
The CD14+/lowCD16+ monocyte subset is more
susceptible to spontaneous and oxidant-induced
apoptosis than the CD14+CD16– subset
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Human monocytes can be classified into two subsets with distinctive characteristics. In this study, we report a difference in
apoptotic potential between these two subsets with CD14þ /lowCD16þ monocytes being more susceptible than CD14þCD16�

monocytes to undergo spontaneous apoptosis and apoptosis induced by reactive oxygen species (ROS). By global
transcriptomic and proteomic approaches, we observed that CD14þ /lowCD16þ monocytes expressed higher levels of
pro-apoptotic genes and proteins such as TNFa, caspase 3, Bax and cytochrome c and showed more caspases 3 and 7 activities.
They also exhibited greater aerobic respiration resulting in a higher production of ROS from the mitochondria. CD14þCD16�

monocytes, in contrast, showed higher expression of glutathione (GSH)-metabolizing genes such as GSH peroxidase and
microsomal GSH S-transferase and were more resistant to oxidative stress than CD14þ /lowCD16þ monocytes. The apoptosis of
CD14þ /lowCD16þ monocytes was ROS dependent as reducing ROS levels significantly reduced cell death. This is the first report
of a differential apoptotic propensity of human monocyte subsets, and gaining a better understanding of this process may help to
provide a better understanding of the roles of these subsets during homeostasis and under pathological conditions, particularly
in situations in which high levels of oxidants are present.
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Monocytes are generated in the bone marrow and serve
to replenish dying resident tissue macrophages during
steady state.1 As tissue macrophages are relatively long
lived, monocytes generated in the bone marrow generally
far exceed the numbers required to replenish dying tissue
macrophages. Hence, monocytes will remain in the blood for
up to 3 days before spontaneously undergoing apoptosis.2,3

Apoptosis is an important mechanism for regulating the
numbers of immune cells. Monocyte culture in vitro in the
absence of serum or activating factors will die spontaneously,
which can be blocked with neutralizing antibodies (Abs) to Fas
or FasL.4 Both reactive oxygen species (ROS) and caspases
have been implicated in Fas-mediated cell death both in
monocytes and in other cell types.5,6 The role of ROS in
mediating cell death has been well documented. It is elevated
in cells undergoing apoptosis7 and can induce apoptosis in
many different cell types.6 Blocking ROS with anti-oxidants
also inhibits apoptosis.5 ROS can promote cell death by
inducing mitochondrial dysfunction through Bax translocation,
release of cytochrome c and activation of caspases.8 Besides
ROS introduced exogenously, intracellular ROS have also
been accepted as a conserved apoptotic signal. In fact, the
mitochondria actively and continuously generate ROS during
aerobic respiration.9 Apart from aerobic respiration, depletion

in glutathione (GSH) pools can also result in an concomitant
increase in intracellular ROS during apoptosis.10

Blood monocytes are heterogeneous and can be broadly
classified into two main subsets, CD14þCD16� (hereafter desi-
gnated as CD16�) and CD14þ /lowCD16þ (hereafter CD16þ )
in humans;11 and Gr1þCX3CR1low (hereafter Gr1þ ) and
GR1�CX3CR1hi (hereafter Gr1�) in mice.12 These subsets
exhibit distinct phenotypes with respect to the expression of
surface markers,11,13 as well as functions like migration ability
and differentiation potential.12 Interestingly, several groups have
observed the differential propensity of murine moncyte subsets
to undergo apoptosis in a transgenic mouse model, whereby
Gr1� monocytes fail to persist.12,14,15 In humans, CD16þ
monocytes were observed to significantly expand in numbers
under numerous inflammatory conditions such as sepsis,16 HIV
infections17 and autoimmune disorders,18,19 which may be
attributed to enhanced survival.3,20

We observed from transcriptomics and proteomics data an
apoptotic signature, indicating CD16þ monocytes to harbor a
greater propensity to undergo apoptosis. Although there are
data suggesting a differential apoptotic potential between
murine monocyte subsets as discussed above, no similar data
in human monocyte subsets have been reported. We showed
in this study that CD16þ monocytes exhibit higher aerobic
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respiration and express lower levels of anti-oxidant genes,
implying that these cells are experiencing oxidative stress.
Hence, they have a greater tendency to spontaneously
undergo apoptosis. Gaining a better understanding of the
mechanisms involved in the differential apoptotic potential of
these subsets will help shed light on their roles during
homeostasis and under inflammatory conditions, particularly
in situations in which high levels of oxidants are present.

