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Abstract: Raw feed materials are often contaminated with mycotoxins, and co-occurrence of mycotox-
ins occurs frequently. A total of 250 samples i.e., rice bran and maize from Cambodia, Laos, Myanmar,
and Thailand were analysed using state-of-the-art liquid chromatography-mass spectrometry (LC-
MS/MS) for monitoring the occurrence of regulated, emerging, and masked mycotoxins. Seven
regulated mycotoxins – aflatoxins, ochratoxin A, fumonisin B1, deoxynivalenol, zearalenone, HT-2,
and T-2 toxin were detected as well as some emerging mycotoxins, such as beauvericin, enniatin
type B, stachybotrylactam, sterigmatocystin, and masked mycotoxins, specifically zearalenone-
14-glucoside, and zearalenone-16-glucoside. Aspergillus and Fusarium mycotoxins were the most
prevalent compounds identified, especially aflatoxins and fumonisin B1 in 100% and 95% of samples,
respectively. Of the emerging toxins, beauvericin and enniatin type B showed high occurrences,
with more than 90% of rice bran and maize contaminated, whereas zearalenone-14-glucoside and
zearalenone-16-glucoside were found in rice bran in the range of 56–60%. Regulated mycotoxins
(DON and ZEN) were the most frequent mycotoxin combination with emerging mycotoxins (BEA
and ENN type B) in rice bran and maize. This study indicates that mycotoxin occurrence and
co-occurrence are common in raw feed materials, and it is critical to monitor mycotoxin levels in
ASEAN’s feedstuffs so that mitigation strategies can be developed and implemented.

Keywords: multi-mycotoxin; contamination; survey; feed; LC-MS/MS; Southeast Asia

Key Contribution: This article gives the first broad insight into the current situation of regulated,
emerging, and masked mycotoxins in terms of the prevalence and co-contamination in feed ingre-
dients from Southeast Asia. The findings show that the occurrence of Aspergillus and Fusarium
mycotoxins is commonly found in feed samples.

1. Introduction

Animal feed is an important part of the food chains and shows an enormous role in
the safety and quality of animal by-products (meat products and dairy products) in the
food supply chain [1]. However, natural contamination of feed raw materials with fungal
pathogens, both before and after harvest, is a continuing and growing problem worldwide
as many of these fungal species produce toxic metabolites (known as mycotoxins) that can
profoundly affect animal health [2,3].
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Rice bran and maize are common feed ingredients used by ASEAN’s feed industry,
especially for poultry and swine. Proportions of 10–30% rice bran and 48–60% maize
are recommended for animal feed to guarantee suitable nutrient contents. Rice bran is
an abundant rice by-product of rice grain milling, especially during rice harvest seasons.
ASEAN rice production in 2020 (the crop year 2019/2020) was 187.49 million tons, with
rice by-products reaching 20.62 million tons annually [4]. However, rice bran is frequently
contaminated with mycotoxins because of the proliferation of toxin-producing fungi at
the aleurone layer [5]. In a previous survey of rice bran, detectable levels of mycotoxins,
especially those produced by Aspergillus genera [6–8] were found, with aflatoxins (AFs) and
ochratoxin A (OTA) found at concentrations of up to 28,000 µg·kg−1 and 12,000 µg·kg −1,
respectively [8].

In comparison, ASEAN maize production in 2020 (the crop year 2019/2020) was
44.94 million tons [4]. The ratio of maize output to domestic usage in ASEAN was expected
to be 76.46%, with most maize production used for animal feed. Myanmar is the biggest
maize exporter in ASEAN while Thailand is the major importing country of maize in the
region from Myanmar, Cambodia, and Laos [4,9]. Maize is most commonly contaminated
with mycotoxins during production and storage. Aflatoxins, fumonisins (FBs), deoxyni-
valenol (DON), and zearalenone (ZEN) are the most common mycotoxins found in maize
worldwide and are often contaminated simultaneously with various other mycotoxins from
Fusarium and Aspergillus species [2,6,10,11].

Mycotoxins in feed, particularly rice bran and maize, are a serious health concern
in animals and humans that must be controlled and minimized. Dietary exposure of
farm animals to mycotoxins has a detrimental impact on their health, performance, and
productivity, with the severity and observed symptoms dependent on the type of mycotoxin
present, concentration, and duration of exposure, gender, age, type of animal and exposure
to other feed contaminants [3,12]. Additionally, chronic exposure of livestock animals
to feed contaminated with mycotoxins can also cause the accumulation of mycotoxin
residues in tissues and organs of animals in addition to carry-over of mycotoxins to animal-
derived food products (meat, dairy, and eggs), leading to the indirect human intake of
mycotoxins [13,14]. Mycotoxins are a frequent occurrence and their negative effects on
human and animal health. Several countries have established mycotoxin regulations for
food and feed. In the European Union (EU), animal feed products have been regulated
for AFB1 by legislation through the European Commission Directive 2002/32/EC [15] and
limits have been set for DON, OTA, ZEN, T-2 toxin (T-2), HT-2 toxin (HT-2), fumonisin B1
(FB1) and fumonisin B2 (FB2) [16] as shown in Table S1.

Of the hundreds of mycotoxins identified to date, regulated mycotoxins are considered
the most frequently found feed contaminants that can potentially induce subacute and
acute toxic effects in farmed animals and, therefore, have been regulated in many parts
of the world [17,18]. Nevertheless, frequently other mycotoxins are found in feedstuffs;
the so-called emerging mycotoxins, as well as plant-derived conjugates known as masked
mycotoxins, are not regulated because of their low prevalence and toxicological facts [19].

