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neutralization activity against K417 spike 
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Abstract 

Background:  Neutralizing antibodies are approved drugs to treat coronavirus disease-2019 (COVID-19) patients, yet 
mutations in severe acute respiratory syndrome coronavirus (SARS-CoV-2) variants may reduce the antibody neutral‑
izing activity. New monoclonal antibodies (mAbs) and antibody remolding strategies are recalled in the battle with 
COVID-19 epidemic.

Results:  We identified multiple mAbs from antibody phage display library made from COVID-19 patients and further 
characterized the R3P1-E4 clone, which effectively suppressed SARS-CoV-2 infection and rescued the lethal pheno‑
type in mice infected with SARS-CoV-2. Crystal structural analysis not only explained why R3P1-E4 had selectively 
reduced binding and neutralizing activity to SARS-CoV-2 variants carrying K417 mutations, but also allowed us to 
engineer mutant antibodies with improved neutralizing activity against these variants. Thus, we screened out R3P1-E4 
mAb which inhibits SARS-CoV-2 and related mutations in vitro and in vivo. Antibody engineering improved neutral‑
izing activity of R3P1-E4 against K417 mutations.

Conclusion:  Our studies have outlined a strategy to identify and engineer neutralizing antibodies against SARS-
CoV-2 variants.
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Background
Coronavirus disease-2019 (COVID-19), caused by the 
emerging severe acute respiratory syndrome coronavi-
rus (SARS-CoV-2), is a worldwide pandemic infectious 
disease. New SARS-CoV-2 variants raised concerns on 
viral escape from current antibody therapies and vac-
cine protection. Recently identified variants of SARS-
CoV-2 (B.1.1.7 in the United Kingdom, B.1.351 in South 
Africa, P.1 in Brazil and B.1.617 in India) not only rap-
idly displacing local SARS-CoV-2 strain, but also carry 
N-terminal domain (NTD) and receptor binding domain 
(RBD) mutations that are critical for interaction with 
neutralizing antibodies [1–4]. B.1.1.7, also known as 
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501Y.V1, is associated with mutations in its spike (S) pro-
tein, including ΔH69/V70 and ΔY144 in NTD, N501Y 
in RBD, and P681H near the furin cleavage site. B.1.351 
(also known as 501Y.V2) and P.1 (also known as 501Y.
V3) each have three mutations in common with the RBD 
(K417N/T, E484K and N501Y) and various mutations 
in the NTD domain, such as L18F, D80A and D215G in 
B.1.351 and L18F, T20N, P26S, D138Y, and R190S in P.1. 
Besides N501Y mutation shared with B.1.1.7, B.1.351 
and P.1, B.1.617 is associated with unique L452R, E484Q 
and A570D mutations in the RBD domain [5–7]. All the 
above four prevalent variants share D614G mutation, a 
variant with a single substitute rapidly became the domi-
nant strain in the world and further evolved to given 
several variants of concern (VOCs) [8–10]. All these 
mutations show varying impact on antibody therapies 
and vaccine protection [11–15].

Passive antibodies administered are one of the most 
promising therapeutic and prophylactic anti-SARS-
CoV-2 agents. To date, the most potent monoclonal 
antibodies (mAbs) isolated from infected and vacci-
nated individuals were often dominant by those target-
ing RBD while many isolated NTD mAbs failed to reach 
100% potency in neutralizing activity [16–20]. All mAbs 
authorized or in development are directed to the RBD, 
which interacts with the target receptor angiotensin con-
verting enzyme 2 (ACE2) [2, 21, 22]. Thus, mutations 
located within or nearby RBD domain will affect the con-
formation and affinity between RBD and ACE2, result-
ing in change of SARS-CoV-2 host-cell interaction and 
susceptibility to mAbs-mediated neutralization [7, 13, 
23]. These results suggest greater impact of SARS-CoV-2 
variants on RBD antibodies.

Recently, multiple reports indicate the impacts of SARS-
CoV-2 variants on mAbs. Most mAbs were disrupted by 
the K417N/T mutation and/or E484K mutation pos-
sessed by B.1.351 and P.1 variants within the RBD domain. 
B.1.351 and P.1 are reported to resistant to neutralization 
by many anti-RBD and anti-NTD antibodies, including 
CB6, REGN10933, Bamlanivimab and Casirivimab which 
are already approved for emergence use authorization 
(EUA) [14, 24, 25]. B.1.351 and B.1.1.7 variants are also 
observed to show decreased neutralizing activity on RBD 
mAbs from vaccine-elicited individuals and COVID-19 
convalescents [6, 26]. Antibody resistance of SARS-CoV-2 
variants highlighted the importance of understanding the 
mechanisms responsible for the escape of antibody neu-
tralization by different SARS-CoV-2 variants, and the 
urgent need for novel antibody development strategy to 
overcome the antibody resistance problem caused by the 
dominant mutations associated with SARS-CoV-2 VOCs.