Results

Identification of differentially expressed transcripts and
proteins between monocyte subsets. Two human blood
monocyte subsets, CD16þ and CD16�, were routinely
purified from peripheral blood mononuclear cells (PBMCs) to
a purity of 495% (Figure 1). For transcriptomics, experi-
ments were performed separately using samples obtained
from four different individuals. For proteomics, experiments
were performed using samples pooled from three different
individuals and run three times on the QSTAR (Applied
Biosystems; MDSSciex, Foster City, CA, USA) and once on
the LTQ-Orbitrap (ThermoFinnign, San Jose, CA, USA)
mass spectrometers. Samples were pooled for proteomics
because of the limited numbers of CD16þ monocytes
obtained from an individual sample. The samples used for
transcriptomics and proteomics were different. By
transcriptomics analysis, 10 982 out of 48 701 transcript
targets available on the Illumina microarray (Illumina, San
Diego, CA, USA) were reliably identified for both monocyte
subsets and used for determining differentially expressed

transcripts. Using a fold change of Z|2| between monocyte
subsets as the cutoff criterion, 520 differentially expressed
transcripts were identified (Figure 1a). By proteomics
analysis, a total of 2776 proteins were identified for both
the monocyte subsets from targets obtained by both QSTAR
and LTQ-Orbitrap. A total of 1493 proteins were identified
when the criterion of Z|2| MS and a relative intensity ratio of
o|1.5| for the technical replicates for both platforms and an
error factor o2 for QSTAR only was used. Of 1493 proteins,
455 were differentially expressed at Z|1.5|-fold change
between the monocyte subsets (Figure 1a). Interestingly,
only 27 differential expressed targets were commonly
identified from the two platforms (Figure 1b). However,
when the differentially expressed transcripts and proteins
were mapped into biological processes in silico using
DAVID,20 Metacore (GeneGo, San Diego, CA, USA) or
Ingenuity pathway analysis (IPA, Ingenuity Systems, Inc.,
Redwood City, CA, USA), they shared many common
biological processes (data not shown and Zhao et al.21)
and cell death was one of the major processes identified.
When targets related to the cell death process were
compared, only two of the targets were common between
the two platforms (Figure 1c). The list of differentially
expressed transcripts and proteins is available at http://
mendel.bii.a-star.edu.sg/SIgN/PKGroup/BloodMonocyte/.

Differential expression of apoptotic-related transcripts
and proteins between monocyte subsets. The list of
differentially expressed targets related to apoptosis identified
between the two subsets consisted of 56 transcripts and 23
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Figure 1 Identification of differentially expressed transcripts and proteins. (a) Flow analyses showing the purity of isolated monocyte subsets using anti-CD14 and
anti-CD16 on a FACSCalibur. Percentages indicate purity of the subsets. Plots shown are representative of all isolations. Isolated monocytes are then used for transcriptomic
and proteomics, and the flow diagram shows the numbers of transcripts and proteins identified from transcriptomics and proteomics and the statistical criteria leading to the
identification of the differentially expressed transcripts and proteins. (b) Venn diagram showing the numbers of total differentially expressed transcripts and proteins that
overlapped between the two platforms. (c) Venn diagram showing the numbers of differentially expressed transcripts and proteins related to cell death process that overlapped
between the two platforms
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proteins (Figures 2a and b and Supplementary Tables 1 and 2).
Of which, 24 transcripts and 14 proteins had pro-apoptotic
functions, 29 transcripts and 8 proteins had anti-apoptotic
functions and 3 transcripts and 1 protein had both pro- and anti-
apoptotic functions (Supplementary Tables 1 and 2). A large
proportion of the transcripts (17 out of 24) and proteins
(12 out of 14) with pro-apoptotic functions was expressed at
a higher level in CD16þ monocytes. On the other hand, a
large proportion of transcripts (21 out of 29) involved in
inhibiting apoptosis was more highly expressed in CD16�
monocytes (Figure 2c and Supplementary Tables 1 and 2). The
relative expression levels of a selection of transcripts (TNFa,
CASP5, CASP3, SGPP1, RNF122, CYFIP2, IL-1b, VEGF,
PROK2, immediate early response 3 (IER3), SERPINB2,
ACTN1) and proteins (Bax, Bid and cytochrome c) from the

microarray and proteomics data, respectively, were validated
using real-time PCR (Figure 2d), western blot (Figure 2e) and
flow cytometry (Figure 2f). Validation was performed on
samples obtained from three individuals that were different
from those used in transcriptomics and proteomics.