The occurrence of new and rising combinations of mycotoxins in food and feed shows
the capacity of fungi to adapt to changing environmental conditions [20]. Therefore, it is
critical to understand the environmental factors and biodiversity of mycotoxigenic fungi
that can produce mycotoxins and contaminate agricultural crops. Changes in climatic
conditions, i.e., increased temperatures and altered rainfall patterns, have been identi-
fied as major drivers of fungal growth and contamination of agricultural crops relating
to food/feed safety [21–24]. In the widely used Climate Risk Index by Germanwatch,
Myanmar and Thailand were highlighted as being the countries most affected by extreme
weather events between 2000–2019 followed by Cambodia and Laos [25]. Thus, there is
a need for continuous surveillance in the future and constant review of mycotoxin risk
management to ensure feeds are secure in the food chain and compliant with legislation
and regulation requirements. A recent global feed survey shows that the combined feed
output of the 10 ASEAN nations is projected to reach more than 110 million metric tons
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by 2025, making the ASEAN-10 one of the world’s largest producers of animal feed after
the USA, China, and Russia [26]. However, due to poor agricultural practices, changing
climatic conditions, and high dependence on imported cereals and other raw materials
for feed production from the international market, there is a risk of a high prevalence of
mycotoxins in feed and feed ingredients in this region [27].

Regulated mycotoxins are routinely analysed and monitored by the ASEAN national
laboratories; however, there is a limited analytical testing capability and regulatory frame-
work for the other important mycotoxins in feed raw materials [27]. Moreover, there is a lack
of data available regarding multiple mycotoxins in feed ingredients. Therefore, monitoring
is crucial to determine the exposure of livestock animals to multiple mycotoxins and evalu-
ate the compliance of animal feed raw materials in this region to regulatory requirements.
This study aimed to ascertain the prevalence of mycotoxins and their natural co-occurrence
in raw feed materials collected across various local feed mills in four ASEAN countries-
Cambodia, Laos, Myanmar, and Thailand- using state-of-the-art liquid chromatography-
mass spectrometry (LC-MS/MS). Samples were analysed for the occurrence of the regulated
mycotoxins (aflatoxins, deoxynivalenol, fumonisin B1 (FB1), HT-2, T-2 toxin, ochratoxin A,
zearalenone), emerging mycotoxins (alternariol (AOH), beauvericin (BEA), enniatin type
A (ENN A and A1), enniatin type B (ENN B and B1), ergocornine (Ergocor), ergocristine
(Ergocris), stachybotrylactam (STLAC), sterigmatocystin (STC)), and masked mycotox-
ins (3-acetyl deoxynivalenol (3-Acetyl-DON), 15-acetyl deoxynivalenol (15-Acetyl-DON),
deoxynivalenol-3-glucoside (DON-3-Glu), alpha-zearalenol (α-ZEN), beta-zearalenol (β-
ZEN), zearalenone-14-glucoside (ZEN-14-G) and zearalenone-16-glucoside (ZEN-16-G)).
These fungal metabolites are natural products produced by several Aspergillus, Fusarium,
and Penicillium species. Emerging and masked mycotoxins are most commonly observed
in food and feed [28–30], which may result from the lack of good agricultural practices
(GAPs), good manufacturing practices (GMPs), hazard analysis, and critical control points
(HACCP) [31]. However, the occurrence data of these mycotoxins are still limited. Thus,
the data generated will be used to inform research efforts in ASEAN on the toxicological
effects of fungal metabolites.

2. Results
2.1. Method Performance

The multi-analyte method was validated based on the guidelines recommended
by European Commission Regulation No. 2002/657/EC and SANTE/12089/2016. The
coefficients of determination (R2) for the tested mycotoxins were >0.990, showing good
linearity for the calibration curves. Limits of detection (LOD) and limits of quantification
(LOQ) for the compounds analysed ranged from 0.05–25 µg·kg−1 and 0.5–50 µg·kg−1,
respectively, for rice bran, while for maize LODs and LOQs ranged from 0.04–25 µg·kg−1

and 1–50 µg·kg−1, respectively. The trueness and the precision (RSD%) of the method were
satisfactory for all the studied compounds. In rice bran, RDSs of ≤13% and ≤15% were
observed for repeatability (RSDr) and reproducibility (RSDR), respectively, for the target
mycotoxins. In maize, RSD values of ≤15% and ≤14% for repeatability and reproducibility,
respectively, were found. The method performance is shown in Tables S2 and S3.

The performance characteristics of the multi-analyte method were within the accept-
able range [15,16], indicating that the method could be applied successfully to detect and
quantify low concentrations of mycotoxins in feed raw materials. The LODs and LOQs for
target compounds in our method were much lower than the maximum acceptable levels of
regulated mycotoxins in cereal and cereal products (rice bran) and maize [15,16].

2.2. Occurrence of Mycotoxins in Different Commodities

A total of 125 rice bran samples and 125 maize samples were analysed to determine
contamination levels of mycotoxins. Regulated mycotoxins, including AFs, DON, FB1,
HT-2, T-2, OTA, and ZEN, were observed as well as emerging mycotoxins and masked
mycotoxins (Table S4). The emerging mycotoxins; AOH, BEA, ENN B, ENN B1, STLAC,
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STC, and masked mycotoxins; ZEN-14-G and ZEN-16-G were detected in rice bran and
maize samples (Table S4). ENN A1, 15-Acetyl-DON, and DON-3-Glu were absent in rice
bran and maize samples. On the other hand, ENN A, Ergocor, and Ergocris levels were
below 2.5 µg·kg−1 (data not shown) in both rice bran and maize samples. The prevalence
percentage of mycotoxin was calculated by the ratio of positive samples to total samples
multiplied by 100. The prevalence of mycotoxins in rice bran was higher than in maize,
with most samples indicating the presence of multiple mycotoxins, up to 7 mycotoxins, in
rice bran samples.

2.2.1. Rice Bran

A total of 125 rice bran samples were analysed for the presence the regulated mycotox-
ins i.e., AFs (AFB1, AFB2, AFG1, AFG2), FB1, ZEN, OTA, DON, HT-2, and T-2; emerging
mycotoxins including BEA, ENN B, ENN B1, STC, and STLAC and masked mycotoxins
(ZEN-14-G and ZEN-16-G) as shown in Figure 1.
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Figure 1. Boxplots showing mycotoxin concentrations in rice bran. (A) Contamination levels of
regulated mycotoxins in rice bran. (B) Contamination levels of non-regulated mycotoxins in rice bran.

