation of follicular growth. Previous studies on
live-birth prediction of NC-IVF were very few; the sample size was very limited. This study
aims to construct a machine learning model to predict live-birth occurrence of NC-IVF
using 57,558 linked cycle records and help clinicians develop treatment strategies.

Design and Methods: The dataset contained 57,558 anonymized register patient
records undergoing NC-IVF cycles from 2005 to 2016 filtered from 7bsp;60,732
records in the Human Fertilisation and Embryology Authority (HFEA) data. We selected
matching records and features through data filtering and feature selection methods.
Two groups of twelve machine learning models were trained and tested. Eight metrics,
e.g., F1 score, Matthews correlation coefficient (MCC), the area under the receiver
operating characteristic curve (AUC), etc., were computed to evaluate the
performance of each model.

Results: Two groups of twelve models were trained and tested. The artificial neural
network (ANN) model performed the best in the machine learning group (F1 score,
70.87%; MCC, 50.37%; and AUC score, 0.7939). The LogitBoost model obtained the
best scores in the ensemble learning group (F1 score, 70.57%; MCC, 50.75%; and AUC
score, 0.7907). After the comparison between the two models, the LogitBoost model was
recognized as an optimal one.

Conclusion: In this study, NC-IVF-related datasets were extracted from the HFEA data,
and a machine learning-based prediction model was successfully constructed through
this largest NC-IVF dataset currently. This model is universal and stable, which can help
clinicians predict the live-birth success rate of NC-IVF in advance before developing IVF
treatment strategies and then choose the best benefit treatment strategy according to the
patients’ wishes. As “use less stimulation and back to natural condition” becomes more
and more popular, this model is more meaningful in the decision-making assistance
system for IVF.
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INTRODUCTION

Infertility is defined as failure to achieve a clinical pregnancy
after 12 months of regular and unprotected sexual intercourse
(1–4). Assisted reproductive technologies (ARTs), especially in
vitro fertilization (IVF) and embryo transfer (ET) (IVF-ET), are
advanced technologies to help infertile couples get pregnant (5,
6). IVF can be divided into natural-cycle IVF (NC-IVF) and
stimulated IVF (SIVF) according to whether ovarian stimulation
is used or not in the process of IVF. NC-IVF is an IVF cycle
without gonadotropins or any other stimulation of follicular
growth, and it leads to only one follicle development in most
cases. However, SIVF is an IVF cycle that uses gonadotropin
stimulation to generate many follicles to improve chances of
conception and pregnancy success (7). The world’s first
successful IVF pregnancy occurred after NC-IVF in 1978 (8).
Since then, SIVF has been widely used in IVF treatment (9). At
the same time, NC-IVF is only used as an alternative to SIVF
and only for patients with poor ovarian responder, advanced
age, religious reasons, etc. (10, 11). However, NC-IVF has its
unique and irreplaceable advantages: і) NC-IVF treatment
can be performed every month without daily injections, luteal
phase support, and adjuncts to improve endometrial function.
ii) The endometrium in NC-IVF will not be negatively affected
by supraphysiological estradiol concentration (12, 13).
iii) Cryopreservation of zygotes or embryos and discarding of
surplus embryos is not required in NC-IVF treatment. iv) NC-IVF
treatment has no ovarian hyperstimulation syndromes (OHSS)
and rare multiple pregnancies (14). v) The implantation rate per
oocyte collected during NC-IVF is higher than that in SIVF, and
the embryo quality is also better in NC-IVF (15–17). vi) NC-IVF
treatment has a lower cost per cycle and better perinatal outcomes
(18; 19–21). vii) The average psychological treatment distress is
lower in NC-IVF treatment (22–24). Briefly, NC-IVF is a low-risk,
low-cost, and patient-friendly treatment procedure (25).

However, unfortunately, for the purpose and consideration
of obtaining as many follicles as possible, doctors generally
give priority to recommending SIVF treatment in the current
clinical treatment. But even experienced doctors can hardly
guarantee which treatment will benefit patients more. If there
is a prediction method that can predict the live-birth
occurrence using NC-IVF treatment after entering the basic
information of patients, can it assist clinicians in developing
treatment strategies?