In this work, we have identified multiple human 
mAbs through scFv phage display library derived from 

COVID-19 patients. We have further characterized one 
of them, R3P1-E4, and demonstrated its efficacy in sup-
pressing SARS-CoV-2 in cultured cells and in mice. Fur-
thermore, our crystal structural analysis on the R3P1-E4 
and RBD complex have not only explained the mecha-
nism responsible for the reduced neutralization activ-
ity of R3P1-E4 against B.1.351. and P.1 variants, but also 
engineered R3P1-E4 mutant antibodies with improved 
neutralization activity against these VOCs.

Results
Screening for antibodies that bind to SARS‑CoV‑2 S protein 
RBD domain
We firstly constructed and expressed the RBD domain 
of SARS-CoV-2 S protein, and verified the construction 
and expression of RBD domain by DNA electrophoresis 
and SDS-PAGE (Fig.  1A). ELISA assay confirmed that 
the RBD domain effectively binds with two previously 
published human mAbs specifically binding to the RBD 
domain of SARS-CoV-2 S protein: CB6 and REGN10933 
(Fig. 1B). Then, the expressed and purified RBD protein 
was used as bait to screen mAbs from scFv phage dis-
play library derived from COVID-19 patients’ peripheral 
blood mononuclear cells (PBMC) as described previously 
[27] (Fig. 1C). Through this scFv phage display technique, 
we have identified six human mAbs, R3P1-A12, R3P2-
A2, R3P1-E4, R3P2-B5, R3P1-B6 and R3P2-G1, which 
were subsequently cloned into human IgG backbone, 
expressed in Chinese hamster ovary (CHO)  cells and 
purified. The binding of these mAbs with RBD protein 
were verified by ELISA with two known SARS-CoV-2 
neutralizing antibodies, S309 and CR3022, as posi-
tive controls (Fig.  1D). The results showed that the six 
mAbs bound well with the RBD protein, all of which had 
similar affinities as S309 and CR3022. We have further 
conducted the surface plasmon resonance (SPR) assay 
and found that the binding affinities of R3P1-B6, R3P2-
A2 and R3P1-E4 with RBD were 4.06, 2.32 and 0.82 nM, 
which were similar to 1.99 nM affinity for the S309 anti-
body (Fig.  1E, F). These results indicate that we have 
identified six human mAbs with high binding affinity to 
the RBD domain of SARS-CoV-2 S protein from the scFv 
phage display library generated from COVID-19 patients.

Sequencing and functional characterization 
of anti‑SARS‑CoV‑2 RBD mAbs
We sequenced the scFv regions of the above six human 
mAbs and found in surprise that the R3P1-A12, R3P2-
A2, R3P1-E4, R3P2-B5, R3P1-B6 and R3P2-G1 mAbs all 
shared almost identical heavy chain sequences except 
one amino acid variations. This heavy chain contained 
the immunoglobulin heavy variable 3–53 (IGHV3-53) 
segment of the human immunoglobulin gene (Fig. 2A, B). 
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Interestingly, several previously reported mAbs including 
P4A1, CC12.1, CC12.3 and B38, which all known bind to 
the receptor binding motif (RBM) region of SARS-CoV-2, 
also shared the same IGHV3-53 gene segment (Addi-
tional file 1: Fig. S1), suggesting this IGHV gene segment 
was selected in COVID-19 patients. Although the heavy 

and light chains were randomly paired in the phage dis-
play library, IGKV3-20 were selected for R3P1-A12, 
R3P2-A2, R3P2-B5 and R3P1-B6 mAbs, while IGKV1-9 
and IGLV3-21 were selected for R3P1-E4 and R3P2-
G1, respectively (Fig.  2A, B). Interestingly, both P4A1 
and CC12.3 mAbs used IGKV3-20 and CC12.1 and B38 
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used IGKV1-9 (Additional file 1: Fig. S1), suggesting that 
these light chain fragments were selected in COVID-19 
patients.

To test the potential anti-viral function of the six mAbs 
on SARS-CoV-2, we first measured their abilities to neu-
tralize the binding between RBD and hACE2. As the 
increasing concentrations of these six mAbs added, the 
binding activities between RBD and hACE2 were gradu-
ally decreased (Fig.  2C), suggesting that the six mAbs 
possessed the abilities to compete with hACE2 on RBD 
binding. We also performed antibody neutralization 
assay with SARS-CoV-2 pseudovirus, which was engi-
neered HIV-based pseudoviruses with full length S protein 