All rice bran samples were found to be contaminated with AFs, FB1, and ZEN, and
the observed maximum concentrations were 271.1 µg·kg−1, 7013.8 µg·kg−1, and 1728.4
µg·kg−1, respectively. OTA and DON were prevalent in rice bran at 99% (124 of 125)
and 94% (117 of 125), with maximum concentrations of 43.7 µg·kg−1 and 218.9 µg·kg−1,
respectively (Figure 1 and Table S4). The most heavily contaminated samples by AFs, FB1,
and ZEN were those sourced in Myanmar. OTA and DON contamination were found in
Laos and Thai samples, respectively.

Emerging mycotoxins -BEA, ENN B, and ENN B1 were observed across all samples
(100%), with STC found in 98% (122 of 125) of rice bran samples. The maximum concentra-
tions of BEA, ENN B, ENN B1, and STC were 2281.0 µg·kg−1, 15.4 µg·kg−1, 14.7 µg·kg−1,
and 272.3 µg·kg−1, respectively (Figure 1 and Table S4). Beauvericin was prevalent in the
Myanmar samples, while widespread contamination with ENN B and STC was observed in
Thai samples. ENN B1 was the most frequently emerging mycotoxin found in Laos samples.

The masked mycotoxins contaminating rice bran were ZEN-14-G and ZEN-16-G and
occurred in 60% (75 of 125) and 56% (70 of 125) of the samples at maximum concentrations
of 20.7 µg·kg−1 and 39.5 µg·kg−1, respectively (Figure 1 and Table S4). Only one sample
collected from Thailand contained 3-Acetyl-DON at 961.9 µg·kg−1 (data not shown). In this
study, 113 samples (90.4%) were co-contaminated with major and emerging mycotoxins,
with some samples indicating the presence of 4 to 7 mycotoxins.
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2.2.2. Maize

The regulated mycotoxins (AFs, FB1, ZEN, OTA, DON, HT-2, and T-2); emerging
mycotoxins (BEA, ENN B, ENN B1, STC, and STLAC), and masked mycotoxins (ZEN-14-
G and ZEN-16-G) were all detected in maize samples. The data were summarised and
presented in boxplots (Figure 2).
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Figure 2. Boxplots showing mycotoxin concentrations in maize. (A) Contamination levels of regulated
mycotoxins in maize. (B) Contamination levels of non-regulated mycotoxins in maize.

The most frequently regulated mycotoxins were AFs, detected in 100% of the samples
with a maximum concentration of 2149.7 µg·kg−1. FB1 and OTA contaminated 97% (121 of
125) and 90% (113 of 125) of the samples with maximum concentrations of 20,900.9 µg·kg−1

and 65.5 µg·kg−1, respectively (Figure 2 and Table S4). Widespread contamination by AFs,
FB1, and OTA was found in Laos, Myanmar, and Thai samples, respectively. Only one
sample collected from Thailand contained HT-2 toxin at 9786 µg·kg−1.

The emerging mycotoxins BEA, ENN B, and ENN B1 were detected in 93–99% of the
samples at maximum levels of 1459.2 µg·kg−1, 0.03 µg·kg−1, and 0.8 µg·kg−1, respectively
(Figure 2 and Table S4). Moreover, BEA was reported in high concentrations in samples
from Myanmar and Thailand, while ENN type B, detected in Thai, Myanmar, Cambodia,
and Laos samples, all showed similar concentrations and frequency of contamination.

The prevalence of the masked mycotoxins, ZEN-14-G and ZEN-16-G, indicated that
less than 3% of maize samples were contaminated with these. In this study, the 51 pos-
itive maize samples (40.8%) were co-contaminated with both regulated and emerging
mycotoxins, with some samples indicating the co-occurrence of five mycotoxins.

2.3. Co-Occurrence of Mycotoxin Contamination

This study found the co-occurring regulated mycotoxins (AFs, DON, FB1, T-2, HT-2,
OTA, and ZEN) combinations in rice bran and maize samples. The positive samples (100%)
were simultaneously contaminated with at least two mycotoxins. Rice bran samples were
contaminated with four, five, six, and seven mycotoxins at 2.4%, 8.0%, 40.0%, and 49.6%,
respectively, and the co-occurrence of 7 mycotoxins was observed in all four countries.
Multiple mycotoxins were detected in maize at 2.4%, 19.2%, 24.0%, 40.8%, 13.6%, and 7.2%
for two, three, four, five, six, and seven mycotoxins, respectively (Figure 3).
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Figure 3. Number of regulated mycotoxins detected in rice bran and maize.

The co-occurrence of regulated mycotoxins was found in rice bran and maize. The
greatest co-occurrence was observed for AFs+FB1 and AFs+ZEN, which were detected
in 100% of the rice bran samples, followed by AFs+OTA and AFs+DON at 99.2% and
93.6%, respectively. Furthermore, co-contamination of AFs+DON+OTA+FB1 was observed
in 92.8% of the rice bran samples. In maize, AFs+FB1 and AFs+OTA, were the most
frequent co-occurring mycotoxins at 96.8% and 90.4%, respectively. The combination of
four regulated mycotoxins (AFs+DON+OTA+FB1) was observed in 37.6% of maize samples.

The co-occurring regulated and emerging mycotoxins found in rice bran and maize
samples are presented in Figure 3. DON+BEA combination in rice bran and maize samples
at 93.6% and 45.6%, respectively, whereas DON+ENN type B was present in rice bran and
maize samples at 93.6% and 44.8%, respectively. In the case of ZEN, the combination of
ZEN+BEA and ZEN+ ENN type B was present in rice bran samples at 100% and in maize
samples at 64.0%.