Up till now, reliable and accurate prediction of IVF outcomes
has always been an outstanding issue. Meanwhile, applying
computational prediction models should be an optimized
solution. Computational prediction models estimate the future
treatment outcome and offer recommendations by analyzing a
variety of related features. With the rapid improvement of
computer technology, artificial intelligence (AI) has been
explosively developed. Machine learning is an application of
AI. It extracts the features of data, trains its capability to analyze
features, and develops prediction models based on accumulated
experience (intermediate results). Machine learning-based
prediction models are increasingly used in clinical decision-
making, mostly in complex multi-variable systems (26–28).
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This study aims to construct a prediction model for live-birth
occurrence of NC-IVF, using a comprehensive, varied dataset of
57,558 anonymized register cycle records undergoing NC-IVF
cycles from 2005 to 2016 filtered from 760,732 records in the
Human Fertilisation and Embryology Authority (HFEA) dataset.
Two groups of a total of twelve machine learning models were
trained and tested using the dataset. The model construction
mainly includes four steps. Step 1: acquire and prepare a dataset,
which is the combination of selected and filtered patient records.
Step 2: pre-process dataset using specific algorithms to
standardize the format, normalize the data, and select features.
Step 3: train prediction models with machine learning algorithms
in two groups. Step 4: evaluate the performance of each model
and find the best one. The overall model building framework is
shown in Figure 1.
MATERIALS AND METHODS

Data Acquisition
The dataset was obtained from the HFEA, which collected data
and statistics about the fertility treatment cycles performed each
year in the United Kingdom. HFEA holds the longest-running
register of fertility treatments data in the world to improve
patient care and help researchers to conduct world-class
research while ensuring very strong protection of patient,
donor, and offspring confidentiality. The raw dataset in this
study contained 760,732 cycle records with 95 fields on treatment
cycles started between 2005 and 2016. This study mainly focused
on the prediction of live-birth occurrence, so the “Live birth
occurrence” field was regarded as the prediction label, while the
other 94 fields were regarded as features. Each record represented
patients’ situations in one cycle. All data were anonymized and
freely available on their website (https://www.hfea.gov.uk/), so
no ethics approval was required for this study.

First of al l , couples undergoing IVF [including
intracytoplasmic sperm injection (ICSI)] were considered. “Egg
donation,” “Sperm donation,” “Embryo donation,” and
“Surrogate” were excluded. Secondly, in IVF, exogenous
gonadotropins are used to stimulate the development of more
than one egg at a time, which is called “Stimulation used” in the
raw dataset (7, 29, 30). So patients who had no “Stimulation
used” (i.e., undergoing NC-IVF) were considered in this study.
Then, fresh cycles and the following frozen–thawed cycles from
NC-IVF were all included. Furthermore, cycles with completed
ET were included. Finally, after some records containing outliers
such as “999”were eliminated, 57,558 cycle records were retained
for further analysis, i.e., 57,558 NC-IVF cycles.

The raw dataset contains 94 features. Obviously, not all
features contributed significantly to predicting live-birth
occurrence. As our prediction model was designed as a
pretreatment model to predict the live-birth occurrence of the
couple before the IVF treatment started, features related to “Egg
retrieval,” “Egg stored,” “Fertilization,” “Embryo transfer,” and
“Embryo stored”were excluded. On the contrary, features related
to “Patient age,” “Previous pregnancy status of the couple,”
“Previous pregnancy related treatments,” “Type of infertility,”
April 2022 | Volume 13 | Article 838087

https://www.hfea.gov.uk/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Zhang et al. Live-Birth Prediction of NC-IVF
“Cause of infertility,” “Treatment type,” “Fresh cycle,” and
“Frozen cycle” were included. After these steps, 34 features
were selected. A detailed description of selected features is
summarized in Table 1.

Data Preprocessing
The data format was standardized into two types: numeric and
categorical, e.g., “Patient age at treatment,” “Type of infertility,”
“Cause of infertility,” “Specific treatment type,” and “Live birth
occurrence” were categorical (i.e., two categories: 0 and 1;
multiple categories: 0, 1, 2, 3…), and “Total number of
previous IVF cycles,” “Total number of live births,” and “Total
number of IVF pregnancies” were numeric.