CD16þ monocytes exhibit higher spontaneous apoptosis
in vitro. To examine whether the higher expression of pro-
apoptotic genes in CD16þ monocytes reflects a greater
tendency to undergo spontaneous apoptosis, isolated
monocyte subsets were cultured in serum-supplemented
medium, and spontaneous apoptosis was determined using
Annexin-V, an indicator of phosphatidylserine exposure
during early apoptosis and TO-PRO3, an indicator of
membrane damage during late apoptosis. In vitro culture

C
D

16
+

C
D

16
-

C
D

16
+

C
D

16
-

Anti-apoptotic

Pro-apoptotic

Pro-apoptotic
Anti-apoptotic

N
o

. o
f p

ro
tein

s

10

15

0

5

15

20

25

0

5

10

Anti-apoptotic

Pro-apoptotic

N
o

. o
f 

m
R

N
A

s

(Donor #)

CD16+
CD16-

C
ou

nt
s

Cytochrome c

CASP3

CASP5

TNF-alpha

IL-1B

CYFIP2

RNF122

SGPP1

ACTN1

SERPINB2

IER3

PROK2

VEGF

CD16-

CD16+

0 1 2 6 73
Relative expression level

C
D

16
-

C
D

16
+

C
D

16
-

C
D

16
+

C
D

16
-

C
D

16
+

Bax

Bid

Actin

CD16+CD16+ CD16- CD16-

1234 1423

1.91 6.42 1.78 5.22 1.00 4.33

1.35 1.98 1.19 1.002.17 2.05

Donor 1 Donor 3Donor 2
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GEPAS. (c) Bar graph representation of the data in panels a and b. Validation of transcriptomics data using real-time PCR (d), and proteomics data using western blot (e) and
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low-expression intensities, respectively
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CD16þ monocytes showed a significantly higher percentage
of both early and late apoptotic cells as compared with the
CD16� subset. A significant difference could be observed as
early as 2 h, 30.6 versus 13.5% Annexin V-positive cells
detected for CD16� and CD16þ , respectively (Figures 3a
and b). The proportion of apoptotic cells in CD16þ
monocytes accumulated at a faster rate as the cells were
cultured for up to 24 h.

To determine the involvement of caspases in apoptosis,
monocyte subsets were cultured for 24 h in the presence or
absence of a pan-caspase inhibitor, zVAD-fmk. As shown in
Figure 4a, zVAD-fmk treatment reduced cell death in both
subsets to a similar extent, indicating that both populations are
dying through a caspase-dependent pathway. When the
activity of downstream caspases were measured in monocyte
subsets cultured for either 3 or 6 h, it was observed that
CD16þ monocytes exhibited significantly higher activities of
caspases 3 and 7 (Figure 4b, lower panel). In fact, the basal
activities of caspases 3 and 7 were also observed to be
significantly higher (Figure 4b, upper panel). Although both
subsets undergo spontaneous apoptosis through a caspase-
dependent pathway, the pathway is more pronounced in
CD16þ monocytes.

The caspase-mediated pathway can occur either through
the death receptor (extrinsic) pathway or through the
mitochondria (intrinsic) pathway. A number of pro-apoptotic
proteins like bax, bid and cytochrome c identified in our study

are mitochondrial proteins and are associated with apoptosis
occurring through the intrinsic pathway. To establish whether
the enhanced apoptosis in CD16þ monocytes occurs through
the intrinsic pathway, mitochondrial membrane permeability
(MMP) was assessed. Using a lipophilic, cationic fluorescent
dye TMRM, a higher percentage of CD16þ monocytes was
observed to have depolarized MMP as compared with CD16�
monocytes across all time points, including cells before culture
(Figure 4c). Similar results were obtained when two other
fluorescent dyes, DiOC6 and JC-1, were used (data not
shown). One hallmark on the loss of MMP is the release of
cytochrome c from the mitochondria into the cytosol. When the
cytochrome c content in the cytosol of the two subsets was
assessed, a greater amount of cytochrome c was observed in
the cytosolic fraction of the CD16þ subset at 6 and 24 h after
in vitro culture (Figure 4d), indicating that the intrinsic apoptotic
pathway is more active in the CD16þ subset.