expressed on the surface of viral particles. The results 
showed that all the six mAbs effectively suppressed SARS-
CoV-2 pseudovirus (Fig.  2D). In order to measure the 
efficacy of individual mAbs in inhibiting the replication 
of authentic SARS-CoV-2, we pre-incubated live SARS-
CoV-2 viruses with six different concentrations of the six 
mAbs ranging from 0.1 to 1000  ng/ml before infecting 
vero cells and measured the levels of viral genome RNA 
at 24 h post infection. The results showed that all the six 
mAbs inhibited SARS-CoV-2 authentic virus, and R3P1-
E4 showed the smallest IC50 values among these six mAbs 
(Fig. 2E). These results suggest that R3P1-E4 is a potential 
effective antibody for SARS-CoV-2 suppression.
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R3P1‑E4 suppresses SARS‑CoV‑2 infection in vivo
Furthermore, we assayed the in  vivo anti-viral effect 
of the R3P1-E4 antibody in a mouse model based on 
a SARS-CoV-2 strain MASCp36 [28]. Upon intranasal 
infection with 30 PFU of MASCp36, all mice treated 
with IgG control showed robust viral replication in 
the lung and trachea at 3  days post infection (dpi), 
however intraperitoneal administration with 25  mg/
kg R3P1-E4 antibody significantly reduced viral RNA 
loads in both lung and trachea (Fig. 3A, B). The RNA 
scope and H&E staining assay further showed the 
strong inhibition of R3P1-E4 antibody on viral RNA 
deposited in the lung tissues of infected mice (Fig. 3C, 

D) related lung damage (Fig. 3E). In order to determine 
the efficacy of R3P1-E4 antibody on rescuing the lethal 
phenotype of SARS-CoV-2 infected mice, we infected 
mice with the lethal dose of MASCp36 and treated the 
infected mice with 25  mg/kg R3P1-E4 antibody and 
IgG control at 2  h and 24  h post infection (Fig.  3F). 
As shown in Fig.  3G, while about 40% infected mice 
treated with IgG dies around day 5 post infection, all 
the infected mice treated with R3P1-E4 antibody sur-
vived beyond two weeks. Taken together, these results 
demonstrated that R3P1-E4 antibody effectively sup-
pressed SARS-CoV-2 infection and replication in vitro 
and in vivo.
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R3P1‑E4 has variable binding and suppressing activity 
against different SARS‑CoV‑2 variants
The prevalence of SARS-CoV-2 variants arise new chal-
lenge of current neutralizing antibody development as 
some antibodies that effectively inhibited wild type (WT) 
SARS-CoV-2 partially or totally lost their ability to neu-
tralize SARS-CoV-2 variants. For example, regdan-
vimab (CT-P59) and, to a smaller extent, etesevimab, 
showed a reduction in neutralization potency against the 
B.1.472/B.1.429, whereas bamlanivimab (LY-CoV555) 
entirely lost its neutralizing activity to B.1.617 due to the 
central location of L452R in the epitopes recognized by 
this mAb. In our study, we firstly compared the binding 
of R3P1-E4, CB6, S309 and REGN10933 mAbs with RBD 
domains from different SARS-CoV-2 variants including 
B.1.1.7, B.1.351, P.1 and B.1.617. While R3P1-E4 bound 
to the RBD proteins of WT and all variants, the binding 
affinities to B.1.351 and P.1 were reduced (Fig.  4A, B). 
Interestingly, REGN10933 mAb also had similar reduced 
binding affinities to P.1 and B.1.351 as R3P1-E4. CB6 
showed no binding activities with RBD B.1.351 and P.1, 
whereas S309 bound to the RBD proteins of WT and all 
variants at similar affinities. Overall, although R3P1-E4, 
CB6, S309 and REGN10933 mAbs had similar high bind-
ing affinities to the RBD protein of WT SARS-CoV-2, 
but their binding affinities were differentially affected by 
mutations in B.1.1.7, B.1.351, P.1 and B.1.617 variants 
(Fig. 4A, B and Additional file 1: Fig. S2A). In addition to 
the binding affinities to the RBD proteins, we have also 
measured the neutralization activities against the infec-
tion of pseudoviruse containing the full-length S pro-
teins from WT, B.1.1.7, B.1.351, P.1 and B.1.617 strains. 
As shown in Fig.  4C, while R3P1-E4, CB6, S309 and 
REGN10933 mAbs were able to effectively neutralize the 
WT, B.1.1.7 and B.1.617 pseudoviruses, they all except 
S309 had significantly reduced their neutralization activi-
ties against B.1.351. Interestingly, although both R3P1-
E4 and REGN10933 have similar binding affinities to the 
RBD proteins from P.1, R3P1-E4 had strong neutraliza-
tion activity against but REGN10933 entirely lost its abil-
ity to neutralize the P.1 pseudovirus (Fig. 4C, Additional 
file 1: Fig. S2B).