The normalization method via Z-score was then applied as a
pre-processing step to all features (31). Feature vectors were
normalized via Z-score normalization, as follows:

Xnorm =
X − m
s

where x is the feature vector, xnorm is the normalized vector, m is
the mean value of the feature vector, and s is the standard
deviation of that. Hence, all feature vectors have a mean of 0 and
a standard deviation of 1. After the Z-score normalization step,
the classification performance of models would not be affected by
the value range of data.

In addition, Pearson’s correlation coefficients between 34
features were also calculated. Pairs with a correlation
coefficient higher than a threshold (close to 1) were reduced to
only one as the input of the model. The correlation matrix of 31
features (after reduction) is shown in Figure 2.
Frontiers in Endocrinology | www.frontiersin.org 3
Model Training
After preprocessing, the dataset contained 57,558 samples,
including a 57,558 × 31 feature matrix and a 57,558 × 31 label
vector. Among the 57,558 samples, the number of positive
samples (i.e., live birth was true) was 12,340, the number of
negative samples was 45,218, and the negative samples were
nearly four times the positive ones. Obviously, there was a certain
degree of imbalance in the dataset. The normal processing
methods for dataset imbalance include the following: і)
keeping all positive samples, but down-sampling negative
samples, and ii) keeping all negative samples and over-
sampling positive samples. The former method will bring a lot
of information loss, while the latter one will cause a sharp
increase of training dataset and the over-fitting problem (32).
Since the imbalance ratio was not large, and the complexity of
model training should not be increased, in this study, the dataset
was divided into 4 sub-datasets at a ratio of 1:1, and each sub-
dataset contained all positive samples and 1/4 negative samples
(the negative samples in the fourth sub-dataset partially
overlapped with others, and those in other three sub-datasets
were independent with each other). Decision tree (DT) and
linear discriminant (LD) algorithms were used to pre-train the
four sub-datasets, and then four groups of evaluation metrics
including precision, recall, and F1 score were obtained. The sub-
dataset with the best score was selected as the dataset for further
model training. After this step, the dataset to be used had 24,680
samples, containing exactly the same number of positive and
negative samples.

In this study, twelve models were selected, trained, tested, and
analyzed. They were divided into two groups: і) machine
FIGURE 1 | The overall model building framework.
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learning models, i.e., independent classifiers, included DT, LD,
logistic regression (LR), naive Bayes (NB), linear support vector
machine (Linear SVM), and artificial neural network (ANN);
ii) ensemble learning models, i.e., combined classifiers, including
bagged tree (BT), AdaBoost, GentleBoost, LogitBoost, RUSBoost,
and random subspace method (RSM).

DT algorithm builds classification or regression models in the
form of a tree structure. It breaks down a dataset into smaller and
smaller subsets, while at the same time an associated DT is
incrementally developed. The final result is a tree with decision
nodes and leaf nodes. The topmost decision node in a tree that
corresponds to the best predictor is called the root node (33). LD
algorithm, also known as Fisher’s LD (FLD), is a classic algorithm
for pattern recognition. The basic implementation method is to
Frontiers in Endocrinology | www.frontiersin.org 4
project high-dimensional samples into the best discriminant vector
space to achieve the effect of extracting classification information
and compressing the dimension of the feature space (34). LR
algorithm produces a logistic curve, which is limited to values
between 0 and 1. The curve is constructed using the natural
logarithm of the “odds” of the target variable, rather than the
probability (35). NB algorithm is based on Bayes’ theorem with the
independence assumptions between predictors. An NB model is
easy to build, with no complicated iterative parameter estimation,
which makes it particularly useful for very large datasets (36). SVM
algorithm is a kind of generalized linear classifier that helps to
identify the maximum-margin hyperplane for the positive and
negative classes as a decision boundary. In addition, the SVM
algorithm can perform non-linear classification through the kernel
TABLE 1 | Description of 35 fields in the dataset.

Field name Field type Description

Patient Age at Treatment Categorical Patient age at treatment, banded as follows: 18–34, 35–37, 38–39, 40–42, 43–44, 45–50.
Total Number of Previous Treatments, Both IVF
and DI at Clinic

Numeric The number of treatment cycles of IVF and DI the patient has previously had at the clinic associated
with this treatment.