CD16þ monocytes are less protected from oxidative
stress. GSH metabolism, a biological process related to
apoptosis, was identified in silico to be differentially regulated
in the two subsets. GSH metabolism protects cells from
oxidative damage. Four transcripts involved in GSH
metabolism, namely GSH peroxide 1 (GPX1), microsomal
GSH S-transferase 1 (MGST1), IER3 and thioredoxin
domain-containing protein 1, were observed to be
expressed at a lower level in CD16þ compared with
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Figure 3 CD16þ monocytes exhibited higher spontaneous apoptosis in in vitro culture. (a) FACS analysis to assess apoptosis in isolated monocyte subsets with
Annexin-V and To-PRO3 after in vitro culture for the different time points indicated. Percentages of Annexin-V-positive and Annexin-V/TO-PRO3 double-positive cells with
respect to total cells are indicated in the lower-right and upper-right quadrants, respectively. Data are a representative of at least three independent experiments. (b) Bar graph
showing the percentages of apoptotic cells, that is, Annexin-V single-positive and Annexin-V/TO-PRO3 double-positive cells in the two monocyte subsets cultured in vitro for
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CD16� monocytes (Figure 5a). The differential expressions
of GPX1 and MGST1 were validated by both real-time PCR
(Figure 5b) and western blot (Figure 5c). To determine
whether the lower expression of anti-oxidative genes
implicates that CD16þ monocytes are in a more oxidized
state, levels of reduced GSH versus oxidized GSH (GSSG)
were evaluated in both monocyte subsets. Indeed, the GSH/
GSSG level was 42-fold lower in CD16þ monocytes,
indicating that CD16þ is in a more oxidized state than
CD16� monocytes (Figure 5d). To further investigate
whether the lower expression of anti-oxidative genes would
render CD16þ monocytes more susceptible to oxidant-
induced cell death, the two subsets were treated with
different concentrations of hydrogen peroxide (H2O2) for
either 2 or 4 h. On treatment with H2O2, CD16þ monocytes
exhibited a greater percentage of apoptotic cells than did
CD16� monocytes under all treatment conditions, indicative
of a poorer protection against H2O2-induced apoptosis

(Figure 5e). To confirm that the higher expressions of
GPX1 and MGST1 in CD16� monocytes are rendering
these cells better protection against oxidants, we
investigated the susceptibility of these monocytes to 4 h of
H2O2 treatment after knocking down either GPX1 or MGST1
expression by siRNA. Indeed, the cells became more prone
to H2O2-induced apoptosis relative to cells transfected with
control siRNA (Figure 5f). Similar results were obtained using
two different siRNA sequences for each gene target. The
efficiency of the knockdown was assessed both at mRNA
(Supplementary Figure 2a) and protein levels
(Supplementary Figure 2b) 48 h after transfection. This
showed that the higher expression of anti-oxidative proteins
in CD16� monocytes protected them better against oxidant-
induced cell death than CD16þ monocytes.

CD16þ monocytes exhibit higher rate of aerobic
respiration. As CD16þ monocytes expressed lower
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levels of anti-oxidative genes, we investigated whether they
will display higher intracellular levels of oxygen radicals.
CD16þ monocytes showed a higher basal level of ROS,
as assessed by dichlorofluorescin (DCFH) for general ROS,
by dihydroethidine (DHE) for superoxide anions and by 30-
(p-aminophenyl) fluorescein (APF) for hydroxyl and
hypochlorite radicals (Figure 6a).22

Interestingly, our proteomics data showed that four proteins
involved in aerobic respiration were more abundant in
CD16þ monocytes. They were two isoforms of NADH
dehydrogenase (NDUFA4 and NDUFS3), cytochrome
c reductase (UQCRF) and adenosine 50-triphosphate (ATP)
synthase (ATP5B). These four proteins are components of
complexes I, III or V of the respiratory chain within the
mitochondria. Aerobic respiration is a metabolic pathway
leading to the production of ATP by using energy derived from
the transfer of electrons in an electron transport system.
During aerobic respiration, electrons may leak from various
complexes within the respiratory chain and partially reduce
oxygen to superoxide anions, which are the precursors
of many ROS. The higher expressions of NDUSF3 and

ATP5B in CD16þ monocytes were validated by western
blot (Figure 6b) and corresponded to a greater amount
of intracellular ATP detected (Figure 6c). To determine
whether ROS originate from the mitochondria as a result
of aerobic respiration, MitoSOX was used to detect super-
oxide in the mitochondria. Indeed, CD16þ monocytes
exhibited a higher percentage of MitoSOX-stained cells than
did CD16� monocytes both on isolation (0 min) and after
in vitro culture for 30 min (Figure 6d). These data confirmed
that the notably higher superoxide anion levels detected in
CD16þ monocytes indeed originated from the mitochondria
(Figure 6a). This implies that the higher metabolic activity of
CD16þ monocytes resulted in the generation of higher
intracellular ROS.