R3P1‑E4 antibody binds to the RBD domain through sites 
overlapping with hACE2
To understand how mutations in different SARS-CoV-2 
variants affects the binding and neutralization activities 
of R3P1-E4, we thought to solve the co-crystal struc-
ture of the R3P1-E4 antibody and RBD protein com-
plex. Purified R3P1-E4 scFv protein and the RBD protein 
were mixed in 1.5:1 molar ratio and their complex was 
used to generate crystals. The crystal structure of this 
complex was solved at 2.9  Å with a final Rwork value of 

24.8% (Rfree = 27.4%) (Additional file  1: Table  S1). Both 
the heavy and light chains of R3P1-E4 bound to the 
RBD protein through the residues extensively over-
lapped with the binding sites for hACE2 (Fig. 5A, Addi-
tional file  1: Table  S2). The topology of the R3P1-E4 
antibody in its interaction with the RBD protein was 
similar as REGN10933, CB6 and B38 antibodies but dif-
ferent from other antibodies such as H014, CR3022 and 
REGN10987 (Fig.  5B, Additional file  1: Fig. S3A and 
Table  S3). Multiple heavy chain regions including G26-
Y33 of HCDR1, I51-T57 of HCDR2 and A96-V107 of 
HCDR2 and light chain regions including Q166-Y171 of 
LCDR1 and Q228-R235 of LCDR3 are involved in bind-
ing to K417-N487, T415-Y473, R403-Q493, Q493-Y505 
and K417-Y505 in the RBD protein, respectively (Fig. 5C, 
Additional file 1: Fig. S3B). These interaction regions cov-
ered all the RBM of SARS-CoV-2 S protein, which is criti-
cal for binding to hACE2 during viral entry. Thus, our 
structural studies suggested that the R3P1-E4 antibody 
may neutralize SARS-CoV-2 infection through blocking 
RBM-mediated binding to hACE2. In addition, our struc-
tural studies also identified numerous critical amino acid 
residues involved in interactions between R3P1-E4 anti-
body and RBD including the proximal contacts of Y33, 
Y52, S100H, E101 of heavy chain and N231 of light chain 
with K417 of RBD (Fig. 5C, Additional file 1: Table S2), 
which may explain why the R3P1-E4 mAb had weaker 
binding affinity to the RBD proteins from B.1.351 and 
P.1 strains of SARS-CoV-2 as they contain K417N and 
K417T mutations, respectively, as compared to that from 
the WT strain of SARS-CoV-2.

Improve R3P1‑E4 binding and neutralizing activity 
through antibody engineering
In order to compensate the binding energy loss upon 
K417N and K417T mutations, we constructed a com-
putational pipe line to screen R3P1-E4 mutants against 
B.1.351 and P.1 strains of SARS-CoV-2. Briefly, the com-
plementarity determining regions (CDRs) of R3P1-E4 
were selected to perform virtual mutations at each posi-
tion (see “Methods” section) [29, 30]. Then the massive 
mutants were evaluated by a well-established protein 
energy scoring function EvoEF2 [31]. The top ranking 
50 mutants for both scoring functions were manually 
inspected to select four mutations (E101Q, S232Y and 
D98L) for further validation. Our results predicted that 
the E101Q mutation in the R3P1-E4 heavy chain might 
increase the binding affinities to the RBD proteins of 
B.1.351 and P.1 (Fig.  6A). We subsequently generated 
the E101Q mutation and purified the mutant R3P1-E4 
mAb. Our pseudovirus neutralizing assay showed that 
the E101Q mutation enhanced the ability of R3P1-E4 
mAb to neutralize B.1.1.7, B.1.351, and P.1 pseudoviruses 
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Fig. 4  R3P1-E4 suppresses SARS-CoV-2 variants. A Sketch map of SARS-CoV-2 pseudoviruses construction. B Antibody competition assay were 
performed to test the abilities of R3P1-E4, CB6, REGN10933 and S309 mAbs to competitively bind with RBD variant proteins against hACE2. C The 
abilities of R3P1-E4, CB6, REGN10933 and S309 mAbs to neutralize SARS-CoV-2 pseudovirus were examined by pseudovirus neutralization assay



Page 8 of 15Li et al. Cell & Bioscience           (2022) 12:63 

(Fig.  6B). Meanwhile, based on the structural analysis 
of R3P-E4 and RBD, we predicted and generated other 
R3P1-E4  mutant mAbs and tested the pseudovirus 

neutralizing effect of these mAbs on SARS-CoV-2 vari-
ants. The results showed that among different mutant 
R3P1-E4 mAbs, the E101Q and D98L mutant was the 

Fig. 5  Structural analysis of R3P1-E4 and SARS-CoV-2 RBD complex. A The overall complex structure of R3P1-E4-RBD superimposed with the 
hACE2-RBD complex. The R3P1-E4 heavy chain (colored cyan), light chain (colored violet) and hACE2 (colored pale green) are displayed in cartoon 
representation. The SARS-CoV-2 RBD is colored in gray and displayed in surface representation. B The epitope recognized by R3P1-E4 is shown 
in surface representation. The CDR loops of heavy chain (HCDR) and light chain (LCDR) are colored in green cyan and salmon, respectively. The 
epitopes from the heavy chain and light chain are colored in cyan and violet, respectively. The residues of R403, K417 and R493, which contacts with 
both heavy chain and light chain, is colored in light blue. The identical residues from RBD participating in the binding of R3P1-E4 and hACE2 are 
labeled in red. These residues are numbered according to SARS-CoV-2 RBD. C The detailed interactions between SARS-CoV-2 RBD with HCDRs and 
LCDRs. The residues are shown in sticks with identical colors to (B)
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best to neutralize B.1.1.7 variant whereas the E101Q 
and S232Y mutant was the best to neutralize P.1 variant 
(Fig.  6A, C), suggesting the potential of R3P1-E4 mAb 
remolding to neutralize multiple SARS-CoV-2 variants. 
Our studies therefore suggested the possible ways to 
improve the efficacy of R3P1-E4 mAb against different 
mutant strains of SRAS-CoV-2 viruses through antibody 
engineering.