Total Number of Previous IVF Cycles Numeric The number of treatment cycles of IVF the patient has previously had.
Total Number of Previous DI Cycles Numeric The number of treatment cycles of DI the patient has previously had.
Total Number of IVF Pregnancies Numeric Times the patient has been pregnant through IVF.
Total Number of DI Pregnancies Numeric Times the patient has been pregnant through DI.
Total Number of Live Births—Conceived through
IVF

Numeric The number of live births the patient has had through IVF.

Total Number of Live Births—Conceived through
DI

Numeric The number of live births the patient has had through DI.

Type of Infertility—Female Primary Categorical 1 if the patient has never been pregnant, 0 otherwise.
Type of Infertility—Female Secondary Categorical 1 if the patient has ever been pregnant, 0 otherwise.
Type of Infertility—Male Primary Categorical 1 if the partner has never impregnated any woman, 0 otherwise.
Type of Infertility—Male Secondary Categorical 1 if the partner has ever impregnated some woman, 0 otherwise.
Type of Infertility—Couple Primary Categorical 1 if the patient has never been pregnant while the partner has never impregnated any woman,

0 otherwise.
Type of Infertility—Couple Secondary Categorical 1 if the patient has ever been pregnant while the partner has ever impregnated some woman,

0 otherwise.
Cause of Infertility—Tubal Disease Categorical 1 if the primary cause of infertility is due to tubal disease, 0 otherwise.
Cause of Infertility—Ovulatory Disorder Categorical 1 if the primary cause of infertility is due to ovulatory disorder, 0 otherwise.
Cause of Infertility—Male Factor Categorical 1 if the primary cause of infertility is due to the partner, 0 otherwise.
Cause of Infertility—Patient Unexplained Categorical 1 if the primary cause of infertility is unknown, 0 otherwise.
Cause of Infertility—Endometriosis Categorical 1 if the primary cause of infertility is due to endometriosis, 0 otherwise.
Cause of Infertility—Cervical Factors Categorical 1 if the primary cause of infertility is due to cervical factors, 0 otherwise.
Cause of Infertility—Partner Sperm
Concentration

Categorical 1 if the primary cause of infertility is due to partner sperm concentration, 0 otherwise.

Cause of Infertility—Partner Sperm Morphology Categorical 1 if the primary cause of infertility is due to partner sperm morphology, 0 otherwise.
Causes of Infertility—Partner Sperm Motility Categorical 1 if the primary cause of infertility is due to partner sperm motility, 0 otherwise.
Cause of Infertility—Partner Sperm
Immunological Factors

Categorical 1 if the primary cause of infertility is due to partner sperm immunological factors, 0 otherwise.

Main Reason for Producing Embryos Storing
Eggs

Categorical The main reason for storing eggs in this cycle and producing embryos in subsequent cycles, includes
treatment now, for storing eggs.

Specific Treatment Type Categorical The specific treatment type used in this cycle includes IVF and ICSI.
PGD Categorical 1 if this cycle involved the use of preimplantation genetic diagnosis, 0 otherwise.
PGD Treatment Categorical 1 if this cycle would be contained in the “PGD” CaFC category on the HFEA website,

0 otherwise.
PGS Categorical 1 if this cycle involved the use of preimplantation genetic screening, 0 otherwise.
PGS Treatment Categorical 1 if this cycle would be contained in the “PGS” CaFC category on the HFEA website,

0 otherwise.
Elective Single Embryo Transfer Categorical 1 if this cycle involved the deliberate use of only one embryo, 0 otherwise.
Fresh Cycle Categorical 1 if this cycle used fresh embryos, 0 otherwise.
Frozen Cycle Categorical 1 if this cycle used frozen embryos, 0 otherwise.
Embryos Transferred Numeric The number of embryos transferred into the patient in this cycle.
Live-Birth Occurrence Categorical 1 if there were one or more live births as a result of this cycle, 0 otherwise.
IVF, in vitro fertilization; DI, donor insemination; ICSI, intracytoplasmic sperm injection; HFEA, Human Fertilisation and Embryology Authority.
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method: using a kernel function to map the original training
samples to a high-dimensional space. The ANN attempts to
recreate the computational mirror of the biological neural
network. There are different types of neural networks but are
generally classified into feed-forward and feed-back networks. A
feed-forward network is a non-recurrent network that contains
inputs, outputs, and hidden layers; the signals can only travel in one
direction. Input data are passed onto a layer of processing elements
where it performs calculations. Each processing element makes its
computation based upon a weighted sum of its inputs. The new
calculated values then become the new input values that feed the
next layer. This process continues until it has gone through all the
layers and determines the output (37, 38). In this study a two-layer
feed-forward network, with sigmoid hidden and softmax output
neurons, was used to classify pattern vectors (live-birth label
vector), given 20 neurons in its hidden layer. This network was
trained with scaled conjugate gradient backpropagation.