Spontaneous apoptosis of CD16þ monocytes is due to
oxidative stress. The higher production of intracellular ROS
together with the lower expression of anti-oxidative genes in
CD16þ monocytes implies that they may be experiencing
oxidative stress. To determine whether the enhanced
spontaneous apoptosis in CD16þ monocytes is attributed

Figure 5 CD16þ monocytes are less protected from oxidative stress. (a) Supervised clustering of transcripts related to glutathione metabolism based on the normalized
expression levels of individual transcripts using GEPAS. Red and blue color on the scale indicates high and low intensities, respectively. Validation of GPX1 and MGST1
expressions in isolated monocyte subsets by real-time PCR (b) and western blotting with b-actin as a loading control (c). The numbers below the western blots are relative
intensity values after normalizing with the actin control. (d) Bar graph showing the ratio of GSH (i.e., reduced state) with respect to GSSG (i.e., oxidized state) in isolated
monocyte subsets. (e) Bar graph depicts the percentages of apoptotic cells, that is, Annexin-V single-positive and Annexin-V/TO-PRO3 double-positive cells in the isolated
monocyte subsets treated for either 2 or 4 h with the indicated concentrations of H2O2 with respect to their respective untreated monocyte subsets. (f) Bar graphs indicating the
increase in the percentages of apoptotic CD16� monocytes that were either knockdown for GPX1 or MGST1 with respect to cells knockdown with siRNA control that were
either left untreated or treated with the indicated concentrations of H2O2 for 4 h. Two different siRNA sequences for each target were used. Data are plotted according to the
formula as shown. All data shown are from at least three different independent experiments and error bars represent S.E.M. ** indicates Po0.01 and * indicates Po0.05
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to the excess intracellular ROS, the cells were treated with
different doses of either N-acetyl-cysteine (NAC) or catalase
to reduce their oxidative state. NAC is a thiol peptide that
replenishes intracellular GSH content,23 and catalase is an
enzyme that catalyzes the hydrolysis of H2O2 to water and
oxygen. Addition of NAC or catalase resulted in a dose-
dependent reduction in the percentage of apoptotic cells in
CD16þ monocytes (Figures 7a and b), indicating that the
higher intracellular ROS level in CD16þ monocytes is the
cause of their higher apoptotic potential.

Discussion

This study reports the identification of a distinct apoptosis-
related gene signature between CD16� and CD16þ subsets
using combined global transcriptomics and proteomics
approaches. CD16þ monocytes exhibited a higher propen-
sity to undergo spontaneous apoptosis because of their higher
expression of pro-apoptotic genes, lower expression of anti-
oxidative genes and higher endogenous ROS levels as a
consequence of their greater metabolic activity. Although
spontaneous apoptosis of human monocytes is known, this is
the first report on a differential spontaneous apoptotic
potential of monocyte subsets.

Monocytes are relatively short lived and undergo sponta-
neous apoptosis in the absence of external survival signals,
such as cytokines, microbial products and adherence.3,24

When monocytes are treated in vitro with proinflammatory
mediators such as TNFa, IL-1b and LPS, their spontaneous
apoptosis could be inhibited.2,3 In vivo, CD16þ monocytes
were observed to preferentially increase in numbers under
numerous inflammatory conditions, such as bacterial sep-
sis,16 hemolytic uremic syndrome,25 HIV infection,17 other
acute and chronic infections,26 cardiovascular disease27 and
autoimmune disorders.18,19 One speculation for the expan-
sion of CD16þ monocytes under these pathological condi-
tions is the enhanced survival of this subset. Ellery et al.
showed both in HIV-infected patients and in an in vitro study
that HIV preferentially harbored in CD16þ monocytes.28

Infected monocytes from HIV patients were found to exhibit an
anti-apoptotic gene signature and were less apoptotic20

because they had an increase in Bcl-2/Bax ratio modulated
through the mitochondria pathway.29

The Fas–FasL interaction has been implicated in the
spontaneous apoptosis of monocytes that mediates through
a caspase-dependent mechanism.5 Our study shows that the
apoptosis of both monocyte subsets were caspase mediated
as apoptosis could be inhibited by zVAD-fmk treatment
(Figure 4a). However, significantly higher basal caspases
3 and 7 activities were detected in CD16þ monocytes, which
further increased upon culture in vitro (Figure 4b). The higher
apoptotic potential of CD16þ monocytes could not be
mediated through Fas or TRAIL because the expressions of
Fas, TRAIL and TRAIL receptors were lower in these cells
than CD16� monocytes (Supplementary Figure 3).

Our data indicated that CD16þ monocytes spontaneously
generated more ROS, which are highly reactive molecules
that have the potential to cause cellular damage and
apoptosis. ROS-induced apoptosis had been well documen-
ted in many cell types, including monocytes.5,30 ROS-
mediated cell death involves mitochondrial depolarization
followed by the subsequent release of mitochondrial
pro-apoptotic factors like cytochrome c.31 We showed in this
study that endogenous ROS participated in the enhanced cell
death of CD16þ monocytes as the reduction of ROS with
NAC and catalase could significantly reduce the proportion of
apoptotic cells in this subset while having only a minor effect
on CD16� monocytes (Figures 7a and b). The source of
endogenous ROS, mainly superoxide anions are generated
from the mitochondria as a result of higher aerobic respiration
in CD16þ monocytes. ROS generated from the mitochon-
dria as by-products of aerobic respiration have been widely
reported.32 The endogenous ROS, higher abundance of bid
and bax proteins, altered mitochondrial membrane potential
and higher cytosolic cytochrome c in CD16þ monocytes
together supported the ROS-dependent cell death mediated
through the mitochondria.