In rice bran, the occurrence of FB1 was strongly correlated with ZEN (r = 0.702). HT-2
and T2 were also strongly correlated (r = 0.927) (Figure 4). Beauvericin was found to
be strongly correlated with ZEN. Moreover, the occurrence of AFs was correlated with
OTA, FB1, and ZEN (r = 0.181, 0.179, and 0.363, respectively) (Figure 4). In maize, strong
correlations were found between T2 and ZEN (r = 0.898) and T2 and HT-2 (r = 0.971)
(Figure 5).
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3. Discussion
3.1. Climate Change and Mycotoxins

Mycotoxins are harmful fungal metabolites frequently found in cereal grains and feed
products. They have been shown to negatively impact food and feed safety because of
the potential carry-over of mycotoxins to animal by-products, including meat products
and dairy products, leading to possible mycotoxin uptake by humans as a consequence of
the animal eating contaminated feed [32]. The climate of Southeast Asia can be classified
as mainly tropical and one of the most climate-vulnerable regions in the world. It has
been identified as a region where predicted changes in temperature, CO2 levels, and
rainfall patterns are exacerbated as a result of the changing climate [33]. The weather
is hot and humid most of the year, which contributes to the proliferation of mycotoxin-
producing fungi that release toxic metabolites and thus lead the way to food and feed
contamination [34]. The main factors that boost mycotoxins’ fungal growth and production
are temperature and humidity. A temperature range of 25 ◦C to 30 ◦C, a water activity
(aw) of more than 0.78, and relative humidity (RH) of 88% to 95% are all regarded as
suitable for the growth of a fungal and subsequent generation of mycotoxin [35]. The
Intergovernmental Panel on Climate Change (IPCC) published a study in 2014 on global
warming forecasts, estimating that global temperature might rise by up to 4.8 ◦C in the
21st century [36]. Climate change would directly impact agriculture, with changes in
temperature and humidity affecting the efficacy of insecticides and fungicides, which may
cause the adaption of some fungal species to generate new metabolites, which can cause a
negative effect on humans and animals [37].

The studied samples were collected from Cambodia, Laos, Myanmar, and Thailand
from August to December 2020. The average temperature range was 25 ◦C to 28 ◦C. Most
of Southeast Asia experienced above-average rainfall between August and December; for
example, the highest rainfall in Cambodia and Thailand was recorded in October of this
year, while for Laos and Myanmar, the highest rainfall occurred during August [38,39].
Climatic conditions influence mycotoxin levels and incidences of contamination in crops
year-to-year. For example, in Thailand, high levels of FBs in corn and ZEN in rice bran
in 2011 were observed compared to 2010, 2012–2014 due to flooding in July 2011 [40].
Similarly, high levels of AFB1 in maize were found in Southeast Asia in 2017 compared to
2013–2016 due to high rainfall and temperature during the spiking period [2]. BIOMIN
survey reported that the most prevalent mycotoxins in Southeast Asia in 2020 were FBs
and AFs [41], with the results of this study in agreement with their finding. However, the
level of mycotoxins in samples varies by commodity and country.

3.2. Occurrence of Regulated Mycotoxins in Rice Bran and Maize

The results of this study indicated that of the 250-rice bran and maize samples tested,
100% of them indicated the presence of AFs (AFB1, AFB2, AFG1, AFG2) with concentrations
ranging between 0.1–2149.7 µg·kg−1. A prevalence of AFs was observed, with 100% of
samples testing positive at values of 0.4–271.1 µg·kg−1 (mean level of 13.0 µg·kg−1) for rice
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bran and 0.1–2149.7 µg·kg−1 (mean level of 158.1 µg·kg−1) in maize with contamination
in samples from Cambodia, Laos, Myanmar, and Thailand. The incidence of AFs, partic-
ularly AFB1, indicated that 2% of rice bran and 28% of maize samples positive for AFs
were contaminated at a level higher than the European Commission’s maximum levels of
20 µg·kg−1 for feed materials [15].

Rice bran and maize are the main constituents of local animals’ diets, consumed in
large quantities and supplemented directly or indirectly. As a result, AFs contamination
could be dangerous even at low levels. Furthermore, the occurrence of mycotoxins in
feedstuff is usually influenced by weather; as a result, the type of mycotoxin varies with
time and geographical location, with the main factors influencing mould growth being
temperature and humidity [42]. Consequently, Southeast Asia is a region with a high
prevalence of AFs. Levels of AFs have been found in rice bran and maize for feed in
the Philippines (2005), Vietnam (2008), and Thailand from 2015–2020 at levels ranging
from 0.27–11 µg·kg−1 [6,43,44]. Therefore, it is recommended that storage conditions be
improved to minimize spoilage and limit aflatoxins contamination.

In this study, FB1, ZEN, and OTA were found in samples from Cambodia, Laos, Myan-
mar, and Thailand. FB1 and ZEN were observed in 100% of rice bran samples at values of
61.5–7013.8 µg·kg−1 (mean level of 579.6 µg·kg−1) and 21.9–1728.4 µg·kg−1 (mean level of
183.2 µg·kg−1), respectively. The observed results indicated a higher prevalence than that
reported by Kananub et al. [6]. The presence of FB1 and OTA was detected in over 90% of
maize samples with concentrations ranging from 1.8–20900.9 µg·kg−1 (mean concentration
of 2786.0 µg·kg−1) and 0.3–65.5 µg·kg−1 (mean concentration of 12.0 µg·kg−1), respectively.
Previously, researchers found that the varieties of maize significantly impacted the occur-
rence of OTA [45]. Compared to the EU guidance limits [16], the detected levels of FB1,
ZEN, and OTA were lower than the safety limits. Guidance values set for ZEN and OTA
are 2000 µg·kg−1 and 250 µg·kg−1, respectively, in cereals and cereal products for feedstuff.
In maize by-product, guidance levels of 3000 µg·kg−1, and 60000 µg·kg−1 were set for ZEN,
and the sum of FB1 and FB2, respectively.

3.3. Occurrence of Emerging Mycotoxins in Rice Bran and Maize

Emerging mycotoxins are a new group of mycotoxins [46] that are not legislatively reg-
ulated. However, research shows that these toxins quickly become common co-contaminants
in grains such as maize, wheat, and rice. As a result of monitoring and reporting BEA and
ENNs have raised a lot of interest, with toxicity studies and risk assessments having been
recently carried out [47,48]. In this study, BEA was detected with a high prevalence in rice
bran and maize samples, while on the other hand, ENN type B and STC were detected with
a high prevalence in rice bran.