Ensemble learning is a kind of technology that combines a
variety of compatible machine learning algorithms/models to
perform a single task in order to obtain better prediction
performance. Ensemble learning is generally classified into
three types: bagging, boosting, and stacking. In this study, two
bagging methods (i.e., BT and RSM) and four boosting methods
(i.e., AdaBoost, GentleBoost, LogitBoost, and RUSBoost) were
built and tested. The bagging method is based on multiple sub-
datasets divided through the bootstrap algorithm. Then, multiple
models are trained, and the best one is selected using the voting
method. In this study, a DT was used as the classifier for the
method, so this model was called tree-based bagging or BT (39).
Frontiers in Endocrinology | www.frontiersin.org 5
RSM, also known as feature bagging, trains each classifier by
using some random features instead of all features to reduce the
correlation between each classifier (40). In this study, LD was
used as the classifier for the RSM model. The boosting algorithm
combines a series of weak classifiers into a strong classifier to
improve performance. The Adaboost algorithm uses class
probability estimates to construct real-valued contributions of
the weak classifiers, LogitBoost is an adaptive Newton algorithm
by stagewise optimization of the Bernoulli likelihood,
GentleBoost is an adaptive Newton algorithm via stagewise
optimization of the exponential loss, RUSBoost is an algorithm
combining random undersampling, and RUSBoost is especially
for unbalanced datasets (41–43).

The complete training and validation analysis was implemented
via MATLAB software (R2020a, Natick, MA, USA). The auxiliary
debugging tools were also developed for recording the
performance during model training in this environment.

Assessment Method
A standard validation method was essential to evaluate the
performance of each model. In this study, a 10-fold cross-
validation method was used to assess the robustness of each
model. The dataset was randomly divided into 10 equal-sized
subsets, and the cross-validation process was repeated 10 times.
Each time, one of the 10 subsets was used as the validation set for
testing the model, and the remaining nine subsets were put
together to form a training data set. Finally, 10 results of
experiments were averaged to produce a single estimation for
each model.
FIGURE 2 | Correlation matrix of 31 features. The redder grids indicate higher positive correlation values of feature pairs, the bluer ones indicate higher negative
correlation values, and the white ones indicate no correlation.
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The performance of the models was evaluated in terms of
common standard machine learning evaluation metrics (44).
These metrics were computed based on the values of true
negatives (TN), true positives (TP), false positives (FP), and
false negatives (FN) as detailed below.

Accuracy =
TP + TN

TP + FP + TN + FN

Recall =
TP

TP + FN

Specificity =
TN

TN + FP

Precision PPVð Þ = TP
TP + FP

NPV =
TN

TN + FN

MCC =
TP ∗TN − FP ∗ FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FPð Þ ∗ TN + FNð Þ ∗ TP + FNð Þ ∗ TN + FPð Þp

F1 score = 2 ∗
Precision ∗Recall
Precision + Recall

In addition, confusion matrix plots can help to understand
how the currently selected model performed in each class and
identify the areas where the model performed poorly (45). The
area under the receiver operating characteristic curve (AUC-
ROC) (46), which also represents the overall performance of
model and prediction, has the value ranging from 0 to 1, where 1
represents the best performance and 0 is the worst performance,
and AUC = 0.5 means random classification.
RESULTS