Similar to humans, two monocyte subsets have also been
described in the mouse.13 They are the CX3CR1loGr1þ
(Gr1þ ) and CX3CR1hiGr1� (Gr1�) monocytes, widely
accepted to be homologous to the human CD16� and
CD16þ monocytes, respectively.12,33 Several studies using
CX3CR1-deficient mice reported that Gr1� monocytes could
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not persist in the blood in the absence of signaling through
CX3CR112,14,15 and the expression of the anti-apoptotic gene,
Bcl-2 was also greatly reduced in this subset in these
mice.14,15 When Bcl-2 was overexpressed in CX3CR1-
deficient mice, the numbers of Gr1� monocytes was
preferentially restored even though both subsets exhibited
comparable transgene levels.14 Hence, the authors deduced
that Gr1� cells are more prone to undergo apoptosis than
Gr1þ monocytes.15 The ratio between Bcl-2 and Bax can
determine the survival or death of cells.34 Our data showed
that CD16þ monocytes expressed higher amounts of Bax
and Bid than did CD16� monocytes (Figure 2e), but both
subsets expressed similar levels of Bcl-2 (Supplementary
Figure 4), thereby leading to a lower Bcl-2/Bax ratio, indicative
of a more pro-apoptotic phenotype.

Conversely, CD16� monocytes also appeared to be more
resistant against oxidative stress as shown by their higher
expression of anti-oxidative genes, like GPX1 and MGST1, as
compared with CD16þ monocytes. GPX1 and MGST1
exhibit GSH peroxidase activities and can potentially protect
cells from oxidative damage by lowering intracellular H2O2

levels using GSH as the substrate.35,36 The knockdown of
either GPX1 or MGST1 expression in CD16� monocytes
rendered them more susceptible to H2O2-induced cell death.
There are two possible reasons as to why CD16�monocytes
would harness better resistance against oxidative stress.
First, we previously reported that CD16� monocytes gen-
erate more ROS on encounter with pathogens,21 Hence, it is
reasonable that they should be better protected against
oxidant-mediated cell death. Second, CD16� monocytes
express higher levels of G-CSF receptors on their surfaces,
and are likely to co-migrate with neutrophils in response to
G-CSF to inflammatory sites. At the inflammatory site, they
probably function to clear apoptotic neutrophils through
their higher expression of phagocytic receptors, such as
CD36, C1qR and CD14 to resolve the inflammation
(our unpublished data and Zhao et al.21). In the process, they
will also be encountering oxygen radicals produced by
activated neutrophils. This differential ability of monocyte
subsets to manage oxidative stress is reminiscent to that
reported for NK cell subsets, whereby CD56brightCD16� NK
subsets were more resistant to oxidant-induced cell death
either by exogenous H2O2 or by adjacent phagocytic cells,
such as activated neutrophils. This was due to their higher
anti-oxidative capacity as compared with the CD56dimCD16þ

NK subset.37

Understanding monocyte apoptosis is of utmost importance
under pathological conditions and for the maintenance of
homeostasis. CD16þ monocytes express higher levels of
proinflammatory cytokines such as TNFa and have been
termed ‘proinflammatory’ monocytes (our unpublished data
and Belge et al.38). We hereby propose that humans develop
a self-regulated system through differential apoptosis of
monocyte subsets, in which the numbers of proinflammatory
CD16þ cells are controlled by their pro-apoptotic propensity
in the steady state. During an infection, the survival of CD16þ
monocytes may be enhanced by proinflammatory mediators,
so as to enable them to control the infection. However, once
the condition is under control and the level of proinflammatory
mediators diminishes, CD16þ monocytes may die in the

absence of survival signals, bringing the situation back to
steady state.2 However, the expansion of CD16þ monocytes
may also be detrimental to the host as the high amount of
proinflammatory mediators they produced can result in tissue
damage. Hence, a better understanding of the mechanisms
involved in the differential apoptotic potential of monocyte
subsets will allow us to modulate the enhanced survival of
CD16þ subsets under pathological conditions in which they
contribute to immunopathology and to promote their survival
in situations such as infections in which they help to eradicate
foreign pathogens.

