
sensors

Article

Characterization, Statistical Analysis and Method
Selection in the Two-Clocks Synchronization
Problem for Pairwise Interconnected Sensors

Juan-Antonio Fernández-Madrigal 1,* , Angeles Navarro 2 , Rafael Asenjo 2

and Ana Cruz-Martín 1

1 Department of System Engineering and Automation, University of Málaga, 29016 Málaga, Spain;
acm@uma.es

2 Department of Computer Architecture, University of Málaga, 29016 Málaga, Spain;
angeles@ac.uma.es (A.N.); asenjo@uma.es (R.A.)

* Correspondence: jafernandez@uma.es

Received: 14 July 2020; Accepted: 14 August 2020; Published: 26 August 2020

Abstract: Time synchronization among sensor devices connected through non-deterministic media
is a fundamental requirement for sensor fusion and other distributed tasks that need a common
time reference. In many of the time synchronization methods existing in literature, the estimation
of the relation between pairs of clocks is a core concept; moreover, in applications that do not have
general connectivity among its devices but a simple pairwise topology, such as embedded systems,
mobile robots or home automation, two-clock synchronization is actually the basic form of the time
estimation problem. In these kinds of applications, especially for critical ones, not only the quality
of the estimation of the relation between two clocks is important, but also the bounds the methods
provide for the estimated values, and their computational effort (since many are small systems). In this
paper, we characterize, with a thorough parameterization, the possible scenarios where two-clock
synchronization is to be solved, and then conduct a rigorous statistical study of both scenarios and
methods. The study is based on exhaustive simulations run in a super-computer. Our aim is to
provide a sound basis to select the best clock synchronization algorithm depending on the application
requirements and characteristics, and also to deduce which ones of these characteristics are most
relevant, in general, when solving the problem. For our comparisons we have considered several
representative methods for clock synchronization according to a novel taxonomy that we also propose
in the paper, and in particular, a few geometrical ones that have special desirable characteristics
for the two-clock problem. We illustrate the method selection procedure with practical use-cases of
sensory systems where two-clock synchronization is essential.

Keywords: clock synchronization; networked sensor fusion and decisions; sensor applications

1. Introduction

In many sensorics applications, the data gathered by different devices must be fused in order to
perform some task as a whole, e.g., localization [1], monitoring/surveillance [2], remote sensing [3],
and many more (see for example surveys [4,5]). Time synchronization among these sensor devices,
that are usually connected through non-deterministic media, is a fundamental requirement for this
purpose: data from different sources should share a common notion of time, i.e., a unique and
consistent reference clock, in order to be correctly merged.

There are numerous clock synchronization methods devised for general topologies of
transmissions: they can be found almost half a century ago in the case of network computing [6],
and decades ago in the case of wireless sensors [7,8]. All of them consist of exchanging messages

Sensors 2019, 20, 4808; doi:10.3390/s20174808 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1376-7967
https://orcid.org/0000-0002-4140-2589
https://orcid.org/0000-0002-1570-3863
http://dx.doi.org/10.3390/s20174808
http://www.mdpi.com/journal/sensors

Sensors 2019, 20, 4808 2 of 28

among the devices until the estimates converge. The final accuracy of these estimates is subjected
to the inherent uncertainty in communications [9–11]; better average accuracies can be achieved if
probabilistic methods are used, but at the expense of not having hard guarantees for the worst case [12].

In the core of time synchronization methods there is still the problem of synchronizing two
clocks [5]. Solving this problem involves exchanging messages between the devices in order to reach
a shared meaning of time (This is internal synchronization [13], as opposed to external synchronization,
where the clocks are synchronized w.r.t. some time external to the system.). Those exchanged
messages should contain non-decreasing monotonic timestamps of the corresponding local clocks,
to be processed in order to estimate their relation.

There exist several schemes for messaging, e.g., two-way message exchange, one-way message
dissemination, or receiver-receiver synchronization [14]. Methods based on one-way messages only
(Figure 1-bottom-left) are usually designed to take advantage of broadcasting [15–18], which is only
available in general connected networks—sometimes broadcasting has to be implemented at the link
level [12], something that requires significant support from the hardware as well. It is known that with
a pure, non-reciprocal one-way message exchange scheme, it is impossible to estimate the clock offset
and fixed delay precisely [19]. Therefore, the most relevant and meaningful scheme for two-clock
synchronization becomes two-way exchange (Figure 1-bottom-right), that dates back at least to three
decades ago [11]. Notice that in a sensory application it is not complicated to piggy-back sensory
messages with the required timestamps, obtaining such a communication scheme without much
modification to existing software; this fits particularly well in the case where a central device gathers
sensory data from the rest periodically.

m1

m2

ta

tb

universal
time

universal
time

C (t)1 a

C (t)2 b

m time (timestamps taken at m)1

m time (timestamps taken at m)2

m1

m2

ta

tb1 tb2

tc

1

2

universal
time

universal
time

(one way) (two way)

Figure 1. The most common message exchange schemes for clock synchronization: (left) one-way,
(right) two-way. Note that the local time of each device (top) can start at any point in the universal
time line and tick at any rate.

In the two-way scheme, one device (m1) sends a message to the other (m2) and waits for a response;
both record and annotate in their messages the timestamps corresponding to the arrival and departure
of measurements according to their local clocks: C1(ta), C2(tb1), C2(tb2), and C1(tc). After the exchange,
m1, that has gathered the four timestamps, uses them for improving its current estimation of the relation
between both clocks.

That relation, although appearing in the literature under several forms and names, can be
formalized with two quantities: the relative drift, that we denote as αR, which relates the deviations of
the frequencies of both clocks from their nominal values, and the relative offset, βR, that reflects the
difference between their starting times—their zero-time timestamps—conveniently adjusted by their
drifts. Formally, the two-clock synchronization problem can be stated as,

∀t, C2(t) = αRC1(t) + βR + ϕR(t), (1)

where it can be shown that [20],

Sensors 2019, 20, 4808 3 of 28

αR = (r2τ1)/(r1τ2) (2)

βR = (r2/τ2)(t0,1 − t0,2) (3)

ϕR(t) ∈ (−r2, (r2τ1)/τ2 (4)

being the following the basic parameters of the problem formulation:

• r1 > 0, r2 > 0 are the nominal clock periods of both devices;
• τ1 > 0, τ2 > 0 are the actual clock periods;
• t0,1 ∈ R, t0,2 ∈ R are the universal time moments when both devices started their respective clocks;
• ϕR(t) is the error produced by using discrete timestamps.

This formalization is valid as long as we assume that during the typically short time that passes
between consecutive steps of any synchronization algorithm, i.e., between periodic requests from
sensory data, the local clock in charge of timestamping at the i-th device is a linear function of the
“universal time” t ∈ R, i.e., an affine transformation Φi(t) =

t−t0,i
τi

. The result of this function can be
discretized to model the timestamp (also inducing ϕR(t)) in this way: Ci(t) = ribΦ(t)c, ∀t > t0,i.

Sufficient stability of τi in short periods of time has been recognized by several studies [21]
(Typical crystal oscillators are accurate on the order of one part in 104 to 106 [12], although some
authors have reported wider ranges, from −750 ppm to 750 ppm [21]. These frequency accuracies
are known to be related to the possible bounds of the clock skew.), although there are algorithms that
have explored more sophisticated models [18,22] and coped in a natural way with the variation of
frequency (named skew) through signal processing [14]. However, these approaches do not provide
hard guarantees due to their statistical nature. Note that, if required, variations in τi can be treated
in deterministic methods without changing their fundamental design, for instance through moving
windows on the sequence of two-way messages [12,23].

Far from being a simplistic view if considering generally connected systems, the two-clock
synchronization problem explained so far, which is the focus of this paper, is of paramount importance
in applications whose transmissions do not form arbitrary topologies but consist of a number of sensor
devices transmitting data only in pairs—often wired—for instance, the sensory apparatus of a mobile
robot, the set of sensors in a factory cell, remote surveillance applications, or home automation.

The primary interest when performing pairwise clock synchronization, especially for small and
critical applications, lies in:

1. The quality of the estimation: accuracy and precision.
2. The existence of hard guarantees, i.e., strict bounds, in the resulting estimates, particularly

important for critical systems.
3. The applicability of the methods to the special needs of these systems: limited computational

cost, the shape of the transmission delays distributions, etc.
4. The number of estimated parameters that relate both clocks.

Providing hard guarantees on the estimates (point 2) and, simultaneously, a reasonable accuracy
and precision in the results (point 1) is a complex matter, especially if we are also interested in the
topics highlighted in point 3 above, as it happens in many pairwise applications. In this work, we aim
to analyze all of these aspects from a practical perspective.

Due to the large number and diversity of existing clock synchronization methods, the first
contribution of this paper is a concise taxonomy focused on the points of interest listed above, i.e.,
aimed at sensory applications where two-clock synchronization is sufficient. We have placed diversity
of existing algorithms into that taxonomy, and, based on that, selected a number of representative ones
for the subsequent study.

Sensors 2019, 20, 4808 4 of 28

Due both to the diversity of algorithms and the difficulty of deducing analytically, in closed-form,
their performance (some methods do offer analytical results for their bounds, but most do not have
any analytical form for their average results, for instance), the second contribution of this paper
is a statistical, yet rigorous, analysis of both methods and scenarios. We characterize pairwise
synchronization scenarios with a number of parameters chosen to reflect a diversity of applications,
ranging from clock frequencies to transmissions delays. For gathering data for the statistical study,
we have carried out exhaustive simulations in a super-computer —they would have been difficult to
run in a reasonable time and with the same thoroughness in conventional machines—, from which we
have drawn a number of conclusions.