Discussion
Continuously emerging new SARS-CoV-2 variants not 
only increase the viral transmission but can also escape 
immune protection by the current vaccines. Although 
therapeutic antibodies are available to treat COVID-
19 patients, they have reduced neutralization activities 
against the recently evolved SARS-CoV-2 VOCs [32, 

33]. Developing strategies to overcome the antibody 
resistance by emerging VOCs are important to solve the 
COVID-19 pandemic problems. In this report, we have 
isolated multiple monoclonal neutralizing Abs from 
COVID-19 patients with high binding activity to the RBD 
of SARS-CoV-2 and neutralization activity against SARS-
CoV-2 infection (Fig.  2C–E). Among these mAbs, we 
have demonstrated the strong efficacy of R3P1-E4 anti-
body in suppressing SARS-CoV-2 infection in mice and 
rescue its associated lethal phenotype (Fig. 3). Based on 
the crystal structural analysis, we have identified critical 
interactions between the R3P1-E4 antibody and the RBD 
of SARS-CoV-2, which enable to explain K417T/N muta-
tions in certain VOCs are resistant to mAbs and come 
up with strategy to overcome the resistance by antibody 
engineering.
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We have used the phage display method to iso-
late human mAbs binding to the RBD of SRAS-CoV-2 
directly from COVID-19 patients. This method involved 
in randomly constructing together with a linker one 
heavy and one light scFv PCR fragments from COVID-
19 patients’ PBMC and expressing them on the phage 
surface (Fig.  1C). Through purification with the SARS-
CoV-2 RBD, we have identified six mAbs with high bind-
ing affinity to RBD. Interestingly, all the six mAbs shared 
the same heavy chain derived from the IGHV3-53 seg-
ment with several different light chains from IGKV3-20, 
IGKV1-9 and IGLV3-21 segments of the human immu-
noglobulin gene locus. Although the mAbs obtained 
by this phage display method might not reflect the 
nature pairs of heavy and light chains in antigen spe-
cific B cells, several previously reported mAbs includ-
ing P4A1, CC12.1, CC12.3 and B38 also contained the 
same IGHV3-53 segment paired with either IGKV3-20, 
IGKV1-9 or IGLV3-21 segments, suggesting these heavy 
and light chain segments are frequently used in COVID-
19 patients in response to SARS-CoV-2 infection [3, 34, 
35]. We have further shown with the RBD, pseudovirus 
and authentic SARS-CoV-2 neutralization assays that all 
our six mAbs had strong efficacy to neutralize the RBD-
ACE2 interaction and SARS-CoV-2 infection (Fig. 2C–E). 
More importantly, we have demonstrated that adminis-
tration one of these mAbs R3P1-E4 effectively suppressed 
viral replication and inflammatory response in lung and 
trachea tissues as well as rescued the lethal challenged 
in mice infected with a mouse adoptive strain of SARS-
CoV-2 (Fig. 3).

Among numerous SARS-CoV-2 VOCs, B.1.351 and P.1 
variants are most resistance to antibody neutralization 
[36]. In addition to the E484K mutation, which has been 
shown to be responsible for the resistance of many iso-
lated mAbs [37], our studies have suggested that K417N 
mutation in B.1.351 variant and K417T mutation in P.1 
variant are mainly responsible for the decreased neu-
tralization activities of our mAbs and other previously 
reported mAbs such as CB6 and REGN10933 [38, 39]. 
Our crystal structural analysis on the R3P1-E4 scFv and 
RBD protein complex showed that both the heavy and 
light chain of R3P1-E4 directly interacted with the RBM 
of SARS-CoV-2 S protein through the residues exten-
sively overlapped with the binding sites for hACE2, 
suggesting R3P1-E4 neutralizes SARS-CoV-2 infection 
through competition with hACE2 binding to RBM of 
the SARS-CoV-2 S protein. Furthermore, we found close 
contact interactions of K417 of RBD with multiple resi-
dues of R3P1-E4 antibody including the Y33, Y52, S100 
and E101 of heavy chain and N231 of light chain. These 
interactions may explain why B.1.351 and P.1 variants, 
which respectively carry K417N and K417T mutations, 

were selectively more resistant to R3P1-E4 antibody 
as compared to WT, B.1.1.7 and B.1.617 strains. More 
importantly, by introducing E101Q mutation in the heavy 
chain, we found the engineered R3P1-E4 antibody had 
improved binding and neutralization activity to both 
B.1.351 and P.1 variants.