BEA has been identified as being toxic in vitro to human tissues and cells [49]. BEA
has cytotoxic effects on various cell types and can induce oxidative stress at the molec-
ular level. In addition, it causes genotoxicity and apoptosis in the mitochondrial path-
way. Although severe cytotoxicity has been reported, regulatory authorities have not
performed a risk assessment due to a lack of toxicity data [50]. In the reported study, a
high occurrence of BEA in rice bran and maize was observed, with concentrations rang-
ing from 1.25–2281.01 µg·kg−1 (mean 130.37 µg·kg−1) and 0.02–1459.18 µg·kg−1 (mean
60.67 µg·kg−1), respectively. These levels were higher than those reported in studies
performed in Japan, China, and Korea [51–53]. BEA was found in corn grits from the
Japanese market at 26.1 µg·kg−1 [51]. An evaluation of commercial pet food in China
revealed that 96.9% of samples tested were contaminated with BEA at concentrations
ranging from 0.2–153.4 µg·kg−1 [52]. The distribution of feed materials and compound
feed in Korea that contained BEA-contaminated was evaluated by Lee et al. [53]. The
results highlighted that the percentage of samples tested contaminated with BEA was 27%
at levels between 0.01–1.80 µg·kg−1. BEA has been observed in corn-dried distiller grains
in Thailand (350 µg·kg−1), Irish farm silages (21.8 µg·kg−1), and rice bran from Spain
(64.8 µg·kg−1) [54–56]. Furthermore, a survey in the EU revealed that 98% (n = 83) of feed
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and raw feed materials analysed were contaminated with BEA, with a maximum level of
2326 g·kg−1 [57].

Concerning ENNs type B, this study revealed that this mycotoxin was present in
over 95% of rice bran samples analysed. Like BEA, ENNs cause cytotoxicity and geno-
toxicity. Both ENNs and BEA are cyclic hexadepsipeptides with similar biological path-
ways [46], however, due to limited toxicity data, a risk assessment has not been established.
Our findings highlighted concentrations of ENN B ranging between 0.11–15.36 µg·kg−1

(mean 6.73 µg·kg−1), whereas ENN B1 levels ranged between 0.53-14.70 µg·kg−1 (mean
2.58 µg·kg−1), with rice bran indicating higher levels than maize for these two mycotox-
ins. These results are higher than those found by Shimshoni et al. [58] from Israel, where
mean values of 0.3 µg·kg−1 and 0.9 µg·kg−1, respectively, were detected in both corn
and wheat samples. Jestoi et al. [59] reported the occurrence of ENN B and ENN B1 in
barley samples from Finland, at 3980 µg·kg−1 and 3240 µg·kg−1, respectively. According
to Uhlig et al. [60], ENN B was detected in wheat samples from Norway at a maximum
concentration of 5800 µg·kg−1, and Sorensen et al. [61] reported contaminations levels of
ENN B in whole fresh maize in Denmark of 2600 µg·kg−1. Monitoring of wheat in Romania
for the presence of ENNs. Researchers reported the occurrence of ENN B in wheat and
wheat flour, at 21–407 µg·kg−1 (71% of positive samples) [62] indicating that the higher the
humidity, the greater the contamination of ENNs [62,63]. In such cooler climates, the condi-
tions are optimal for the proliferation of Fusarium spp. Therefore, this explains the higher
concentrations of ENNs in the countries mentioned [56]. This study highlighted significant
levels BEA and ENN type B in rice brans (100% of samples); thus, the co-occurrence of the
emerging Fusarium mycotoxins should be closely monitored particularly because of the
possible synergistic effects of these mycoestrogens [56,64].

The occurrence of STC has been found in many types of food and feed [65–69]. STC is
a precursor of AFs in their biosynthesis and is known to be much less toxic than AFB1. Its
hepatotoxicity and nephrotoxicity have been demonstrated in animals however, due to the
limit of information on toxicity, the authorities have not prepared a risk assessment [70].
In our study, STC was more often found in rice bran than in maize. It was quantifiable in
97% (122 of 125) samples, with a mean concentration of 26.63 µg·kg−1. This is probably
a result of the proliferation of toxin-producing fungi at the aleurone layer of rice bran [5].
Previously, some derivatives of the toxin have been reported. The incidence of STC in
Italian paddy rice was detected, and on the removal of the bran layer, the levels of STC were
significantly reduced. This indicates that rice processing causes a reduction of STC [71].
Although STC is considered by the International Agency for Research on Cancer (IARC) as
a group 2B, carcinogenic to animals and possibly humans also, the European legislation
has no set limits for STC in food; however, the Czech Republic and Slovakia have set limits
of STC for rice, poultry, meat, milk, vegetables, potatoes, and flour at 5 µg·kg−1 and other
foods at 20 µg·kg−1 [71].

3.4. Co-Occurrence of Regulated Mycotoxins in Rice Bran and Maize

There are limited data on the combined toxic effects of mycotoxins, therefore the
health risks from multiple mycotoxin exposure are unknown. The natural prevalence of
mycotoxins in food and feed is quite not unusual. Some fungi can produce more than
one mycotoxin, multiple fungi may infect agricultural commodities, and the influence
of climate will have a huge impact on contamination levels [3]. The study of combined
toxicological effects such as antagonist, additive, or synergic effects is difficult to predict
and may be a significant threat to human and animal health; therefore, the toxicological
interactions between mycotoxins must not be overlooked [72]. The co-occurrence with
other mycotoxins and AFs should be investigated. There has been reported the occurrence
of AFs contamination in rice with a high prevalence in many Asian countries [73]. In
this study, contamination with at least two or more mycotoxins was frequently observed.
Although risk analysis is performed on a single mycotoxin to perform the risk assessment
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of carcinogenic agents rather than multiple mycotoxins, it is important to consider the
cumulative toxicity of multiple mycotoxins given that these toxins rarely occur on their own.