Our study of the simulation results includes a statistical comparison, based on ANOVA [24],
of the performance of the selected methods in that variety of scenarios. We use a number of measures
of performance for our comparisons, strongly related to the previously-listed aspects of the quality of
the estimates, computational cost, etc. This statistical analysis has identified which method performs
better in each aspect, but also which parameters of the scenario, i.e., the particular sensory system,
have the strongest influence on these measures.

Finally, and using these results, we also contribute with some guidelines to select the best
synchronization method for each situation, and illustrate them with a number of practical sensory
applications where two-clock synchronization appears.

The main contributions of this paper are, in summary:

• A taxonomy of methods defined from the perspective of the essential aspects of two-clock
synchronization applications listed above.

• A highly parameterized and detailed characterization of scenarios where two-clock
synchronization can be carried out.

• A rigorous, thorough statistical comparison of a number of representative two-clock
synchronization methods run in simulated environments synthetically generated from the
previous characterization and evaluated with a set of performance measures that cover their
applicability, quality of estimation and existence of hard guarantees.

• A study of which characteristics in the sensor scenario are statistically relevant for the two-clock
synchronization problem and guidelines to select the best synchronization method for a given
distributed sensor system, illustrated with some practical use cases.

The structure of the rest of the paper is as follows. Section 2 gives an overview of the two-clock
synchronization problem, introduces a concise taxonomy of methods applicable to synchronize pairs
of clocks—even when many were devised originally for general networks—that is focused on the most
relevant aspects of pairwise systems, and justifies the choice of the representative algorithms used in
further comparisons. Section 3 describes the simulation framework, the statistical results obtained
with it and their use in practical cases. Finally, we highlight the main conclusions of this work and
outline future lines of research.

2. Related Work and Synchronization Methods

In this section we propose a taxonomy of existing synchronization methods from the perspective
of two-clock synchronization, also describing briefly those selected for the analysis of later sections.

In order to classify the existing methods that can be used for synchronizing two clocks according
to the most relevant aspects for pairwise systems, explained in the introduction, we propose,
in the following, a concise taxonomy (regarding the wide diversity of existing methods) formed
by distinguishing whether the method:

1. produces some measure of uncertainty along with the estimates. Many methods do not
produce any uncertainty measure and therefore the degree of belief in the estimate cannot
be completely assessed [6,11,12,15,18,21,23,25,26]. In the case of those that use consensus in a

Sensors 2019, 20, 4808 5 of 28

network, some measure of their convergence to a common clock may exist, but that does not
indicate the precision of such a clock either [4,16,17].

2. provides hard guarantees on the estimates versus soft guarantees or none at all. The former are
so-called deterministic; they focus on the worst-case performance, some of them giving those
guarantees for both αR and βR [25,27,28], others only for βR [4,11,15,23] or indirectly [13,29].
Notice that hard guarantees lead to a measure of uncertainty in the estimates: the bounds can be
interpreted as the extremes of a uniform distribution. On the other hand, methods that provide
soft guarantees are so-called probabilistic and focus on the average performance [22,26], having
usually better expected estimates than deterministic methods (e.g., microseconds vs. milliseconds
errors [28]). Finally, among the methods that do not include in their design any guarantee on the
accuracy or precision of their estimates are [12,16–19,21].

3. does not impose any particular constraints in transmission delays or in other aspects of the
system. For instance, some methods assume bounded delays [4,11,15], particular forms for
their probability distributions [19], or knowledge about their moments [26]. Assuming also that
a bounded clock drifts [6,11,15,26–28] and/or offsets [6], or very short nominal clock periods w.r.t.
network delays [26], is common and reasonable. Sometimes, an useful assumption is symmetric
communications [11,13,23], i.e., the same delays in both directions of transmissions.

4. provides estimates for both αR and βR versus only one. The methods providing both estimates can
do it either directly [19,25,27,28] or indirectly [13,18]. The latter typically estimate βR [11,15,23],
and only in rare occasions restrict to αR [21]. Notice that, if the synchronization process is repeated
frequently, estimating only βR can be enough; αR becomes useful if synchronization is not so
frequent, since it permits to predict the evolution of other devices clocks without communicating
with them [27].

Items 1 and 2 are related to the quality of the estimates, while items 3 and 4 define the kind
of situations where the synchronization can be used. To this concise taxonomy we could add the
computational cost axis, but that can be roughly simplified by the fact that deterministic methods tend
to be more computationally demanding than probabilistic ones, mainly because the latter are usually
devised for networks with not very powerful computing devices. Notice, though, that the availability
of hard guarantees, only available in the former, is relevant for many pairwise systems.

Since comparing and analyzing the performance of every method referenced above is out of our
possibilities, we have selected for the study in this paper a reduced number of algorithms that cover
well the variety defined by the proposed taxonomy. We briefly comment on them in the following.

The well known NTP [23] is relevant for its pervasivity in computers connected to the Internet,
for its low-cost implementation, and for representing many approaches designed in the mid-nineties
for wired networks. It consists of diverse modules, among which there is a very efficient algorithm to
estimate the relative offset of two clocks, i.e., βR. NTP does not estimate αR, but disciplines clocks for
achieving αR ' 1. The offset estimation algorithm works with a moving window for better adapting to
changing drifts. It does not provide any measure of uncertainty in the estimate, but it usually achieves
millisecond precision [22]. Its estimations assume symmetric communications. An evolution of NTP is
PTP (“Precision Clock Synchronization Protocol”, IEEE standard 1588 [30]); although this protocol can
provide much better synchronization than NTP (below microseconds [22]) under the same symmetry
assumption, it is used in special-purpose industrial automation and measurement networks since it
requires specific hardware (e.g., high-speed Ethernet LAN) with automatic timestamping, which is
prohibitive for most pairwise systems.

Berthaud’s algorithm [27] is an excellent representative of the so-called “geometrical”
approaches [19,25,27,28], built upon earlier frameworks (The use of convex polygons and estimation of
clock functions as tangents to them was first proposed by [31], according to [28].) like [32], who exploit
an intuitive spatial interpretation of the mathematical synchronization problem. Such a geometrical
perspective is attractive because a linear bi-parametrical setting based on unknowns αR and βR,
along with linear constraints existing between time measurements gathered in successive message

Sensors 2019, 20, 4808 6 of 28

exchanges, can serve to define polygons in a mathematical plane that provide the hard guarantees:
the true values of the unknown parameters, i.e., a point, must lie within them. That point varies
as successive messages shrink the polygons, ensuring convergence to the final estimate. Berthaud’s
algorithm is “indirect” since it defines the mentioned polygons in the plane of measured local times
instead of the αR/βR plane. An issue with this is that once a suitable bounding region is defined on the
former, the estimates for the parameters αR and βR must be deduced through additional mathematical
transformations and therefore computational cost. Another one is that even when hard bounds are
provided for the estimates, they can usually only be transformed into rectangular intervals in the
αR/βR plane, ending in very conservative guarantees (larger uncertainties). Moreover, Berthaud’s
method assumes a maximum value for the relative drift and of constant drifts during estimation—the
latter is easily relaxed if the method uses a moving window of messages. Its computational cost is
generally high.

The geometrical algorithm presented in [20], that can be abbreviated as DGP for Direct Geometrical
Pairwise synchronization, shows similar features in the estimation of αR and βR as that of Berthaud’s,
but it runs a more computationally efficient procedure due to its direct work on the αR/βR plane.
One of the first “direct” geometrical approaches was [19], that reported a nice statistical solution
in the form of maximum likelihood estimator, however without hard guarantees and under the
assumption of a very particular form for the probability distribution of the communication delays
(exponential), specifically aimed at wireless sensor networks. In general, communication delays, that
are the composition of diverse terms [12], are likely to be produced by heavy-(right)tailed distributions
such as the lognormal [33,34] or the log–logistic [35]. Thus, a less restricted approach is needed which
is applicable to pairwise systems. The DGP method that we include in this study does not require any
particular form for the delays distribution and includes hard guarantees along with the estimates [20].

We also include in our comparisons a variant of DGP called DGP-α1: it assumes, as an additional
restriction, that αR = 1, i.e., that both clocks have equal drifts, and thus it only estimates βR. This can
be a reasonable assumption in systems where the pairs of devices are placed within a relatively small
physical area (embedded systems) and thus share similar environmental conditions, and/or when
they are mounted with similar quality components. Systems that use some clock disciplining (whose
result will be the regulation of αR around a desired value of 1), for instance, those that include NTP,
can be a proper base for this variant. In all those situations, the results of this method are even more
computationally efficient than DGP while providing comparable quality—achieving a performance
that is quite close to the fastest, non-polygonal synchronization algorithms—while maintaining the
quality of the estimates and the hard guarantees of geometrical approaches.

Finally, linear regression is a very simple and efficient approach to estimate the relation between
two clocks, and it has been used by several time synchronization methods (e.g., FTSP [36]), especially
in wireless sensor networks, where the computational power is limited [12]. Due to its nature, it cannot
provide any guarantees or measures of uncertainty in the estimates, though it can serve for estimating
both αR and βR and it does not impose special constraints on the system (again, it can be adapted
to working with a moving window of messages to increase its robustness against changes in drifts).
Among its disadvantages, it is recognized in the literature that regression alone is not enough for
performing a good estimation [21]. We include it here as a simplistic reference for several measures
of performance.

3. Statistical Analysis of Methods and Systems

This section is structured as follows. In Section 3.1 we describe both the simulation and the
statistical frameworks devised for analyzing methods and systems in the pairwise synchronization
problem statistically. Section 3.2 is devoted to the study of how the pairwise system characteristics
influence the synchronization results, particularly the average performance of synchronization,
and Section 3.3 to the comparison of the methods. Finally, in Section 3.4 we provide guidelines based

Sensors 2019, 20, 4808 7 of 28

on these results that serve to choose the best clock synchronization method for a given application,
and illustrate that selection with practical examples.