COVID-19 pandemic continues to challenge the world 
as numerous new variants of SARS-CoV-2 evolve. Many 
VOCs not only are more infectious but also gain the 
ability to escape from antibody protection. Our studies 
together with many others have provided evidence on 
why certain critical mutations such as E484K, K417N 
and K417T in the VOCs enable SARS-CoV-2 more likely 
to break through current vaccines and to become more 
resistant to antibody treatment. We have also explored 
the possibility to enhance the binding and neutraliza-
tion activity of mAbs against VOCs by structure based 
antibody engineering. Further studies are necessary 
to determine if vaccination with RBD carrying these 
critical antibody escaping mutations or treatment with 
engineered antibodies would significantly improve the 
protection and therapy of COVID-19 associated with 
VOCs.

Methods
Viruses, cells and antibodies
SARS-CoV-2 original strain (Txid: 2697049) and mouse 
adapted strain, MASCp36, were used in this study [28]. 
WT and variant SARS-CoV-2 pseudovirus with lucif-
erase coding sequence were constructed in our lab. 
hACE2 stable expressing HEK293T (hACE2-293T) cell 
line was established by infected with lentivirus contain-
ing hACE2 coding sequence and selected by FACS gat-
ing on GFP positive cells. HEK293T and Huh7.5 cell lines 
were purchased from American Type Culture Collection 
and cultured in Dulbecco’s modified Eagle’s medium 
(DMEM) (37  °C, 5% CO2) supplemented with 10% fetal 
bovine serum (FBS), 100 U/mL penicillin, and 50 μg/mL 
streptomycin. For Huh7.5 cell line, additional 1 × MEM 
non-essential Amino Acids (MEM NEAA, Gibco) 
was supplemented. CB6, REGN10933 and S309 mAbs 
were expressed and purified by AtaGenix Laboratories 
(Wuhan) Co., Ltd.

Mouse experiments and ethics statement
Balb/c mice were purchased from the Vital River Labora-
tory and experimental involving infectious SARS-CoV-2 
were performed in biosafety level-3 (BSL-3) facilities. 
The in  vivo SARS-CoV-2 inhibition efficacy of R3P1-E4 
was assessed using two well-established SARS-CoV-2 
infection mouse models. Firstly, we tested the protection 
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efficacy of R3P1-E4 in mouse model based on a SARS-
CoV-2 mouse adapted strain MASCp36 [28]. Briefly, a 
group of 8-month-old male Balb/c mice were intraperi-
toneally administrated with R3P1-E4 (25  mg/kg) (n = 5 
mice) or IgG control (n = 5 mice) before and after chal-
lenge with 30 PFU of MASCp36 via intranasal route. All 
mice were monitored daily for morbidity and mortality. 
The lung and trachea tissues of mice were collected at 
3dpi for viral RNA loads assay, the lung tissues were also 
tested by RNA in situ hybridization (ISH) assay and H&E 
staining.

Then, we tested the therapeutic efficacy of R3P1-
E4 in a newly established mouse model based on the 
SARS-CoV-2 mouse lethal strain MASCp36. Briefly, 
the 8-month-old male BALB/c mice were intravenous 
administrated with R3P1-E4 (25 mg/kg) at 1 h and 24 h 
after challenge with 600 PFU of MASCp36 via intranasal 
route. All mice were monitored daily for morbidity and 
mortality until 14 dpi.

SARS‑CoV‑2 neutralization assay
The SARS-CoV-2 pseudovirus and authentic virus neu-
tralization ability of mAbs were determined in hACE2-
293T cells via luciferase reporter or quantitative reverse 
transcription-PCR (qRT-PCR) assay. Briefly, serial 
diluted mAbs were mixed with SARS-CoV-2 pseudovi-
rus or authentic virus and incubated at 37  °C for 2  h. 
The mixture was added to hACE2-293T cells and the 
cells were subsequently incubated for 24  h. Then, lucif-
erase reporter assay was performed to determine the 
SARS-CoV-2 pseudovirus quantity, and qRT-PCR assay 
of culture supernatants were performed to determine the 
genome copies of SARS-CoV-2 authentic virus.

COVID‑19 scFv phage display library construction, 
biopanning and scFv purification
The method of COVID-19 patients’ scFv phage display 
library construction, biopanning and scFv purification 
was described in our previous work [27]. Briefly, the VH 
and VL gene fragments were PCR amplified using the 
mixed cDNA from 15 COVID-19 patients’ PBMC as 
template. The amplified gene fragments were ligated into 
the pATA-scFv-2 vector which including the M13 Gene 
III, scFv linker (GGGGSGGGGSGGGGSGGGGAS), 
multiple restriction sites, Lac promoter, Lac operator and 
pel B signal peptide. The ligated DNA mixture was elec-
troporated into E.coli TG1 cells. Transformed TG1 clones 
were collected and used to amplify the library phages. 
The measured capacity of COVID-19-pATA-scFv phage 
display library is 8.7 × 109  CFU. Specific phages against 
RBD protein from COVID-19-pATA-scFv phage display 
library were affinity-enriched by 4 rounds biopanning 

and unique positive antibodies were obtained by vali-
dated ELISA and sequencing analysis.