Study Population
A total number of 57,558 NC-IVF cycles (samples) were selected
in the HFEA dataset from 2005 to 2016. A total of 12,340 cycles
resulted in positive live births, while 45,218 cycles resulted in
negative live births. Among the 12,340 positive-live-birth cycles,
5,570 received IVF, accounting for 45.14%, and 6,770 received
ICSI, accounting for 54.86%. By comparison, among the 45,218
negative-live-birth cycles, 21,539 received IVF, accounting for
47.63%, and 23,679 received ICSI, accounting for 52.37%. The age
distribution of all patients undergoing NC-IVF is as follows: 18-
to 34-year-old patients accounted for the largest proportion,
reaching 42.79%; it is followed by 35- to 37-year-old patients,
accounting for 24.84%; and the least was 45- to 50-year-old
patients, accounting for 1.24%. In the “Type of infertility”
category, “Couple primary” accounted for the largest
proportion, reaching 34.11%, while “Couple secondary” had the
least proportion, reaching 11.08%. In the category of “Cause of
Frontiers in Endocrinology | www.frontiersin.org 6
infertility,” the top five were “Male factor” (38.09%), “Patient
unexplained” (26.28%), “Tubal disease” (18.85%), “Ovulatory
disorder” (14.47%), and “Endometriosis” (5.80%). More detailed
statistics are listed in Table 2.

Model Assessment and Comparison
The evaluation metrics of all models were compared in terms of
accuracy, recall, specificity, precision, negative predictive value
(NPV), Matthews correlation coefficient (MCC), and F1 score as
listed in Table 3. Among the six machine learning models, ANN,
LR, and LD models achieved the best F1 scores (70.87%, 70.82%,
and 70.68%, respectively). As shown in Figure 3, ANN, LR, and
LD models also obtained the best AUC scores (0.7939, 0.7911,
and 0.7910, respectively). Although the scores of the three
models were very close, obviously, the ANN model performed
the best in terms of metrics.

Among the six ensemble learning models, the performance
differences were slight except for the BT model. GentleBoost,
LogitBoost, and RSMmodels achieved the best F1 scores (70.62%,
70.57%, and 70.54%, respectively) as listed in Table 3 and the best
AUC scores (0.7839, 0.7907, and 0.7892, respectively) as shown in
Figure 4. Moreover, LogitBoost obtained another best score, i.e.,
MCC (50.75%), which is defined as a comprehensive indicator
like the F1 score. In summary, the LogitBoost model was
considered the best performer after comparison with other
ensemble learning models.

A comprehensive comparison of all models is shown in
Figure 5. The ROC curve of the ANN model covered the
largest area among the six machine learning models in
Figure 5A, while the ROC curve of the LogitBoost model
covered the largest area among the six ensemble learning
models in Figure 5B. The comparison of ROC curves between
the ANN model and the LogitBoost model in Figure 5C implied
that the performance difference might be very small, and the
stacking effect of all metrics could also illustrate this point as
shown in Figure 5D.

ANN and LogitBoost are two completely different algorithm
models. In this study, we found that the two models achieved
almost indistinguishable performance. In other words, the two
models had almost the same prediction abilities under this
specific dataset. Finally, we also included the training time in
the performance evaluation. Under the specific computer
platform involved in this study, the training time of ANN was
about 89.804 s, while that of LogitBoost was about 11.193 s.
Obviously, the training efficiency of LogitBoost is higher than
ANN, so the LogitBoost model would be considered the optimal
model and software would be designed for actual prediction.
DISCUSSION

Machine learning has become a new discipline, which integrates
the application of psychology, biology, neurophysiology,
mathematics, automation science, and computer science to
form the theoretical basis of machine learning. Currently,
machine learning has rapidly demonstrated its ability to predict
April 2022 | Volume 13 | Article 838087
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human fertility (47). So far, the main studies using machine
learning models to predict better IVF outcomes are as follows: і) a
deep convolutional neural network (CNN) model was trained to
assess an embryo’s implantation potential (48). ii) AI technology
based on determinant-weighting analysis could offer an
Frontiers in Endocrinology | www.frontiersin.org 7
individualized embryo selection strategy for any given patient
and predict clinical pregnancy rate and twin risk (49). iii) A
machine learning algorithm could use clinical parameters and
markers of capacitation to predict successful fertilization in
normospermic men undergoing IVF (50). iv) A random forest
TABLE 3 | Evaluation metrics of all models.