3.1. Overview of the Simulation and Statistical Frameworks

We have designed a simulation framework both to have a reference true value of (αR,βR) with
respect to which we can measure the quality of the estimates, and to easily set up a wide diversity of
pairwise sensor systems (scenarios) where the methods described in Section 2 are run a large number
of times for their performance to be statistically compared.

Our framework is based on a thorough parameterization of scenarios: it allows us to set a
number of configuration axes at different independent positions in order to define the particular
scenario to test (see Table 1). The first five axes configure the true clock relation existing between
the two devices, m1 and m2, i.e., they completely set αR and βR, while the rest configure the
transmission and execution characteristics of the pairwise application. For simulating round-trip
times realistically we use a three-parametric log–logistic distribution, that has shown better modeling
capabilities of actual round-trip times than other marginal probabilistic models in a variety of real
networked systems [35–37]—it is more flexible than the log-normal, and can approach heavy-tailed,
exponential-like and even Gaussian-like distributions very closely.

Table 1. Configuration axes for defining a pairwise scenario in simulation. ri is the nominal clock
period and τi the actual one.

Axis Name Explanation Extremes

1 τ1 True value of the period of m1. 2:100 (ns)

2 τ2 True value of the period of m2. 2:100 (ns)

3 α1 True value of m1 clock drift, i.e., r1/τ1. 0.5:2

4 α2 True value of m2 clock drift, i.e., r2/τ2. 0.5:2

5 βR True value of βR in seconds. −600:600

6 EMrt Expected and minimum values for the
round-trip time (total time in a two-way
message exchange).

0.001:1 (s)

7 PEnet/m2
Proportion of the expected and minimum
transmission time within a round trip (the
execution time in m2 accounts for the rest).

0.01:0.99

8 Symmetry Proportion of m1 → m2 expected and
minimum times within the transmission
time (m2 → m1 accounts for the rest).

0.5:1

9 Vrt Variance in the round trip times. 4:40 (ms2)

10 PVnet/m2
Proportion of the variance of transmissions
w.r.t. the variance of m2 execution times.

0.01:0.99

11 Gap Delay between consecutive two-way
message exchanges.

0.001:0.1 (s)

We can independently define any continuous position in each axis within two given extremes.
We have chosen for our experiments extreme values that cover a wide variety of pairwise systems
(last column of Table 1). For instance, most microcontrollers for embedded systems in the market
use clock frequencies in the range of tenths-hundreds of MHz, thus we have set extreme values
in the axes to explore scenarios that have clocks ranging from 10 MHz to 500 MHz. Since clock

Sensors 2019, 20, 4808 8 of 28

drifts can vary a lot—although they are normally kept in low values—we have considered nominal
period deviations from those clocks (αi) going from a half to double. Starting times of clocks can
occur very diversely; we have considered an accordingly wide range of offsets (βR): within ±10 min.
The delays inserted between consecutive two-way message exchanges, something that the programmer
may choose in wide ranges too, have been set from 1 ms to 0.1 s. The proportions defined by axes
PEnet/m2

and PVnet/m2
have been set slightly away from both 0 and 1 just to avoid degenerate cases

of instantaneous times, but otherwise, they cover all the possibilities. Notice that the Symmetry axis
goes from 0.5 to 1 instead of 0 to 1 because for the formal specification of the clock synchronization
problem the asymmetry existing between communications in the m1 → m2 and m2 → m1 directions
is not distinguishable, i.e., it does not matter where the longer delay occurs; again, the chosen range
covers all the possible situations.

We also impose two additional, minor constraints on the scenario defined by the position of the
configuration axes: ri must be multiple of 1 ns (we work with timestamps that have 32 bits seconds
and nanoseconds parts, which is common in general-purpose operating systems), and the minimum
one-way time and the minimum execution time in m2 are both lower-bounded by 1 µs (Although
modern computers reach nanoseconds in effective—average—computation time and define data
structures with such resolution for storing timestamps, that is not achieved reliably due to the high
dispersion caused by inner CPU modules such as caches, branch predictors, reorder buffers, and
because of the bottlenecks of I/O hardware and OS software.).

Once the configuration axes are assigned concrete values, i.e., a particular scenario is completely
defined, the framework can simulate a number of two-way message exchanges between m1 and
m2 (the first ta is taken as max(t0,1, t0,2) + Gap), launch the synchronization algorithms on these
exchange messages, and calculate a number of performance measures. A sequence of two-way
message exchanges in a given scenario is there alled an experiment. We ran experiments of 1000
two-way exchange messages, which was long enough for all algorithms to settle their estimates except
for rare cases of divergence.

The performance measures we use on each experiment are defined in Table 2 according to the four
points of interest listed in the introduction section:M1 andM2 are related to the speed of convergence
of the algorithms;M3 andM4 give the quality of their estimations;M5 throughM8 measure the
computational cost in different forms; finally,M9 throughM12 measure the amount of uncertainty
associated to the estimates (some algorithms do not provide such information).

ForM1 andM2 we use a procedure for detecting steady-state entry that is based on a smoothed
derivative of the sequence of estimates: once that the derivative (slope) falls in absolute value below
a certain threshold, i.e., the estimate becomes flat enough, and never grows above the threshold again,
the algorithm is considered to be steady for that estimate. The rest of the measures are calculated with
the last S iterations of the algorithms within the experiment, i.e., when it is reasonable to assume that it
has reached steady-state; we have set S = 10% of the total number of iterations within the experiment.

For the statistical analyses of both Sections 3.2 and 3.3 we have simulated all the scenarios resulting
from possible combinations of the two extreme positions of the axes of Table 1, doing a large number
of experiments (2000) in each scenario. Then, we conducted an ANOVA on the collected measures
(transformed by a log operation for improving the normality of the data [24] and analyzing each
measureMi separately). Doing 2000 experiments per scenario allows us to obtain both high statistical
power and a truthful model of the underlying probability distributions, and also to have enough data
to form smaller subsets if ANOVA uses blocking, i.e., if it needs to split data. Since such a high power
makes small differences in averages distinguishable for the ANOVA even when they are not actually
that different, we also used ω̂2 in our analysis, a measure of association strength, considering very
relevant a strength ω̂2 > 0.1—a threshold commonly used for representing medium/large strength in
other contexts [38].

Sensors 2019, 20, 4808 9 of 28

Table 2. Performance measures calculated in each experiment.

Label Name Explanation

M1 αR−entry Number of two-way message exchanges needed to reach steady-state in
the estimation of αR.

M2 βR − entry The same in the estimation of βR.

M3 αR − error Average error in the estimation of αR.

M4 βR − error Average error in the estimation of βR.

M5 vertex−mode Mode of the number of vertices (only in polygonal algorithms).

M6 vertex−max Maximum number of vertices (idem).

M7 comp Average execution time of one iteration of the algorithm (secs).

M8 std− comp Standard deviation of the execution time of one iteration of the algorithm.

M9 area Average steady-state area of the polygons (average area of the rectangles
formed by the hard guarantees in αR and βR for the case of Berthaud’s).

M10 diag The same for the average diagonal length of polygons/rectangles.

M11 αR − uncert Average steady-state uncertainty in αR, i.e., distance between its bounds
in hard guaranteed algorithms.

M12 βR − uncert The same for βR.

Although so many configuration axes give us great flexibility and fine control when simulating
a diversity of scenarios, this becomes an issue regarding the time for running our exhaustive
simulations. Even considering only the two extreme positions for each axis, as we have explained
above, we got 211 = 2048 possible combinations (scenarios); simulating one scenario out of the 2048,
i.e., running 2000 experiments in it, having each experiment 1000 two-way message exchanges and
launching the clock synchronization algorithms after each message exchange, takes around 1.2 h in
a PC with an Xeon Intel processor @2.6GHz. This amounts to almost three and a half months of
expected full-time computation for all the 2048 scenarios (We have implemented the code in Matlab
and then generated self-contained executables with mcc. Coding directly in C or C++ would reduce
the execution time by a small constant, which would not lead to a manageable total time either).

Our solution to this issue has been to work with the Picasso super-computer of the University
of Málaga, that has completed all experiments for the 2048 scenarios in about 5 and a half hours, so
we got a speed-up of almost 87x w.r.t. the sequential execution (This factor actually depends on the
workload of the super-computer when the experiments are launched. These savings represent the
case when all the experiments are run once, but we had to repeat the execution several times while
debugging the code. All in all, we can estimate an approximate total reduction from more than a
year of sequential work to less than one day). At the time these experiments were launched, Picasso
delivered 74 TFLOPS and featured 4016 CPU cores (Intel E5-2670 processors at 2.60 GHz), 22.4 TB
of RAM and 750 TB of disk. Its interconnection network is based on Infiniband QDR/FDR, and its
work queue system, which allows us to submit several jobs at the same time, is based on Slurm [39].
Actually, we rely on Slurm array jobs in order to automatically enqueue all the 2048 scenarios with a
single Slurm batch script, that contains:

#SBATCH --array=1-2048

Sensors 2019, 20, 4808 10 of 28

The 2048 jobs are enqueued into one of the Picasso batch queues. Each job had access to its job_id
via the SLURM_ARRAY_TASK_ID environment variable and therefore can simulate a specific scenario
defined by that id.