In the study, the samples contained at least two mycotoxins, and the co-occurrence of
AFs+FB1 was higher than in the study in South America, which reported co-occurrence of
AFs and FBs in maize at 7–8% [74,75] and 54.5% of AFB1+FB1 [76]. The combined action
of mycotoxins can have an interaction effect. Aflatoxin-fumonisin co-exposure has been
shown to have additive or synergistic effects on the expression of precancerous lesions or
liver cancer in several in vitro investigations [77]. The co-occurrence of AFs+OTA in this
study was higher than in the study of Ibáñez-Vea et al. [78] in which detectable levels of
AFs+OTA were observed in 31% of barley samples from Spain. It has been demonstrated
that the combination AFs+OTA established a synergistic effect on nephrotoxicity [79].
Previously, the combination AFs+DON was observed in soy feed samples [80], and again
the observed results were lower than those observed in this study. This is important as
previous research has highlighted synergistic effects associated with this combination of
mycotoxins [81,82].

Moreover, numerous surveys have revealed the co-occurrence of mycotoxins involv-
ing more than two mycotoxins. In 2016, DON, fumonisin (FB1 and FB2), ZEA, and the
trichothecenes, T-2 and HT-2 were found in 26.2% of maize samples in Croatian fields [83].
Palumbo et al. [84] reported that DON frequently co-occurred with FBs in maize (74.4%),
whereas the incidence of DON, FBs, and AFs was found to be low (1.0%). The combinations
of mycotoxins observed in our investigation were generally consistent with those reported
by other researchers in previous studies [76,78,80].

Data on the effect of climate change on the co-occurrence of mycotoxins are limited.
However, climate change may indirectly impact the levels of co-occurring mycotoxins
contamination. Co-occurrence of mycotoxins has been proven to be exceedingly toxic
and influence feed intake; hence this warrants more attention [85]. It is well known
that the incidences and contamination levels of mycotoxins depend on the harvest year.
Changing weather (i.e., temperature and rainfall) is the most important climatic factor
that will impact mycotoxin contamination in crops in Southeast Asia in the future [86,87].
Increases in temperature by 1 or 2 ◦C (above-average temperature) or decreases in rainfall
would ultimately reduce production yield. These changing conditions will influence
the proliferation of specific fungi and, consequently, the production of mycotoxins [34].
Therefore, it is essential to monitor the co-occurrence of mycotoxins and perform risk
assessments to protect the human and animal populations against increased toxic effects
due to the possible synergistic interactions of mycotoxins [88].

3.5. Co-Occurrence of Regulated and Emerging Mycotoxins in Rice Bran and Maize

The natural co-occurrence of the regulated mycotoxins has been reported in several
studies, particularly, AFs, DON, FBs, OTA, and ZEN. Fewer data have been reported for
the contamination of the regulated mycotoxins and emerging mycotoxins (i.e., BEA, ENNs,
and Alternaria toxins). DON and ZEN were assessed in this investigation because it is one
of the most highly distributed contaminants in feed. Exposure to high levels of these toxins
is associated with function in animals; as an example, the chronic levels of DON and ZEN
affect the kidney function in swine that is more sensitive to exposure to DON and ZEN than
most other species [89]. Consumption of feed contaminated with DON can lead to vomiting,
diarrhoea, refusal of feed, and weight loss of animals. ZEN is an estrogenic mycotoxin that
adversely affects reproductive function in animals [89]. Previously, the combined toxicity
of DON, BEA, and ENN type B was studied. According to Perez-Fuentes et al. [90], the
combination of DON and emerging mycotoxins mixtures exhibited antagonism when used
to treat neuroblastoma cells [91].

Moreover, in the same study by Perez-Fuentes et al. [90], the combination of ZEN
and emerging mycotoxins (ENNs and BEA) also demonstrated an antagonistic effect.
Although the contamination of regulated mycotoxins and emerging mycotoxins in samples
has been widely documented, there has been limited research on their combined toxicity.
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Nonetheless, the current regulations do not consider the impacts of many mycotoxins, and
the maximum limit allowed, or recommended levels are set for a single mycotoxin.

The overall results show that the mycotoxins affecting rice crops and maize in South-
east Asia include AFs, FBs, DON, OTA, and ZEN as well as the emerging mycotoxins
BEA, ENNs, and STC. Mycotoxin contamination of Southeast Asia crops will undoubtedly
increase due to climate changes, including higher temperatures, increased rainfall, drought,
and floods. Most of Southeast Asia has already experienced above-average temperature
and above-average rainfall. According to global climate change scenarios, the global tem-
perature will rise by up to 4.8 ◦C in the 21st century [36]. In addition, climate change
has been shown to affect the population of toxigenic fungi and mycotoxin levels in crops.
Therefore, the mycotoxin problem and toxic effects of combined mycotoxins should be
carefully monitored as they are potentially a significant threat to human and animal health.
Hence, it is incumbent on governments and/or research institutions in each country to try
to improve farming systems and/or techniques to minimize the effects of climate change
in the future and create awareness of mycotoxin control, good storage, and distribution
practices to reduce the production of mycotoxins in agricultural crops.

3.6. Mycotoxin Control Strategies

Factors such as poor-quality control, poor production technology, and poor crop
storage condition encourage the growth of fungi and mycotoxin formation in develop-
ing countries, resulting in a higher prevalence of mycotoxin-contaminated foods [92,93].
Crops that are harvested early and dried can help to reduce contamination. However,
in several developing countries, early harvesting, uncertain weather, labour constraints,
a need for returns on their crops, and the threat of animals compel farmers to harvest
at inappropriate times. Strategies for prevention are a key approach in the fight against
mycotoxins, including good agricultural practices (GAPs), good manufacturing practices
(GMPs), hazard analysis and critical control points (HACCP), and appropriate storage
conditions in terms of moisture and temperature control. Among the environmental factors,
temperature and humidity majorly impact mycotoxigenic fungi to produce mycotoxins.
Therefore, temperature, moisture content, and humidity of warehouse storage are critical
factors for fungal growth and mycotoxin production [94].