Transformed TG1 cells were cultured and the superna-
tant was got by ultracentrifugation, mixed with Ni-TED 
beads (Roche) and rocked at 4 °C for 30 min. Washed the 
beads with PBS and verified the purified protein by SDS-
PAGE. Cut the target scFv fraction and dialysis against 
PBS (pH = 7.4). Then, 1% (v/v) Triton X-114 were added 
to the protein sample. After 30 min stirring at 4  °C, the 
mixture was incubated at 37 °C water bath for 10 min and 
centrifuged (2000 g, 10 min) at 25  °C. The purified scFv 
was concentrated from the upper aqueous and stored at 
−20 °C.

Surface plasmon resonance assay
The binding of mAbs to RBD protein under laminar 
flow was analyzed by surface plasmon resonance (SPR) 
using a BIAcore T200 system (GE Healthcare). The sur-
face of a carboxymethylated dextran (CM5) sensor chip 
(GE Healthcare) was activated with 0.4  M 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide (ThermoFisher Sci-
entific) and 0.1 M N-hydroxysuccinimide (ThermoFisher 
Scientific). mAbs was immobilized by amine coupling 
to one flow cell. All free reactive surface groups were 
blocked using 1  M ethanolamine. Different concentra-
tions (0–64 nM) of RBD protein in HBS buffer contain-
ning 0.005% Tween-20 were injected over the flow cells 
at 30 μL/min (contact time, 2 min). After each injection, 
any bound protein was stripped with 10  mM glycine 
(15  s). Data analysis was performed using the BIAcore 
T200 evaluation software 3.1 (GE Healthcare). The KD 
values were calculated and additional lines parallel to the 
y-axis were added to the figures to mark the location of 
the KD value.

Enzyme linked immunosorbent assay
Firstly, the plates were coated with WT or mutant RBD 
proteins. After washing three times, the plates were 
blocked with 100 μL/well blocking solution at 37  °C for 
1  h. Then the plates were incubated with 100 μL/well 
indicated antibodies at 4  °C for overnight. After wash-
ing three times, the plates were incubated with 100 μL/
well HRP-anti-human IgG secondary antibody at 37  °C 
for 1 h. After washing five times, 100 μL/well TMB were 
added into the plates and incubated for 5–10  min with 
light protection. Then the reaction was terminated by 
adding 50 μL/well 2  M H2SO4. The absorbance of each 
well was measure at 450 nm with SpectraMax i3 (Molec-
ular Devices) plate reader.

Antibody competition with hACE2 receptor
The competitively binding affinity of antibodies to RBD 
protein was analyzed by ELISA kit (Genscript) according 
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to the manufacturer’s instruction. The antibody abilities 
to competitively binding with S against ACE2 was calcu-
lated using OD450 of experimental group/OD450 of back-
ground group.

Histopathological analysis
Mouse tissues were excised and fixed with 10% neutral 
buffered formalin, dehydrated and embedded in paraf-
fin. Embedded tissue was sectioned into 4 μm thickness 
longitudinal sections. Tissue section were stained with 
hematoxylin and eosin (H&E) according to standard pro-
cedures for examination by light microscopy. The lung 
damage under the light microscopy was assessed by the 
degeneration of alveolar epithelial cells, the expansion of 
parenchymal wall, edema, hemorrhage, and inflamma-
tory cells infiltration.

RNA ISH assay
SARS-CoV-2 genome RNA ISH assay was performed with 
RNAscope® 2.5 HD Reagent Kit (Advanced Cell Diagnos-
tics) according to the manufacturer’s instruction. Briefly, 
formalin-fixed and paraffin-embedded tissue sections 
of 5 μm were deparaffinized by incubation for 60 min at 
60 °C. Then, the tissue sections were treated with hydrogen 
peroxide at room temperature (RT) for 10 min to quench 
endogenous peroxidases. Tissue sections were then boiled 
for 15  min in RNAscope Target Retrieval Reagents and 
incubated for 30  min in RNAscope Protease Plus before 
probe hybridization. Tissue sections were counterstained 
with Gill’s hematoxylin and visualized with standard 
bright-field microscopy. Original magnification was 40× .

Quantitative reverse transcription‑PCR
SARS-CoV-2 viral RNA from cell supernatant was 
extracted using QIAamp Viral RNA Mini Kit (Qiagen, 
Cat No. 52904) and viral RNA from mouse tissue samples 
were extracted by using TRIzol reagent according to the 
manufacturer’s instruction. SARS-CoV-2 RNA copies in 
the samples were measured by qRT-PCR using One Step 
PrimeScript RT-PCR Kit (Takara, Japan). The primers and 
probe used in qRT-PCR assay were as follows: CoV-F3 (5′-
TCC​TGG​TGA​TTC​TTC​AGG​T-3′); CoV-R3 (5′-TCT​GAG​
AGA​GGG​TCA​AGT​GC-3′); and CoV-P3 (5′-FAM-AGC​
TGC​AGC​ACC​AGC​TGT​CCA-BHQ1-3′).