3.2. Results (I): Influence of the Scenario on Clock Synchronization

We have first analyzed the data produced by the statistical simulations described in Section 3.1 to
study which configuration axes of Table 1, i.e., which characteristics of the pairwise system scenario
have a relevant influence on the measures of Table 2, unregarding the synchronization algorithm. Since
some algorithms work with both αR = 1 and αR 6= 1 but others only with the former, we perform
separate analyses in the cases where the sets of applicable algorithms differ.

For this study, we have designed a between-within balanced ANOVA [24] for each configuration
axis of Table 1, in which all experiments are divided into two blocks (the between factor) corresponding
to each of the extreme values for that axis. Within each block, we merge the results of all the
applicable algorithms. Our goal is to detect whether there are statistically significant differences in the
average values of the measuresMi of Table 2 when a fundamental characteristic of the application
scenario—axis—changes from its minimum to its maximum.

The results are collected in Tables 3–5, where performance measures (first column) and
configuration axes (gray shaded columns) are shown, except for those producing very insignificant
results (ω̂2 < 0.01). Each entry (Mi, axisj) shows, separated by ‘:’and rounded to the closest integer
in its range whenever possible, the average value of the i-th measure obtained with the j-th axis at
its minimum and at its maximum extremes respectively. We have highlighted in bold those that are
above the association strength threshold ω̂2 = 0.1, which are considered greatly relevant, while the
ones with a modest relevance, i.e., ω̂2 ∈ [0.01, 0.1), have been left in regular face.

Table 3. Effects of the scenario on clock synchronization—clocks. Bold values are very relevant, as
explained in the main text.

Mi αR α1 α2 βR

αR − entry (# msgs) 225:120 120:225

βR − entry (# msgs)
1 32:39 32:39 67:9

6= 1 135:21

αR − error (millionths) 6:2 2:6

βR − error (thousandths)
1 29:116 29:116 73:72

6= 1 117:30 30:117 74:73

comp (µs) 240.4:240.3 242:239

area (thousandths) 1.9:0.5 0.2:2.1

diag (thousandths) 287:647 633:301

αR − uncert (millionths) 1386:346 346:1386

βR − uncert (thousandths)
1 183:531 183:531 423:290

6= 1 647:287 287:647 633:301

Sensors 2019, 20, 4808 11 of 28

Table 4. Effects of the scenario on clock synchronization—delays.

Mi αR EMrt PEnet/m2 Symmetry

αR − entry (# msgs) 128:209 171:241

βR − entry (# msgs)
1 18:55

6= 1 36:111

αR − error (millionths) 3.8:4.4 0.4:7.8

βR − error (thousandths)
1 1:143 1:142 2:141

6= 1 1:147 1:146 2:146

vertex−mode (# vertices) 15:18 15:17 14:18

vertex−max (# vertices) 18:21 19:21 17:22

comp (µs) 238:243 232:249

area (thousandths) 0.02:2.29 0.0001:2

diag (thousandths) 49:884 8:926

αR − uncert (millionths) 254:1478 15:1717

βR − uncert (thousandths)
1 20:693 6:708

6= 1 49:884 8:926

Table 5. Effects of the scenario on clock synchronization—variances.

Mi αR Vrt Gap

αR − entry (# msgs) 189:142

βR − entry (# msgs)
1

6= 1

αR − error (millionths) 2:6 6:2

vertex−mode (# vertices) 17:15

vertex−max (# vertices) 21:19

area (thousandths) 1.2:1.1

diag (thousandths) 497:436

αR − uncert (millionths) 1024:708

βR − uncert (thousandths)
1

6= 1 497:436

Our main findings can be explained from the content of those tables as follows:

• Estimating the relative drift of both clocks (αR) is faster (converges after fewer message exchanges)
when round-trip times are short, i.e., when both communications and execution times in m2

are short.
• Estimating the relative offset of the clocks (βR) is faster if βR > 0, i.e., when m1 starts its clock

after m2 (or, equivalently, if t0,2 < t0,1), and also when round-trip times are short.
• The error estimating the relative drift (αR) is smaller in scenarios where the expected delay in

communications is shorter than the expected execution time in m2 (i.e., when PEnet/m2
is small),

and also when the gap between consecutive message exchanges is longer. Notice that the second

Sensors 2019, 20, 4808 12 of 28

condition, in principle, can be manipulated in any algorithm, since the gap is defined by the
program in charge of message exchanges, although at the cost of needing a longer time to converge
when it is increased.

• The error in estimating the relative offset (βR) is smaller in three situations: when the round-trip
times are shorter, when the communications delays are shorter than the execution times in m2,
and when the communications are symmetric in both m1 → m2 and m2 → m1 directions. Devices
connected point-to-point with a high-speed full-duplex link, for instance, are likely to satisfy all
of these.

• Differences detected in execution times of the algorithms when exposed to different scenarios are
not highly significant, but in the case of geometrical methods, they are slightly more efficient in
the number of polygon vertices in symmetric communication scenarios. Another result is that the
number of vertices is kept around tenths, corroborating a hypothesis stated in [20].

• The total amount of uncertainty in geometrical algorithms, either measured as polygon areas
or diagonals (M9, area and M10, diag), and also the isolated amount of uncertainty in αR
and βR (which is not only produced by the geometrical algorithms), or, in other words, the
inaccuracy of the algorithms, is smaller in scenarios with shorter round-trip times and with faster
communications compared to the execution times in m2.

• The clock drifts in m1 and m2, and the amount of uncertainty in the round-trip times, only produce
modest effects in the synchronization problem: nominal periods in m1 longer than the actual ones
are of benefit for the convergence speed in the estimate of αR, for the error in that estimate, for the
error in the estimate of βR in the case αR 6= 1, and for the amount of uncertainty in the estimation
of both αR and βR if αR 6= 1; on the contrary, nominal periods of m2 shorter than the actual ones
are good for obtaining faster convergence in the estimate of αR, for the error in that estimate,
for the error in the estimate of βR, and for the amount of uncertainty in both estimates; last but
not least, deterministic scenarios, where variance in the round-trip times is smaller (including
communications and execution times), produce smaller errors in the estimate of αR.

• None of the explored scenarios produce a detectable difference in the dispersion of execution times
of the algorithms (M8, std− comp), thus this is not shown in the tables. That jitter is not expected
to be significantly influenced by the scenario, only by the CPU and OS executing the algorithms.

• Finally, τ1, τ2 (true periods of clocks) and PVnet/m2 (proportion of variance in transmission delays
w.r.t. the one in execution times in m2) have no detectable influence in the process of clock
synchronization.

3.3. Results (II): Comparative Performance of Synchronization Methods

In this section, we show the results obtained in the simulated experiments described in Section 3.1
when comparing the methods for clock synchronization to each other. We are interested first in
ordering the methods according to their average performance measures.

For that purpose, we have made a between-within balanced ANOVA design for each measure
defined in Table 2. This time we have used the clock synchronization methods as treatments (within)
and split the experiments data into blocks (between) aimed at optimising the unimodality of the data
and therefore the reliability of the ANOVA. Doing this clustering, i.e., finding the blocks that exhibit
optimal unimodality, involves two problems: potentially searching among all possible subsets of
scenarios and calculating in each one some measure of unimodality.

Regarding the latter, we have used the Hartigan’s DIP statistic and its significance for the empirical
pdf [40], for which public implementations exist [41]; the significance level of that test has been set to
0.001 to minimize the number of false-positive (apparent but not actual unimodal blocks).

The former subproblem (searching among all possible subsets of scenarios) is harder: the number
of subsets of a given set is exponential in the cardinal of the latter, and, in this case, if we use as a
basis for blocking the axes positions in the experiments, intractable (22048). For addressing that issue,
we have implemented a heuristic search for optimizing the unimodality of the blocks that works

Sensors 2019, 20, 4808 13 of 28

like this: start with blocks produced by combinations of only the configuration axes that have some
significant effect in the given performance measure (these axes have been identified in Section 3.2) and
then perform hill-climbing by adding new varying axes, therefore increasing the number of blocks
until no better unimodality is obtained for all of them. In practice, this method has worked very well
except in a few cases where it stuck in local minima with poor unimodality; there we have mixed the
automatic heuristic with an interactive, manually guided search.

The between-within designs formed in that way have passed two different statistical analyses to
assess an ordering among the clock synchronization methods. The first one is a Tukey’s comparison [42],
that, provided that an ANOVA test obtains strong enough results (high ω̂2), deduces a statistically
significant pairwise ordering. The second one consists of comparing each method results in each
individual experiment to the results of the other methods, and tallying the proportion of times that the
former is better (this has been called Common Language Effect Size(CLES) [24]). The CLES ordering
can be interesting for particular applications, and it provides an alternative when the strength of the
ANOVA results is not enough.

Notice that the number of possible orderings that can arise when comparing n synchronization
methods to each other ranges from 2 (if n = 2) to 120 (n = 5), which is too much information that
should be condensed to be properly understood. For simplifying those results, Table 6 shows only
the best method in the ANOVA ordering, and Table 7 the best one in the CLES ordering. Algorithms
are (gray shaded columns): DGP, Berthaud’s (B’s), DGP-α1, NTP, and regression (Reg). Each entry
(Mi, algj) in the tables shows the percentage of blocks in the design where the j-th algorithm ranks
the absolute best in the i-th measure. Notice that a method not ranking the best does not mean that it
cannot be the best for particular scenarios, as we will see in more detail in the next section.

In Table 6 all the results except the αR − entry measure for the B’s method have high significance
with association strength greater than or equal to the 0.1 threshold. In both tables we use a light orange
background for those algorithms that are the best in more than the 50% of the blocks; notice that the
highlighted cells are mostly the same in both tables. Algorithms that cannot run or are not meaningful
for a measure or αR class have been left empty.

Table 6. Orderings of the algorithms (ANOVA).