Model Accuracy Recall Specificity Precision NPV MCC F1

Machine learning models
DT 74.19 61.90 86.47 82.06 69.42 49.90 70.57
LD 74.44 61.62 87.26 82.87 69.45 50.57 70.68
LR 74.34 62.27 86.42 82.10 69.59 50.17 70.82
NB 57.14 15.57 98.72 92.40 53.90 25.72 26.65
Linear SVM 74.38 60.72 88.04 83.54 69.15 50.69 70.33
ANN 74.42 62.24 86.61 82.30 69.64 50.37 70.87
Ensemble learning models
BT 67.78 72.88 62.69 66.14 69.80 35.75 69.34
AdaBoost 74.37 61.33 87.41 82.97 69.33 50.49 70.53
GentleBoost 73.85 62.87 84.82 80.55 69.55 48.88 70.62
LogitBoost 74.47 61.22 87.72 83.29 69.34 50.75 70.57
RUSBoost 74.33 61.22 87.44 82.98 69.28 50.43 70.46
RSM 74.41 61.28 87.54 83.11 69.33 50.60 70.54
April 2022 | Vo
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The values in the table represent percentages.
NPV, negative predictive value; MCC, Matthews correlation coefficient; DT, decision tree; LD, linear discriminant; LR, logistic regression; NB, naive Bayes; SVM, support vector machine;
ANN, artificial neural network; BT, bagged tree; RSM, random subspace method.
TABLE 2 | Baseline characteristics of NC-IVF cycles.

Characteristic NC-IVF cycles 2005–2016 (n = 57,558)

Positive live birth (n = 12,340) Negative live birth (n = 45,218)

n % n %

Patient age at treatment (year)
18–34 6,222 50.42 18,409 4.09
35–37 3,211 26.02 11,089 24.52
38–39 1,642 13.31 6,824 15.09
40–42 1,060 8.59 6,478 14.33
43–44 163 1.32 1,747 3.86
45–50 42 0.34 671 1.48

Type of infertility
Female primary 3,186 25.82 13,642 30.17
Female secondary 1,667 13.51 7,597 16.80
Male primary 3,171 25.70 13,515 29.89
Male secondary 1,655 13.41 7,608 16.83
Couple primary 3,678 29.81 15,867 35.09
Couple secondary 1,151 9.33 5,227 11.56

Cause of infertility
Tubal disease 2,029 16.44 8,818 19.50
Ovulatory disorder 1,844 14.94 6,484 14.34
Male factor 4,916 39.84 17,007 37.61
Patient unexplained 3,191 25.86 11,933 26.39
Endometriosis 725 5.88 2,614 5.78
Cervical factors 6 0.05 27 0.06
Partner sperm concentration 47 0.38 235 0.52
Partner sperm morphology 40 0.32 144 0.32
Partner sperm motility 23 0.19 116 0.37
Partner sperm
Immunological factors

2 0.02 5 0.01

Specific treatment type
IVF 5,570 45.14 21,539 47.63
ICSI 6,770 54.86 23,679 52.37
IVF, in vitro fertilization; ICSI, intracytoplasmic sperm injection.
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(RF) model was built to predict the implantation potential of a
transferred embryo (51). Moreover, the relevant studies using the
HFEA dataset for analysis and prediction are as follows: і) a
logistic model was fitted to predict the live-birth rate following
IVF based on the number of eggs and the age of the female using
HFEA data (52). ii) Two clinical prediction models were
developed to estimate the individualized cumulative chance of a
first live birth over a maximum of six complete cycles of IVF using
HFEA data (53). iii) Three clinical models were used to assess live
birth and perinatal outcomes with the HFEA database (54).

Whether using AI prediction models or clinical prediction
models and whether based on small samples from single-center
or big data from expert organizations like HFEA, current studies
focused on the associations between IVF outcome and embryo
morphology, embryo quality, embryo freezing, etc. The
connection between IVF outcome and a different ovarian
stimulation was rarely reported. In fact, a different ovarian
stimulation directly determines the number of eggs obtained
and the egg quality, which are directly related to the embryo
quality, and embryo quality is the key factor affecting IVF
outcome. Before an actual IVF treatment, what kind of ovarian
Frontiers in Endocrinology | www.frontiersin.org 8
stimulation is the first choice that the patients need to face. Due
to a lack of expertise in patients, the use of ovarian stimulation is
mainly based on the recommendation and judgment of
clinicians. But even experienced clinicians can hardly
guarantee which kind of ovarian stimulation results in a better
outcome. IVF technology has only been developed for decades.
The long-term potential impact of “stimulation used” on
offspring is currently unknown. Today, more and more people
are calling for “back to nature,” to simulate the conception
process in the natural state as much as possible. It seems to be
of great value to predict the outcome of such a natural process.