In conclusion, our data support a model in which CD16þ
monocytes have a selective sensitivity to ROS-induced
apoptosis because of lower anti-oxidative capability and an
inherently higher production of endogenous ROS than
CD16� monocytes. The intrinsic control of apoptosis of
monocyte subsets may represent a mechanism to regulate
the CD16þ monocyte subset. Further studies using animal
models may help to provide a better understanding of the
differential apoptotic potential of these monocyte subsets in
in vivo settings.

Materials and methods
Antibodies. The Abs for flow cytometry are CD16 (3G8) (Biolegend, San Diego,
CA, USA), CD14 (61D3) and cytochrome c (6H2) (eBioscience, San Diego,
CA, USA). The Abs for western blotting are Bid,39 ATP synthase beta (10/ATP),
Cytochrome c (7H8.2C12), MnSOD (19/MnSOD) (BD, San Diego, CA, USA),
Bax (127606), NADH dehydrogenase (17D95) (Santa Cruz Biotechnology, Santa
Cruz, CA, USA), GPX1 (Abcam, Cambridge, MA, USA), MGST1 (LS-C36495)
(Lifespan Bioscience, Seattle, WA, USA) and Actin (LV1435643) (Millipore,
Billerica, MA, USA).

Cells. PBMCs were isolated from buffy coats obtained from Health Sciences
Authority (Singapore) using the Ficoll-Hypaque density gradient centrifugation.
Isolation of CD16� and CD16þ monocyte subsets was performed using the CD16
monocyte isolation kit (Miltenyi Biotec, Bergisch Gladbach, Germany) according to
the manufacturer’s instructions with some modifications. In brief, after magnetic
depletion of NK cells and neutrophils, CD16þ monocytes were positively purified
using CD16 microbeads. CD16� monocytes were then isolated from the negative
fraction with CD14 microbeads. For the isolation of subsets by fluorescence-
activated cell sorting (FACS), total monocytes were purified from PBMCs
using CD14 microbeads before they were stained with fluorochrome-conjugated
anti-CD14 and anti-CD16 Abs and sorted according to the gating shown in
Supplementary Figure 1. The purity of the monocyte subsets obtained was
examined by flow cytometry with fluorochrome-conjugated anti-CD14 and anti-
CD16 Abs. Samples used for experiments other than the proteomics and
transcriptomics experiments were obtained from different donors.

Treatments. For apoptosis inhibition, cells were pre-incubated with 20 mM
pan-caspase inhibitor Z-VAD fmk (R&D Systems, Inc., Minneapolis, MN, USA) at
371C for 24 h. For assessing hydrogen peroxide (H2O2)-induced apoptosis, cells
were treated with the indicated concentrations of H2O2 (Sigma, Saint Louis, MI,
USA) for either 2 or 4 h. For inhibition of ROS, cells were treated with catalase
(Calbiochem, La Jolla, CA, USA) for 2 h in the absence of serum and with NAC
(Calbiochem) for 24 h in the presence of human serum.

Flow cytometry. For cell-surface staining, fluorochrome-conjugated Abs were
incubated with cells for 15 min at 41C. To assess cytochrome c levels, intracellular
staining was performed using a fixation and permeabilization kit according to the
manufacturer’s instructions (eBioscience). To assess apoptosis, cells were stained
with fluorochrome-conjugated Annexin-V for 15 min at RT and then To-PRO3 was
added just before flow cytometry analysis. All data were measured on a
FACSCalibur flow cytometer (BD) and analyzed using the FlowJo software (Tree
Star Inc., Ashland, OR, USA).
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Protein identification and quantitation using Q-STAR or
LTQ-Orbitrap MS. Protein identification and quantitation using Q-STAR
(Applied Biosystems; MDSSciex) were performed as described previously.21 The
analysis on the LTQ-Orbitrap MS (ThermoFinnign, San Jose, CA, USA) was
performed as described previously.40 In brief, the re-constituted fractions were
injected and online desalted in a Zorbax peptide trap (Agilent, Palo Alto, CA, USA).
Peptide separation was carried out in a home-packed nanobored C18 column
(75mm ID� 15 cm, 5-mm particles) with a picofrit nanospray tip. The LTQ-Orbitrap
was set to perform data acquisition in the positive ion mode, with a selected mass
range of 350–2000 m/z. The 8 most abundantly charged peptides above a 500-
count threshold from each fraction were selected for MS/MS in both pulsed-Q
dissociation (PQD) and collision-induced dissociation (CID) and dynamically
excluded for 20 s with ±5 m.m.u. mass tolerance. The settings for PQD were a Q
activation of 0.3, an activation time of 30 ms and a collision energy of 60%, whereas
the settings for CID were a Q activation of 0.35, an activation time of 30 ms and a
collision energy of 35%.