Mi αR DGP B’s DGP-α1 NTP Reg

αR − entry 37.5 0 62.5

1 18.8 0 12.5 62.5 6.3
βR − entry

6= 1 75 0 25

αR − error 55.5 0.8 43.8

1 6.3 2.3 79 0 12.5
βR − error

6= 1 62.5 12.1 25.4

vertex−mode 100 0

vertex−max 100 0

comp 0 0 0 100 0

std− comp 0 0 0 100 0

area 100 0

diag 100 0

αR − uncert 100 0

1 0 0 93.8 6.3
βR − uncert

6= 1 100 0

Sensors 2019, 20, 4808 14 of 28

Table 7. Orderings of the algorithms (CLES).

Mi αR DGP B’s DGP-α1 NTP Reg

αR − entry 25 0 75

1 65.6 0 12.5 21.9 0
βR − entry

6= 1 59.4 0 40.62

αR − error 55.5 0.8 43.8

1 6.3 10.9 68 0 14.8
βR − error

6= 1 57.4 16.4 26.2

vertex−mode 100 0

vertex−max 100 0

comp 0 0 100 0 0

std− comp 0 0 0 100 0

area 100 0

diag 100 0

αR − uncert 100 0

1 8.1 0 91.9 0
βR − uncert

6= 1 100 0

The main results of these tables can be explained as follows:

• In general, methods DGP and DGP-α1 ranked first in a large number of scenarios and measures.
Particularly, they are the absolute best (the best in all scenarios, with strong statistical significance)
concerning the amount of uncertainty in the estimates, regardless of how we measure that
uncertainty. They are also the best considering the estimate error for the majority of scenarios.
In the estimate error of βR when αR = 1, all the algorithms find special difficulties to outperform
the others.

• B’s method did not ranked first in any measure, although, as we will see in the next section, it
is the best in particular kinds of scenarios. Concretely, DGP outranks it with strong statistical
significance when measuring the complexity of the constructed polygons in all orderings and
cases (scenarios), i.e., in the computational effort of the geometrical paradigm.

• NTP ranks first, with strong statistical significance and in a majority of scenarios, in the speed
of convergence (# of message exchanges to reach steady state) in the estimate of βR, a measure
where, if αR = 1, all algorithms find difficulties to outperform the rest. In those cases where it
cannot be used (i.e., when αR 6= 1), it is the DGP method the one of choice. The smallest expected
execution time (M7, i.e., comp) corresponds to NTP with strong statistical significance in all
scenarios, although when comparing each scenario individually (CLES) the best is the DGP-α1
variation. NTP always has the smallest jitter in execution times (std− comp).

• Regression only stands out in the speed of convergence to the estimate of αR.

3.4. Results (III): Guidelines for Selecting Methods

Tables 6 and 7 provide a simplified view of the results concerning method comparisons. It would
also be interesting to know, for particular scenarios (i.e., for practical applications of the two-clock
synchronization problem), which method is best suited, and also to grasp some general idea of the
magnitudes of the performance measures that the methods produce (The average performance values
are only of secondary importance in this paper, though, since they come from the particular extreme
values in configuration axes of Table 1, that have been selected for covering a wide variety of scenarios
and not for reflecting what happens in any particular one).

Unfortunately, in our experiments we have 2048 different scenarios, because we have simulated
all the possible combinations of extreme positions in the configuration axes of Table 1, and listing all the

Sensors 2019, 20, 4808 15 of 28

performance measures of each method in each scenario would be impractical; a more concise account
of the results is required for reaching meaningful, generalizable conclusions. Therefore, instead of
studying particular scenarios, we have partitioned all of them into clusters (in a reduced number,
ranging from 5 to 8) for each performance measureMi. Each cluster contains scenarios for which the
synchronization methods produce a distinctive pattern in the magnitudes ofMi, what we have called
a behaviour. After clustering, it is much easier and useful to draw meaningful conclusions for the
behaviour observed in each cluster than considering individual scenarios.

In order to facilitate the identification of the scenarios contained in a given cluster, and thus
to identify the pertinence of that behaviour for a given practical application where two-clock
synchronization is to be solved, clusters have been labelled as described in the following.
Each particular scenario in our experiments corresponds to a combination of extreme positions of the
configuration axes, that can be either at their minimum values (‘−’ or ‘0’) or at their maximum (‘+’ or
‘1’), therefore it can be denoted as a unique binary number of 11 bits, one-bit position per configuration
axis for an easier interpretation of the most important axes extreme positions. The reader can refer to
Table 8 (where the columns labelled with ‘UC*’, meaning Use Case, will be explained in Section 3.4).
A given cluster of scenarios can be denoted as a number using three digits: ‘+’ if all the scenarios
in the cluster have that axis at the maximum value, ‘-’ if all have it at the minimum value, and ‘*’,
if the axis has different values in different scenarios of the cluster. (Obtaining this three-digit number
for a cluster of scenarios denoted as binary numbers can be done automatically if we cast it as the
problem of finding the minimal simplification of a propositional logic formula. We have used for that
purpose the exact Quine–McCluskey algorithm [43], particularly its efficient implementation in [44]).
Such specification is simple enough for identifying the scenarios contained into the cluster concisely.

Table 8. Interpretation of axes and use cases of method selection. 6= stands for αR 6= 1, and = for
αR = 1.

Axis Interpretation of the Axis Being ‘+’ (‘-’ Would Be the Opposite) UC1 UC2 UC3 UC4

3 (4) Clock freq. in m1 (m2) higher than nominal. 6= 6= 6= =

5 m2 clock started before m1 clock. + +

6 Long round trips (transmissions + m2 exec.). - - - +

7 Transmissions slower than m2 exec. - - + +

8 High asimmetry in transmission times. - - - +

9 Large uncert. (variance) in round trips. - + - +

10 Uncert. in transmissions larger than in m2 exec. - - +

11 Long gaps between consecutive exchanges. * + - +

The partitioning of the 2048 scenarios into clusters for a given performance measureMi is hard,
since the total number of possible clusterings in a set of 2048 elements is too large (Given by the Bell
number [45]). Therefore, finding clusters that contain scenarios exhibiting a distinctive behaviour
in the performanceMi can only be done approximately. In our case, we have used an incremental
procedure, starting by considering as a preliminary cluster each of the blocks of scenarios already
found when optimizing unimodality in the analysis of the previous section; the rationale for this is
that unimodality is clearly a sign of a compact, unique behaviour in a performance measure. Then,
we have merged those preliminary clusters to each other as long as the result continue exhibiting,
through visual inspection, similar behaviours in the magnitudes of the measure, until the smallest
possible amount of clusters are left, reaching the number of 5–8 clusters commented before (Notice
that merging blocks used in the results of Tables 6 and 7 may hide orderings that were shown there.
Concretely, this happens with the methods and measures collected in cells (M2, DGP), (M4, B′s),
(M12, DGP) and (M12, NTP)).

Sensors 2019, 20, 4808 16 of 28

Our procedure has produced the clusterings shown in the figures reported in Appendix A
(Figures A1–A10): each figure corresponds to the clustering obtained on a given performance measure
Mi, and shows the patterns that we have found, arranged in rows; each pattern is a given cluster or
behaviour exhibited by all the synchronization methods inMi. In Figure 2 we replicate the first of
those Figure A1, corresponding to theM1 (αR − entry) measure, for the reader’s convenience in order
to illustrate their content.

Figure 2. On the right side, from top to bottom, the six distinctive behaviours—clusters of
scenarios—found for theM1 (αR − entry) measure, arranged in six rows. The abscissa is the magnitude
of that measure (number of iterations of the methods before entering steady-state). Each method within
a behaviour has a point marker with its average value in the measure and ±1σ intervals around it (only
illustrative of the dispersion, due to skewness). The lower the values, the better. The behaviours are
labelled with the sets of scenarios that produce them (axes at their minimum extreme (−) or at their
maximum (+) in all scenarios of the cluster). In square brackets, we also indicate the practical use cases
that match the behaviours, from the ones described in Section 3.4.

These figures can be used as a guide to select the best two-clock synchronization algorithm for
a given practical application in a quite direct manner: if the application configuration axes are at
positions that match any of the behaviours shown in the figures for the performance measures of
interest, the method of choice should be similar to the one with the best performance in those figures.

Use Cases

As practical examples of the use of Figures A1–A10 to select a synchronization method for a given
application, we describe here a few common use cases (UC). The last columns of Table 8 summarizes
them by indicating the position of the configuration axes that a scenario should have; in that table
‘ 6=’ abbreviates ‘3 6= 4’ (i.e., αr 6= 1) and ‘=’ abbreviates ‘3 = 4’ (i.e., αR = 1); blank entries are not at
any extreme in the corresponding UC; ‘*’ means that the extreme can be freely set at least in some
particular instantiation of the UC.

Notice that the use cases we have considered here are very generic ones for the sole purpose
of illustrating the utility of our statistical results (although their text can be translated directly to
precise positions in the configuration axes of our framework); any particular application can vary in
the indicated axes extremes. For completing the possibilities of use of our study in real cases, we finish
this section with a particular use case in robotics.

Sensors 2019, 20, 4808 17 of 28

• [UC1] Embedded application. This case of use represents a central embedded m1 device (e.g.,
an SBC with a microprocessor) communicating with a number of slower microcontrollers that
manage the rest of sensors (several m2), all connected through a PCB short-length bus (e.g., I2C)
and being powered up nearly simultaneously, with no provision for clock disciplining and not
much computer power either. The gap between consecutive two-way message exchanges can be
varied depending on the particular use of the system.