4. Conclusions

The regulated mycotoxins, emerging mycotoxins, and masked mycotoxins were anal-
ysed in rice bran and maize samples from four Southeast Asia countries, Cambodia, Laos,
Myanmar, and Thailand. The most prevalent mycotoxins in Southeast Asia from August to
December 2020 were Afs, FBs, DON, OTA, and ZEN, and the emerging mycotoxins (BEA,
ENNs, and STC). AFs were detected in 100% of rice bran and maize samples. The differ-
ence in mycotoxin occurrence has been highlighted in the different sampling zones, the
detection levels of AFs in rice bran were highest in samples sourced from Myanmar (Myan-
mar>Laos>Thailand>Cambodia) whereas the levels in maize were highest in samples from
Laos (Laos>Cambodia>Myanmar>Thailand). FB1, ZEN, OTA, DON, BEA, ENN type B,
and STC were detected in greater than 90% of samples. This study demonstrates mycotoxin
levels in all samples in compliance with EU regulations (except AFs and one sample for
HT-2). Moreover, the results showed co-occurrence of Aspergillus and Fusarium mycotoxins
were most commonly found in feed samples with a high prevalence of co-occurring of
regulated mycotoxins (DON and ZEN) with emerging mycotoxins (BEA and ENN type B).

5. Materials and Methods
5.1. Sample Collection

A total of 125 rice bran and 125 maize samples, commonly used to formulate feed to
meet the energy requirements of livestock animals were collected from major feed mills in
Cambodia, Laos, Myanmar, and Thailand, from August to December 2020. Each aggregate
sample had approximately 1 kg and was collected according to the European Commission
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Regulation (EC) No 152/2009 guidelines. All samples were ground into powder using a
Tecator Cyclotec 1093 mill fitted with a 1 mm sieve (Foss, Denmark), then stored at −20 ◦C
before mycotoxin analysis.

5.2. Sample Preparation

Sample extraction was performed using a dilute-and-shoot approach [95,96], with
1 g of homogenised sample weighed into a 15-mL polypropylene tube. Next, 4 mL of
acetonitrile: water: formic acid (79:20:1, v/v/v) was added, and the sample was vortexed
for 90 min. After centrifugation at 5000 rpm for 15 min, an aliquot of 250 µL of the
supernatant was mixed with 750 µL of acetonitrile: water: formic acid (20:79:1, v/v/v) in
an Eppendorf tube. The mixture was vortexed for 30 s and filtered through a 0.2 µm PTFE
syringe filter into an LC-MS/MS vial for analysis.

5.3. Chemicals and Materials

Ammonium hydroxide (≥25% in water), LC−MS grade methanol, and acetonitrile
were obtained from Sigma-Aldrich (Gillingham, UK). A Milli-Q system (Millipore, Mol-
sheim, France) was used as a source of deionized water. Mycotoxins standards: aflatoxin
B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), alternariol, beau-
vericin (BEA), deoxynivalenol (DON), enniatin A (ENN A), enniatin A1 (ENN A1), enniatin
B (ENN B), enniatin B1 (ENN B1), fumonisin B1 (FB1), HT-2 toxin (HT-2), ochratoxin A
(OTA), T2 toxin (T-2), and zearalenone (ZEN) were obtained from Romer lab, UK. Ergo-
cornine (Ergocor), ergocristine (Ergocris), sterigmatocystin (STC), and stachybotrylactam
(STLAC) were obtained from Sigma-Aldrich (Gillingham, UK). 3-Acetyl-deoxynivalenol
(3-Acetyl-DON), 15-Acetyl-deoxynivalenol (15-Acetyl-DON), deoxynivalenol-3-glucoside
(DON-3-Glu), zearalenone-14-glucoside (ZEN-14-G) and zearalenone-16-glucoside (ZEN-
16-G) were obtained from Enzo science (Exeter, UK). From the solid standards, individual
stock solutions were prepared at a 1 mg·mL−1 concentration in an appropriate solvent and
stored based on the manufacturer’s instructions. All standard solutions were kept in amber
glass vials at −20 ◦C and brought to room temperature before use. The stock solutions were
renewed every 2 months, while multi-mycotoxin working solutions were prepared weekly.

5.4. HPLC-MS/MS Parameters

Quantitative analysis of the targeted mycotoxins in each feed raw materials was carried
out on an ExionLC™ AD Ultra-High Performance Liquid Chromatography system (SCIEX,
Framingham, MA, USA) coupled with a SCIEX 5500+ QTrap triple quadrupole Mass
Spectrometer (MS/MS) equipped with a Turbo V™ electrospray ionisation source (SCIEX,
Framingham, MA, USA). Chromatographic separation was achieved using a Gemini C18-
column (100 × 4.6 mm, 5,µm) maintained at 30 ◦C. Elution was carried out in a binary
gradient mode consisting of mobile phase A—methanol/water/acetic acid 10:89:1 (v/v/v)
and mobile phase B—methanol/water/acetic acid 97:2:1 (v/v/v), both containing 5 mM
ammonium acetate buffer. Mycotoxins were eluted following a gradient elution program
as follows: 0 min 1% B, held for 1 min at 1% B, 5 min 65% B, 7 min 80% B, 8.5 min 80% B,
9 min 95% B, 10 min 95% B and 11.5 min 1% B. A mobile phase flow rate was maintained at
0.7 mL·min−1, with sample injection volume set at 3 µL, and the total runtime was 11.5 min.

The Mass Spectrometry was operated in both positive and negative electrospray ioni-
sation mode, with data acquisition carried out in scheduled multiple reaction monitoring
(sMRM) mode. The capillary voltage and source temperatures were set at 4.5 kV and
−4.5 kV for ESI+ and ESI- respectively, with the temperature set at 600 ◦C. Collision gas,
ion source gas (GS1), ion source gas (GS2), and curtain gas were set at 9, 60, 60, and 35 psi,
respectively. Two MRM characteristic transitions (1 precursor ion, 2 product ions) were
monitored for each analyte. The selected MRM transitions and their respective analyte-
dependent operating conditions, i.e., declustering potential (DP), collision cell exit potential
(CXP), and collision energy (CE), are listed in Table 1. Analyst®Software 1.7.1 and SCIEX
OS-Q Software were used for acquiring and processing data, respectively.
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Table 1. Optimised MS/MS parameters for the analysed compounds, including precursor ions,
product ions, declustering potential (DP), collision energy (CE), and collision cell exit potential (CXP).