We creatively incorporated the ovarian stimulation scheme
into the basic conditions of big data filtering and research. After
selecting the NC-IVF records from the HFEA dataset, which is
one of the largest IVF datasets in the world, we built a live-birth
prediction model and provided greater precision than previous
individual studies. To our knowledge, the dataset in this study is
the largest one focusing on NC-IVF by now. The prediction
model is universal and stable, which can help clinicians predict
the live-birth success rate of NC-IVF in advance before
developing IVF treatment strategies and then choose the best
A B

D E F

C

FIGURE 3 | The ROC curves and AUC scores of six machine learning models. (A) The ROC curve and AUC score of the DT model: the deep purple curve refers to
the ROC curve, the area under the curve is covered by light purple color, the orange dot represents the threshold that corresponds to the optimal operating point,
and the AUC score is clearly marked. (B–F) The ROC curve and AUC score of LD, LR, NB, Linear SVM, and ANN, respectively. ROC, receiver operating
characteristic; AUC, area under the receiver operating characteristic curve; DT, decision tree; LD, linear discriminant; LR, logistic regression; NB, naive Bayes; ANN,
artificial neural network.
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benefit treatment strategy according to the patients’ wishes. If the
success rate is high, the patients will be recommended to enter an
NC-IVF cycle. Otherwise, a SIVF cycle can be considered to
generate many follicles to improve chances for conception and
pregnancy (7).

The limitations of this study include the live-birth occurrence
prediction for cumulative NC-IVF cycles not being studied. As
the HFEA data were anonymized cycle-based records rather than
patient-based, we were unable to identify patients who had
undergone more than one cycle in the dataset. Furthermore,
some features, e.g., smoking, body mass index (BMI), the
number of good-quality embryos, the total dose of
gonadotropins, and the methods of freezing or thawing
embryos, have been reported and confirmed to be related to
the IVF outcome. As the HFEA data did not include these
records, our study was not comprehensive enough. Besides, the
HFEA data only represent the anonymized patients from the
United Kingdom. If possible, in the future, we will include
anonymized data from more institutions, regions, and even
more races. This study only focused on NC-IVF cycles. In the
next step, the study of SIVF will also be considered to provide a
more comprehensive prediction method.
Frontiers in Endocrinology | www.frontiersin.org 9
In conclusion, previous studies on live-birth prediction of
NC-IVF were very few, the sample size was very limited, and
most of the studies were based on women under unfavorable
conditions, which might lead to low reliability of results. In this
study, NC-IVF-related datasets were extracted from the HFEA
data, and a machine learning-based prediction model was
successfully constructed through this largest NC-IVF dataset
currently. A total of twelve machine learning models were
trained, and the best one was selected to predict the live birth.
This model is universal and stable, which can help clinicians
predict the live-birth success rate of NC-IVF in advance before
developing IVF treatment strategies and then choose the best
benefit treatment strategy according to the patients’ wishes. We
hope that similar models should be promoted so that the IVF
treatment can “use less stimulation and back to natural
condition,” for the purpose of reducing the burdens and risks
of patients and reducing the potential risks of offspring due to
stimulation as much as possible.

An application software based on the prediction model will be
developed. Once the patient’s data (features) are entered into the
software, a prediction result (positive or negative, and
probability) will be displayed. Combined with the experience
A B

D E F

C

FIGURE 4 | The ROC curves and AUC scores of six ensemble learning models. (A) The ROC curve and AUC score of BT model: the deep purple curve refers to
the ROC curve, the area under the curve is covered by light purple color, the orange dot represents the threshold that corresponds to the optimal operating point,
and the AUC score is clearly marked. (B–F) The ROC curve and AUC score of AdaBoost, GentleBoost, LogitBoost, RUSBoost, and RSM, respectively. ROC, receiver
operating characteristic; AUC, area under the receiver operating characteristic curve; BT, bagged tree; RSM, random subspace method.
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of clinicians, it can obviously assist in decision-making.
Therefore, this is the basic idea of an intelligent decision
support system. Moreover, with the continuous expansion of
the dataset, for example, more cycle records are obtained from
the HFEA, the model will be updated to achieve higher accuracy.
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