• [UC2] Mobile robot. A mobile robot is usually equipped with an on-board laptop with
not-too-high computational power that gathers information from several sensors through USB
connections (no network in between), being that all of these sensors are controlled by CPUs much
slower than the one in the laptop. The sensoric hardware is usually powered up before the laptop
is. Transmission times have a larger variance than in UC1 when we consider the non-real-time
software in the laptop. The period of sensor/actuation sampling in a service mobile robot is
usually of tenths of seconds, which limits the possibility of reducing the gap between consecutive
two-way message exchanges beyond that. Since an important concern in mobile robots is the
duration of their battery, computational savings are usually desirable.

• [UC3] Domotic application. Home automation hardware and software are particularly diverse
since the market is still very fragmented [46]. Here we consider a very generic case where
relatively fast and deterministic transmissions exist between the central hub/gateway, that we
consider having a relatively high computational power, and the sensor devices, but those devices
are faster in computing than transmitting. We also consider a short sampling period of the sensors
and therefore a short gap between consecutive two-way message exchanges.

• [UC4] Remote surveillance. In remote surveillance a number of sensory devices are placed at
a considerable distance from the central station, a modern computer capable of handling graphical
interfaces, that samples them periodically. We assume an Ethernet connection that uses a general
network to access the devices, i.e., routing with possible different paths in both directions, which is
likely to produce long transmission delays with large variance and asymmetry. It is reasonable
to consider the sensors to be powered up before the central station starts to work, and, since the
transmissions are relatively slow, the gap between consecutive two-way message exchanges
cannot be short. Unlike the previous use cases, all devices being a part of a network provides
them with the possibility of disciplining their clocks, i.e., having αR ' 1.

After consulting Figures A1–A10 looking for behaviours that match the UC configurations of axes
shown in Table 8, the best method depending on which measureMi we consider more important
is shown in Table 9. In that table we have indicated the recommended method on average and, in
parentheses, which alternative should be selected, if available, that has a better average computational
cost according to Figure A7. We have also added a variant of UC2 in that table (UC2’) that assumes
some clock discipline is performed onboard the robot, i.e., αR ' 1. In that case, both the DGP-α1 and
the NTP methods produce the same βR − entry average results, with NTP having a slightly better
average execution time.

As a more detailed example of the use of our statistical analyses for selecting a two-clock
synchronization method, let us consider a particular case in robotics taken from the general paradigm
of UC2: the CRUMB robot, a mobile system we employ in our research based on a Kobuki platform
augmented with a manipulator and other sensors (Figure 3). This system exhibits the star-like
transmission topology we have focused on in this paper, being that the laptop is a central device
in charge of gathering data from multiple sensors and making decisions (navigation, mapping,
pick-and-delivery tasks, ...).

Sensors 2019, 20, 4808 18 of 28

Table 9. Recommended synchronization methods for the use cases in Section 3.4.

UC
αR

Entry

βR

Entry

αR

Error

βR

Error

αR

Uncert.

βR

Uncert.

1 D (R) D (R) B (D) D (R) D D

2 D (R) D (R) B (D) D (R) D D

2’ D (R) D1(N)/N B (D) D1 (N) D D1 (N)

3 D (R) D (R)
B (D)

R (D)
D (R) D D

4 R R (N) R (D)
D (D1)

D1 (N)
D D1 (N)

(D)—DGP; (D1)—DGP-α1; (B)—Berthaud’s; (N)—NTP; (R)—Regression.

(a) (b)

Figure 3. (a) CRUMB: a Turtlebot-2 robot composed of a Kobuki mobile base, a manipulator mounted
on top and room for placing a laptop and other possible sensors [47]. (b) Star-like topology of the data
transmissions in this robot, where the laptop acts as the central device.

For illustrating the selection of a method for this system, we can consider the laptop (m1) and the
base (m2), since the latter contains multiple sensory devices itself and the former can provide the data
from the others. In that configuration, m1 is an Intel Celeron @2.16GHz, which would yield a nominal
clock resolution of 0.43 ns; however, since the OS (Linux) only provides nanosecond resolution, we
take r1 = 1 ns instead. That laptop is usually connected to the Internet and runs a clock disciplining
software (embedded in the NTP protocol), thus we can assume α1 = r1/τ1 ' 1→ τ1 = 1 ns. On the
other side, m2 is an embedded computer that the manufacturer assures it does sensor sampling at a rate
of 50 Hz; in particular, it is an STM32 256K high-performance microcontroller of a model undisclosed
by the manufacturer but that corresponds to a clock of @72MHz in the information publicly available
for that minimal specifications and family, which means that r2 = 14 ns. Since this microcontroller has
no clock disciplining, we can assume some drift for the clock resolution, e.g., α2 ' 0.9→ τ2 = 16 ns.

As for the transmissions, m1 and m2 are connected through USB 2.0, that provides 60 MB/s.
The data transmitted in the m2 → m1 direction consists mainly of the information read from a bumper,
a cliff detector, a wheel drop detector, a gyro sensor and the battery level; all in all, this amounts to
about 20 bytes, that could be physically transmitted in 318 ns; adding a few bytes in the other direction

Sensors 2019, 20, 4808 19 of 28

and a minimal amount of m1 software processing of the data, it would be typical an expected round
trip time (Ert) of a few hundreds of microseconds plus the time spent in m2 for gathering the sensory
data. Due to the processing in m1, there would be some variance in the round trip time (Vrt; on the
other hand, the microcontroller can be assumed to be practically deterministic); taking into account
the tenths of millisecond resolution of task preemption in a standard Linux OS, we can consider that
variance to be similar to the one of a uniform distribution for the [0, 10] ms interval, i.e., Vrt ' 8 µs2.

Transmissions between this pair of devices are quite symmetrical if we consider the few
information going in any of the directions. The proportion of time spent in the transmissions plus the
m1 processing time must also be quite short compared to the time spent in the base microcontroller
to gather the sensory data (1/50s = 20 ms); that proportion (Pnet/m2) would then be around 0.01.
Finally, the gap between consecutive exchange messages can be established as for any basic mobile
robot operations, where it is typical to process sensory information every 100–200 ms, and we can also
assume that the time between the base being started up (t0.2 = 0 s) and the laptop finishing its loading
of the OS (t0.1) will be a few seconds, e.g., 10 s, which means that βR = 0.9 · 10 = −9. Notice that if we
would like to consider each of the sensors of the base individually (as a separate mi), but using the
same microcontroller, the only variation in all these specifications would be t0.2 to represent the time
offset between the sequential sensor data gathering.

In summary, our particular robotic system can be mapped into the positions of the axes shown in
Table 10. The last two columns in Table 10 indicate, in a linear scale bounded to 0 to 1, the normalized
position of the system in each axis if we take into consideration the bounds for the extremes given in
Table 1, and the closest extreme to that position (‘-’ meaning ‘0’, ‘+’ meaning ’1’), respectively.

The data collected in the last column of Table 10 can now be directly used to select the
best two-clock synchronization method for the system, by looking for those closest extremes in
Figures A1–A10. As explained in the introduction, in a pairwise system we are interested in:

Table 10. Configuration axes positions of the CRUMB robot example.

Axis Name Value Position [0...1] Closest Extreme

1 τ1 1 ns 0 1-

2 τ2 16 ns 0.16 2-

3 α1 '1 0.33 3-

4 α2 0.9 0.27 4-

5 βR −9 s 0.49 5-/+

6 EMrt 20,200 µs 0.0192 6-

7 PEnet/m2 0.01 0 7-

8 Symmetry 1 1 8+

9 Vrt 8 µs2 0 9-

10 PVnet/m2 0.99 1 10+

11 Gap 200 ms 1 11+

(i) The quality of the estimation: convergence (i.e.,M1−2), accuracy (i.e.,M3−4), and precision
(mostlyM11−12).

(ii) The existence of hard guarantees: only DGP, DGP-α1 and B’s provide those.
(iii) The constraints existing in the system: computational cost, mainlyM7 andM8.
(iv) The number of estimated parameters: both αR and βR, or only βR as it happens with NTP and

DGP-α1.

We do not use here the rest of performance measures for their utility is related to more specific
technical aspects, as explained in Appendix A.

Sensors 2019, 20, 4808 20 of 28

In the particular case of this robotic system, we should use non-hard guaranteed methods only if
they would provide better quality. The computational cost of the method will be supported by the
laptop onboard the robot, thus it is important to reduce it as much as possible in order to reduce laptop
battery consumption and thus to extend operational autonomy.

Table 11 shows the behaviours identified in Figures A1–A10 for the axes extremes listed in the
last column of Table 10, and also which method performs better in each measure of interest. It is easy
to see that the most distinctive measures are accuracy and computational cost; if we are concerned
by computational cost—battery life— , and need a good quality in the estimate plus an estimation of
both αR and betaR, the choice should be DGP. B’s would be the method of choice only if the accuracy
of the estimation of betaR is crucial (at the cost of much more computational cost and slightly worse
precision). Convergence to stable estimates is very similar for all methods in the case of αR if the axis
5 is in its greatest extreme, i.e., if the mobile base is started up much longer before the laptop is, but
clearly better in the case of DGP for more normal situations.

Table 11. Selection of methods for the CRUMB robot example.