Mycotoxins Precursor ion
(m/z)

Product ion
(m/z) DP (V) CE (eV) CXP

Regulated mycotoxins
Aflatoxin B1 313.061 285.1 121 33 14

313.061 241.1 121 53 14
Aflatoxin B2 315.074 287.2 141 37 14

315.074 259.1 141 41 14
Aflatoxin G1 329.055 243.2 131 37 18

329.055 311.1 131 31 16
Aflatoxin G2 331.057 313 106 35 16

331.057 245.2 106 41 14
Deoxynivalenol 297.097 249.1 91 21 20

297.097 203.2 91 21 20
Fumonisin B1 722.316 334.4 100 53 10

722.316 704.3 100 41 38
HT-2 toxin 447.169 345.1 131 27 18

447.169 285.2 131 29 14
T2 toxin 489.175 387.2 151 31 36

489.175 245.2 151 35 12
Ochratoxin A 404.092 239 111 33 12

404.092 358.1 111 21 18
Zearalenone 319.114 301.1 81 15 16

319.114 283.1 81 17 14
Emerging mycotoxins

Alternariol 256.957 213 −125 −34 −19
256.957 215 −125 −36 −17

Beauvericin 801.287 784.3 141 27 14
801.287 244.1 141 43 12

Enniatin A 699.386 682.4 100 27 24
699.386 210.2 100 39 22

Enniatin A1 685.36 668.5 100 27 12
685.36 210.1 100 39 10

Enniatin B 657.319 640.3 100 27 22
657.319 196.1 100 39 10

Enniatin B1 671.317 654.4 6 27 22
671.317 196.1 6 41 22

Stachybotrylactam 386.184 178 191 47 22
386.184 150.2 191 57 14

Sterigmatocystin 325.023 310.1 121 35 16
325.023 281.6 121 41 14

Masked mycotoxin
3-acetyl deoxynivalenol 337.1 59.2 −110 −28 −13

337.1 255.2 −110 −52 −9
15-acetyl deoxynivalenol 339.1 321.3 81 13 18

339.1 261.1 81 17 14
Deoxynivalenol-3-glucoside 517.3 427.1 −70 −30 −11

517.3 59.1 −70 −85 −7
Alpha-Zearalenol 319.2 160.1 −105 −44 −13

319.2 130.1 −105 −50 −20
Beta-Zearalenol 319.2 160 −105 −44 −13

319.2 130 −105 −50 −20
Zearalenone-14-glucoside 479.2 317.1 −145 −24 −15

479.2 175 −145 −54 −11
Zearalenone-14-glucoside 479.12 317.105 −140 −30 −21

479.12 149 −140 −50 −15
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5.5. Method Validation

The optimised LC-MS/MS method for the analysis of mycotoxins in rice bran and
maize was validated based on the acceptable performance criteria of analytical methods
set by the European Commission regulations No. 2002/657/EC [97]. The performance
characteristics evaluated were linearity, limit of detection (LOD), limit of quantification
(LOQ), selectivity, matrix effect, recovery, and repeatability.

Extraction and apparent recoveries were determined by spiking homogenised feed
raw materials at three different levels with a multi-mycotoxin standard solution (i.e., low
(10 ng·g−1), medium (50 ng·g−1), and high (200 ng·g−1). Spiked samples were placed in the
dark overnight to allow evaporation of the solvent and interaction of the analyte with the
matrix. The spiked and blank (control or unspiked) samples were extracted as described
above. Following sample extraction, blank samples were also spiked with the same levels
of multi-mycotoxin solution to determine the extraction efficiency/recovery. Recovery
of each analyte was calculated as the ratio of peak area of blank sample spiked before
and after sample extraction multiplied, expressed as a percentage (%). Matrix-induced
suppression/enhancement (SSE) was determined by comparing the response of the matrix
spiked with standards after extraction to a solvent standard at the same concentration.
SSE was calculated as the ratio of the peak area of the analyte in the matrix and solvent,
expressed as a percentage (%).

SSE =
Peak area of analyte in matrix
Peak area of analyte in solvent

× 100 (1)

Linearity was evaluated using mycotoxin-free samples fortified with multi-mycotoxin
working solutions at seven concentration levels. The spiked samples’ concentration range
was chosen to cover the estimated linear range of calibration, levels commonly found
in naturally contaminated samples and legislation limits of regulated mycotoxins, and
the respective limits of detection (LOD) of each analyte. LODs and LOQs determined
the sensitivity of the developed method. LOD was defined as the concentration of each
analyte that gave a peak with a signal-to-noise ratio (S/N) of 3, which was determined by
injecting neat solvent standard solution at different concentrations, while LOQ was defined
as the concentration of the analyte in spiked samples at an S/N ratio of 10. Precision was
determined by intra-day precision (repeatability) and inter-day precision (reproducibility).
Intra-day precision was carried out by analysis of three replicates on the same day at three
different concentration levels, while inter-day precision was assessed by repeating the same
procedure over three consecutive days. The data were used to calculate within-laboratory
accuracy and precision and expressed as relative standard deviation (RSD). The criteria for
confirming a positive sample include a retention time within ±0.5% compared with the
analyte in a pure solvent, both qualifier and the quantifier with transitions above S/N ratio
of 10:1, and the ion ratio of the quantifier and the qualifier transition within ±25%.

5.6. Statistical Analyses

The Pearson’s correlation coefficient was used to calculate the correlation; data with
p < 0.05 and p < 0.01 values were considered statistically significantly different using the
SPSS 10.0 software (SPSS, Chicago, IL, USA).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxins14080567/s1, Table S1: The EU guidance levels for AFB1 and
recommended limits for some regulated mycotoxins in feed materials; Table S2: Linearity data (R2),
limit of detection (LOD), and limit of quantification (LOQ) of mycotoxins in the analysed rice bran
and maize using LC-MS/MS; Table S3: Recovery and precision of mycotoxins in the analysed rice
bran and maize by LC-MS/MS; Table S4: The occurrence and concentration of mycotoxins in rice
bran and maize.
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