RBD protein expression and purification
The codon optimized cDNA of SARS-CoV-2 RBD (resi-
dues 335–530) was synthesized. The SARS-CoV-2 RBD 
with a C-terminal 8 × His tag for purification was cloned 
into pAcgp67 vector, and expressed using the Bac-to-Bac 
baculovirus system. The construction was transfected into 
DH5α component cells, and the extracted bacmid was 
then transfected into Sf9 cells using Cellfectin II Reagent 

(Invitrogen). Amplified the low-titer viruses to generate 
high-titer virus stock. The viruses and Endo H, Kifunen-
sine were co-infected Hi5 cells at a density of 2 × 106 cells/
mL. The supernatant of cell culture containing glycosylated 
RBD was harvested 72 h post infection, concentrated and 
RBD was captured by Ni–NTA resin (GE Healthcare). The 
resin was washed with 30 mL washing buffer (25 mM Tris, 
150 mM NaCl, 40 mM imidazole, pH = 7.5) for five times, 
the target protein was eluted with elution buffer (25 mM 
Tris, 150  mM NaCl, 500  mM imidazole, pH = 7.5). RBD 
protein was purified on a Superdex S75 (GE Healthcare) 
column, and the purity of the final purified recombinant 
protein was analyzed by SDS-PAGE gel. Fractions from the 
single major peak were pooled and concentrated to 15 mg/
mL.

Crystallization
The SARS-CoV-2 RBD protein and R3P1-E4 Fab frag-
ment were mixed at a molar ratio of 1.5:1. The mixture 
was incubated at 4  °C for 1  h, and purified by Superdex 
S75 (GE Healthcare). Then, 7 and 10 mg/mL of RBD/Fab 
proteins were used for crystal screening by vapor-diffusion 
sitting-drop method at 16  °C, including the Index, Crys-
tal Screen, PEG/Ion, SaltRX from Hampton Research, 
and wizard I-IV from Emerald BioSystems. The rode-like 
crystal appeared after 2 days at the mother liquid (20% w/v 
PEG3350, 0.2 M potassium citrate tribasic). Further opti-
mization was performed with additive and hanging-drop 
vapor-diffusion method, the final optimized diffraction 
crystals at the mother liquid by the hanging-drop vapor-
diffusions method. Crystals were dehydrated and cryo-
protected in 4 M Sodium formate solution and cooled in a 
dry nitrogen stream at 100 K for X-ray data collection.

X‑ray data collection, processing and structure 
determination
Diffraction data were collected at Shanghai Synchrotron 
Radiation Facility BL17U1 (wavelength, 0.979155  Å) at 
100  K. All data sets were processed using the HKL3000 
package [40]. Structures were constructed using PHASER 
with the SARS-CoV-2 RBD structure (PDB ID:6M0J) and 
the structure of the Fab fragment available in the PDB with 
the highest sequence identities by molecular replacement 
[2, 41]. The initial model was built into the modified exper-
imental electron density using COOT (Version 0.9.4) and 
further refined in PHENIX (Version 1.19) [42, 43]. Model 
geometry was verified using the program MolProbity. 
Structural figures were drawn using PyMOL (Version 1.8) 
(http://​www.​pymol.​org). Epitope and paratope residues, 
as well as their interactions, were identified by accessing 
PISA (http://​www.​ebi.​ac.​uk/​pdbe/​prot_​int/​pista​rt.​html) at 
the European Bioinformatics Institute.

http://www.pymol.org
http://www.ebi.ac.uk/pdbe/prot_int/pistart.html
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Antibody engineering
Antibody virtual mutations were performed over the 
CDRs regions of R3P1-E4, which were identified by an 
antibody numbering tool AbRSA [29]. Residues at the 
CDRs were enumerated to substitute with 19 types of 
amino acids in the virtual screening. For each mutant, the 
3D structures were constructed with a side-chain model-
ling method CIS-RR [30], and further optimized using 
energy minimization to remove the atomic clashes [44]. 
The predicted mutant structures complexed with RBD 
were then go through stability as well as affinity evaluation 
with a recent developed protein energy function EvoEF2. 
The mutants with increment in stabilities and affinities 
were reserved for intense investigation. They were ranked 
in terms of inter van der Waals, electrostatic  and desol-
vation energy. Moreover, the conformational variations 
between the original R3P1-E4 and the mutants were lim-
ited in 1.0  Å to avoid the computational errors. Finally, 
four mutants were selected for validation.

Statistics
Statistical analyses were performed with GraphPad 
Prism 8 software and R Studio version 3.6.3. The con-
tinuous variables were presented as mean ± SD. Data 
with normal distribution were analyzed by one-way 
ANOVA or unpaired two-tailed Student’s t tests, and P 
values were indicated by ns, not significant, ***P < 0.001 
and ****P < 0.0001.
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