Measure Name Behaviour Method Ordering

M1 αR − entry 1st DGP < B′s < Reg, all similar

M2 βR − entry 1st if 5+, or 5th if 5- DGP < B′s < Reg, all similar if 5+

M3 αR − error 1st B′s < DGP < Reg

M4 βR − error 1st DGP < B′s < Reg

M7 comp n/a NTP < DGP-α1 < Reg < DGP < B′s

M8 std− comp n/a NTP < DGP-α1 < Reg < DGP < B′s

M11 αR − uncert 1st DGP < B′s, all similar

M12 βR − uncert 1st DGP < B′s, all similar

4. Conclusions

In this work, we have studied the problem of two-clock synchronization under the perspective of
its application to sets of devices that communicate pairwise. There are relevant sensor applications
where this form of synchronization is a core issue: embedded systems, robotics, domotics, etc. In such
systems, clock synchronization is reduced to estimate the two main parameters that relate the clocks:
αR and βR. It is of special importance to consider the uncertainty that the method has on the
estimates (especially for embedded and critical systems), the rigidity of those estimates (hard vs.
soft or stochastic), and its computational cost. Thus a particularized analysis of these systems is of
special interest.

In the paper, we present a through statistical study that reveal some conclusions difficult or
impossible to obtain from analytical approaches. We have selected, from the wide diversity that exists
in the literature, a number of representative clock synchronization methods that can be applied to
pairwise systems (some of them are commonly used as part of general network synchronization).
Our selection of methods has been justified on a taxonomy that reflects the most relevant aspects of the
problem in pairwise applications.

For carrying out a rigorous statistical analysis, we have implemented a rich simulation framework
based on two-way message exchanges that allows us to represent most pairwise systems. It can be
configured with a diversity of “axes”, simulates realistic transmissions between the devices, collects
abundant data from the simulation in the form of performance measures, and conducts statistical tests,
particularly ANOVA, to make comparisons.

Exhaustive simulated experiments have produced a number of interesting results that we claim
can be useful both to detect which characteristic of the application are prone to impair/benefit any
method, and which is the best synchronization approach for it.

Sensors 2019, 20, 4808 21 of 28

Our analyses indicate that geometrical approaches produce the best results in many use-case
applications of two-clock synchronization, and in important performance measures (being DGP-α1
preferrable if computational cost must be reduced). The well-known NTP method, provided that both
clocks are disciplined, performs well if there are long transmission times with high uncertainty, as,
for instance, in remote surveillance applications. More detailed results and implications have been
commented in the previous sections.

In the future we plan to study the dynamics of pairwise clock synchronization, i.e., the case where
the parameters to estimate vary over time, and also the effects of other dynamics of the system in the
problem (e.g., abrupt changes of regimes in transmission delays). This will likely lead to new variants
of the geometrical methods. Applications such as robotics have a special interest for us and therefore
we will dive into their particularities and the role of clock synchronization in their architectures,
a problem that it is often oversighted.

Author Contributions: Conceptualization, J.-A.F.-M.; methodology, J.-A.F.-M. and A.N.; software, J.-A.F.-M. and
R.A.; validation, J.-A.F.-M. and A.C.-M.; resources, A.N. and R.A.; data curation, J.-A.F.-M.; writing—review and
editing, A.C.-M.; funding acquisition, all authors. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been funded by Junta de Andalucía research projects P08-TIC-04282, UMA18-FEDERJA-
108 and UMA18-FEDERJA-113, and by the “Plan Propio de Investigación de la Universidad de Málaga”.

Acknowledgments: The authors would like to thank Pablo Guerrero, Santiago Cárdenas, Conchi Carretero
and Antonio Barrera, all with the Applied Mathematics Dpt. of the University of Málaga (UMA), for the deep
discussions about the mathematical formalization of the process of estimating αR and βR. Jesús Briales also
helped in searching for the optimization of those estimates on complex, noisy surfaces. The authors thankfully
acknowledge the computer resources, technical expertise and assistance provided by the SCBI (Supercomputing
and Bioinformatics) center of the University of Malaga.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Distinctive Performance Behaviours of the Synchronization Methods

This appendix lists all figures corresponding to the clusterings (=behaviours) obtained on the
performance measures Mi when comparing synchronization methods, showing the patterns that
we have found in the methods arranged in rows. We do not include in those figures the clusterings
forM5 (vertex−mode),M6 (vertex−max),M9 (area) andM9 (diag) because they only concern the
comparison between the geometrical approaches (DGP vs. Berthaud’s), already covered in Tables 3–5,
and in all observed behaviours the former method always beats the latter.

Please refer to Section 3.4 for the details of how these figures have been obtained and of their use
for practical applications.

Sensors 2019, 20, 4808 22 of 28

Figure A1. On the right side, from top to bottom, the six distinctive behaviours—clusters of scenarios—
found for theM1 (αR − entry) measure, arranged in six rows. The abscissa is the magnitude of that
measure (number of iterations of the methods before entering steady-state). Each method within a
behaviour has a point marker with its average value in the measure and ±1σ intervals around it (only
illustrative of the dispersion, due to skewness). The lower values, the better. The behaviours are
labelled with the sets of scenarios that produce them (axes at their minimum extreme (−) or at their
maximum (+) in all scenarios of the cluster). In square brackets, we also indicate the practical use cases
that match the behaviours, from the ones described in Section 3.4.

Figure A2. Eight distinctive behaviours have been found in the scenarios forM2 (βR − entry) when
αR = 1. Axes 3 and 4 must be at the same extreme position to assure αR = 1. Top-right) Zoom in on
the average values at the left-most part of the first five behaviours.

Sensors 2019, 20, 4808 23 of 28

Figure A3. The seven distinctive behaviours found in the scenarios forM2 (βR − entry) when αR 6= 1
(consequently, axes 3 and 4 must be at different extreme positions).

Figure A4. The eight distinctive behaviours found in the scenarios forM3 (αR − error; its magnitude
is in the abscissa). Right Zoom in on the first behaviour.

Sensors 2019, 20, 4808 24 of 28

Figure A5. The six distinctive behaviours found in the scenarios forM4 (βR − error; its magnitude,
in seconds, in the abscissa) when αR = 1. The x-axis has been set to logarithmic scale for better
observation of the small differences among algorithms in each behaviour. For the last four behaviours,
additional zooms have been included.

Figure A6. The six distinctive behaviours found forM4 (βR − error; its magnitude, in seconds, in
the abscissa) when αR 6= 1 (axes 3 and 4 are at different extreme positions here). We have used a
logarithmic x axis for better distinction between methods in each behaviour, and added some zoom.

Sensors 2019, 20, 4808 25 of 28

(a) (b)

Figure A7. All scenarios produce a single behaviour for all methods both in (a)M7 (comp) and (b)M8

(std− comp). The magnitude of the measure is in the abscissa, in seconds.

Figure A8. The five distinctive behaviours found in all scenarios forM11 (αR − uncert), with zoom in
those with more similar measure for both methods.

Sensors 2019, 20, 4808 26 of 28

Figure A9. The six distinctive behaviours found in all scenarios forM12 (βR − uncert) when αR = 1,
with logarithmic x axis and zoom in some behaviours for better showing the methods differences.
Axes 3 and 4 are always in the same extreme position.

Figure A10. The six distinctive behaviours found in all scenarios forM12 (βR − uncert) when αR 6= 1
(axes 3 and 4 must therefore be at different extreme positions), with zoom in those with more similar
measure for both methods.

References

1. Liu, Y.; Shen, Y.; Guo, D.; Win, M. Network Localization and Synchronization Using Full-Duplex Radios.
IEEE Trans. Signal Process. 2018, 66, 714–728. [CrossRef]

2. Fernández, J.; Hernando, A.; Ortega, J.; Santidrian, L. Synchronization in a Wireless Sensor Network
Designed for Surveillance Applications. In Proceedings of the 2009 Fifth International Conference on
Wireless and Mobile Communications, Beijing, China, 24–26 September 2009; pp. 369–372.

http://dx.doi.org/10.1109/TSP.2017.2770090

Sensors 2019, 20, 4808 27 of 28

3. Li, J.; Jia, L.; Liu, G. Multisensor Time Synchronization Error Modeling and Compensation Method for
Distributed POS. IEEE Trans. Instrum. Meas. 2016, 65, 2637–2645. [CrossRef]

4. Garone, E.; Gasparri, A.; Lamonaca, F. Clock synchronization protocol for wireless sensor networks with
bounded communication delays. Automatica 2015, 59, 60–72. [CrossRef]

5. Sundararaman, B.; Buy, U.; Kshemkalyani, A. Clock synchronization for wireless sensor networks: A Survey.
Ad Hoc Netw. 2005, 3, 281–323. [CrossRef]

6. Lamport, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 1978,
21, 558–565. [CrossRef]

7. Rhee, I.K.; Lee, J.; Kim, J.; Serpedin, E.; Wu, Y.C. Clock Synchronization in Wireless Sensor Networks:
An Overview. Sensors 2009, 9, 56–85. [CrossRef]

8. Sarvghadi, M.; Wan, T. Overview of time synchronization protocols in wireless sensor networks. In Proceedings
of the 2nd International Conference on Electronic Design (ICED), Penang, Malaysia, 19–21 August 2014;
pp. 204–209.

9. Lundelius, J.; Lynch, N. An Upper and Lower Bound for Clock Synchronization. Inf. Control 1984, 62, 190–204.
[CrossRef]

10. Reginald, F.; Welch, J. Brief Announcement: A Tight Lower Bound for Clock Synchronization in Odd-Ary
M-Toroids. In Proceedings of the 32nd International Symposium on Distributed Computing (DISC 2018),
New Orleans, LA, USA, 15–19 October 2018.

11. Gusella, R.; Zatti, S. The Accuracy of the Clock Synchronization Achieved by TEMPO in Berkeley UNIX
4.3BSD. IEEE Trans. Softw. Eng. 1989, 15, 847–853. [CrossRef]

12. Elson, J.; Girod, L.; Estrin, D. Fine-grained network time synchronization using reference broadcasts.
In Proceedings of Fifth Symposium on Operating Systems Design and Implementation (OSDI), Boston, MA,
USA, 9–11 December 2002; Volume 36, pp. 147–163.