Peptide quantification and protein identification were achieved by searching the
data against the concatenated target-decoy IPI human database using the Mascot
server (version 2.2.1). Two missing cleavages were allowed. Precursor ion and
MS/MS fragment ion error tolerances were set to o30 p.p.m. and o0.8 Da,
respectively. Only peptides with a Mascot score of 430 were taken for protein
identification and quantification. For both MS platforms, all proteins reported should
have at least two unique peptide matches with iTRAQ ratios, and at least one of the
matches should have an expectation value o0.05. The false discovery rate (Decoy)
for this search was also o1%.

RNA extraction, real-time PCR, western blotting and
transcriptome data analysis. RNA extraction, real-time PCR, western
blotting and transcriptome data analysis were all performed as reported
previously.21 For real-time PCR, primer sequences are available in
Supplementary Table 3. Triplicates were set up for each target in every run and
results were normalized using the housekeeping gene 18s rRNA.

In silico biological and functional analyses. Three different approaches
were used to explore functional relationships among the differentially expressed
mRNA and proteins identified: DAVID (http://david.abcc.ncifcrf.gov/), Metacore
(GeneGo, https://portal.genego.com/cgi/data_manager.cgi) and IPA (http://www.
ingenuity.com). The list was input into each of the platforms for identification of
biological processes or pathways that differ between the monocyte subsets.
Supervised clustering was performed on normalized expression levels of transcripts
and proteins using GEPAS (http://www.gepas.org).

Caspase 3/7 assay. Up to 2� 105 cells were added to each well of a 96-well
plate and incubated for an appropriate time at 371C in a 5% CO2 incubator. The
activities of caspase 3/7 were measured using the Caspase-Glo* 3/7 assay kit
(Promega, Madison, WI, USA) according to the manufacturer’s instructions, and
luminescence intensity was detected using the GloMax-Multi detection system
(Promega).

Measurement of mitochondria membrane potential. Mitochondrial
membrane potentials were measured by means of DiOC6 (Invitrogen, Carlsbad, CA,
USA), TMRM or JC-1 (Calbiochem). In brief, 1� 106 cells per ml were incubated
with 20 nM DiOC6, 200 nM TMRM or 2 mM JC-1 for 15 min at 371C before the cells
were washed with PBS and analyzed using a flow cytometer.

Isolation of mitochondria and cytosolic fractions. Subcellular
fractions were isolated as described previously.39 In all, 3� 106 cells were
cultured for 0, 6 and 24 h and then disrupted using a 271/2-G needle in isolation
buffer (200 mM sucrose, 20 mM EGTA, 5 mM succinate, 2mM rotenone, 1mg/ml
oligomycin, 20 mM Tris, 20 mM HEPES and 1 mM KH2PO4, pH 7.2). The cell
homogenate was centrifuged at 800� g for 10 min at 41C to remove the nuclei and
unbroken cells. The supernatant was centrifuged at 10 000� g for 10 min, and the
pellet was the ‘mitochondrial fraction’, whereas the supernatant was further
centrifuged at 10 0000� g for 60 min at 41C to obtain the ‘cytosolic fraction’.

Measurement of intracellular ATP. Intracellular ATP was measured using
the ATP bioluminescent assay kit (Sigma) according to the manufacturer’s
instructions. In brief, the reaction vial was pretreated with 0.1 ml of ATP assay mix
solution for 3 min at RT. Next, 0.1 ml of protein lysate from 3� 106 monocyte

subsets was added quickly into the vial, and the amount of light was immediately
measured using a GloMax-Multi detection system. The ATP generated was relative
to the total protein concentration.

Measurement of ROS. For ROS measurement, cells were treated with
10 mM of DCFH-diacetate, DHE, APF or MitoSox Red (Invitrogen) for 15 min at
371C and assessed using a flow cytometer.

siRNA knockdown. The siRNA sequences specific for GPX1 and MGST1, as
well as control siRNA were purchased from Invitrogen. Transfection was performed
according to the manufacturer’s recommendations using lipofectamine 2000 CD
reagent (Invitrogen). H2O2 treatment, real-time PCR and western blot were
performed on cells 48 h after transfection with the respective siRNA.

GSH/GSSG assay. The GSH/GSSG ratio was measured using GSH/GSSG
Ratio Assay Kit (Calbiochem) according to the manufacturer’s instruction with minor
modifications.

Statistical analysis. Data were analyzed for statistical significance either by
independent two sample t-test or one-way ANOVA analysis using SPSS (SPSS
Inc., Chicago, IL, USA). Po0.05 was considered significant.
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