13. Christian, F. Probabilistic clock synchronization. Distrib. Comput. 1989, 3, 146–158. [CrossRef]
14. Wu, Y.; Chaudhari, Q.; Serpedin, E. Clock Synchronization of Wireless Sensor Networks. IEEE Signal

Process. Mag. 2011, 28, 124–138. [CrossRef]
15. Lundelius, J.; Lynch, N. A New Fault-Tolerant Algorithm for Clock Synchronization. In Proceedings of the

3rd annual ACM Symposium on Principles of Distributed Computing (PODC), Vancouver, BC, Canada,
27–29 August 1984.

16. Stanković, M.; Stanković, S.; Johansson, K. Distributed time synchronization for networks with random
delays and measurement noise. Automatica 2018, 93, 126–137. [CrossRef]

17. Xie, K.; Cai, Q.; Fu, M. A fast clock synchronization algorithm for wireless sensor networks. Automatica
2018, 92, 133–142. [CrossRef]

18. Bolognani, S.; Carli, R.; Lovisari, E.; Zampieri, S. A Randomized Linear Algorithm for Clock Synchronization
in Multi-Agent Systems. IEEE Trans. Autom. Control 2016, 61, 1711–1726. [CrossRef]

19. Leng, M.; Wu, Y.C. Low-Complexity Maximum-Likelihood Estimator for Clock Synchronization of Wireless
Sensor Nodes Under Exponential Delays. IEEE Trans. Signal Process. 2011, 59, 4860–4870. [CrossRef]

20. Fernández-Madrigal, J.; Martínez-Tenor, A. Two-Clocks Synchronization for Networked Sensors.
In Proceedings of the IEEE Sensors, Valencia, Spain, 2–5 November 2014.

21. Saputra, O.; Wei-Chung, T.; Tsung-Han, C. Hough Transform-Based Clock Skew Measurement Over
Network. IEEE Trans. Instrum. Meas. 2015, 64, 3209–3216. [CrossRef]

22. Giorgi, G. An Event-Based Kalman Filter for Clock Synchronization. IEEE Trans. Instrum. Meas. 2015,
64, 449–457. [CrossRef]

23. Mills, D. Internet Time Synchronization. The Network Time Protocol. IEEE Trans. Commun. 1991, 39, 1482–1493.
[CrossRef]

24. Maxwell, S.; Delaney, H. Designing Experiments and Analyzing Data. A Model Comparison Perspective, 2nd ed.;
Lawrence Erlbaum Assoc.: London, UK, 2004; ISBN 0-8058-3718-3.

25. Sichitiu, M.; Veerarittiphan, C. Simple, Accurate Time Synchronization for Wireless Sensor Networks.
In Proceedings of the IEEE Conference on Wireless Communications and Networking (WCNC), New Orleans,
LA, USA, 16–20 March 2003; Volume 2, pp. 1266–1273.

26. Arvind, K. Probabilistic clock synchronization in distributed systems. IEEE Trans. Parallel Distrib. Syst. 1994,
5, 474–487. [CrossRef]

http://dx.doi.org/10.1109/TIM.2016.2598020
http://dx.doi.org/10.1016/j.automatica.2015.06.014
http://dx.doi.org/10.1016/j.adhoc.2005.01.002
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.3390/s90100056
http://dx.doi.org/10.1016/S0019-9958(84)80033-9
http://dx.doi.org/10.1109/32.29484
http://dx.doi.org/10.1007/BF01784024
http://dx.doi.org/10.1109/MSP.2010.938757
http://dx.doi.org/10.1016/j.automatica.2018.03.054
http://dx.doi.org/10.1016/j.automatica.2018.03.004
http://dx.doi.org/10.1109/TAC.2015.2479136
http://dx.doi.org/10.1109/TSP.2011.2160857
http://dx.doi.org/10.1109/TIM.2015.2450293
http://dx.doi.org/10.1109/TIM.2014.2340631
http://dx.doi.org/10.1109/26.103043
http://dx.doi.org/10.1109/71.282558

Sensors 2019, 20, 4808 28 of 28

27. Berthaud, J. Time Synchronization Over Networks Using Convex Closures. IEEE/ACM Trans. Netw. 2000,
8, 265–277. [CrossRef]

28. Sugihara, R.; Gupta, R. Clock Synchronization with Deterministic Accuracy Guarantee. In Proceedings of the
EWSN 2011: Wireless Sensor Networks, Bonn, Germany, 23–25 February 2011; Lecture Notes in Computer
Science; Volume 6567.

29. Lemmon, M.; Ganguly, J.; Xia, L. Model-based Clock Synchronization in Networks with Drifting Clocks.
In Proceedings of the IEEE Pacific Rim International Symposium on Dependable Computing (PRDC),
Los Angeles, CA, USA, 20 December 2000.

30. Institute of Electrical and Electronics Engineers, IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems; IEEE: Palo Alto, CA, USA, 2002.

31. Duda, A.; Harrus, G.; Haddad, Y.; Bernard, G. Estimating global time in distributed systems. In Proceedings
of the 7th ICDCS, Berlin, Germany, September 1987.

32. Ashton, P. Algorithms for Off-Line Clock Synchronization; Technical report; Department of Computer Science,
University of Canterbury: Christchurch, New Zealand, 1995.

33. Cao, J.; Cleveland, W.S.; Lin, D.; Sun, D.X. Internet Traffic Tends Toward Poisson and Independent as the
Load Increases. In NonLinear Estimation and Classification; Springer: New York, NY, USA, 2002.

34. Gago-Benítez, A.; Fernández-Madrigal, J.; Cruz-Martín, A. A computationally efficient algorithm for modeling
multi-regime delays in the sensory flow of networked telerobots. In Proceedings of the International Conference
on Control, Robotics and Cybernetics (ICCRC), Cape Town, South Africa, 18–19 August 2012.

35. Gago-Benitez, A.; Fernández-Madrigal, J.; Cruz-Martín, A. Log-logistic modelling of sensory flow delays in
networked telerobots. IEEE Sens. 2013, 13, 2944–2953. [CrossRef]

36. Maróti, M.; Kusy, B.; Simon, G.; Ld́eczi, A. The flooding time synchronization protocol. In Proceedings
of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA,
3–5 November 2004.

37. Gago-Benítez, A.; Fernández-Madrigal, J.; Cruz-Martín, A. Marginal Probabilistic Modeling of the Delays in
the Sensory Data Transmission of Networked Telerobots. Sensors 2014, 14, 2305–2349. [CrossRef] [PubMed]

38. Murphy, K.; Myors, B. Statistical Power Analysis. A Simple and General Model for Traditional and Modern
Hypothesis Tests, 2nd ed.; Lawrence Erlbaum Assoc.: London, UK, 2004; ISBN 0-8058-4525-9.

39. Jette, M.; Yoo, A.; Grondona, M. SLURM: Simple Linux Utility for Resource Management. In Proceedings of
the Job Scheduling Strategies for Parallel Processing (JSSPP), Seattle, WA, USA, 24 June 2003; Lecture Notes
in Computer Science.

40. Hartigan, J.; Hartigan, P. The Dip Test of Unimodality. Ann. Stat. 1985, 13, 70–84. [CrossRef]
41. Price, N. Implementation of the Dip Test in Matlab. Available online: http://www.nicprice.net/diptest/

(accessed on 14 March 2019).
42. Tukey, J. Comparing individual means in the analysis of variance. Biometrics 1949, 5, 99–114. [CrossRef]

[PubMed]
43. Curtis, H. McCluskey’s Method. In A New Approach to the Design of Switching Circuits; The Bell Laboratories

Series; D. van Nostrand Company, Inc.: Princeton, NJ, USA, 1962; Chapter 2.3, pp. 90–160.
44. Käström, P. Implementation of the Quine-McCluskey Algorithm, Optimized for Speed. Available online:

https://es.mathworks.com/matlabcentral/fileexchange/37118-mintruthtable-tt-flags (accessed on
16 April 2019).

45. Bell, E. The iterated exponential integers. Ann. Math. 1938, 39, 539–557. [CrossRef]
46. Adroit Market Research Expects the Home Automation Market to be Worth US$46.22 Billion by

2025. Available online: http://knxtoday.com/2019/07/13879/adroit-market-research-expects-the-home-
automation-market-to-be-worth-us46-22-billion-by-2025.html (accessed on 14 February 2020).

47. Fernández-Madrigal, J.; Cruz-Martín, A. The CRUMB Mobile Robot. Available online: https://babel.isa.
uma.es/crumb/index.php/sample-page/ (accessed on 31 July 2020).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/90.842147
http://dx.doi.org/10.1109/JSEN.2013.2263381
http://dx.doi.org/10.3390/s140202305
http://www.ncbi.nlm.nih.gov/pubmed/24481232
http://dx.doi.org/10.1214/aos/1176346577
http://www.nicprice.net/diptest/
http://dx.doi.org/10.2307/3001913
http://www.ncbi.nlm.nih.gov/pubmed/18151955
https://es.mathworks.com/matlabcentral/fileexchange/37118-mintruthtable-tt-flags
http://dx.doi.org/10.2307/1968633
http://knxtoday.com/2019/07/13879/adroit-market-research-expects-the-home-automation-market-to-be-worth-us46-22-billion-by-2025.html
http://knxtoday.com/2019/07/13879/adroit-market-research-expects-the-home-automation-market-to-be-worth-us46-22-billion-by-2025.html
https://babel.isa.uma.es/crumb/index.php/sample-page/
https://babel.isa.uma.es/crumb/index.php/sample-page/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work and Synchronization Methods
	Statistical Analysis of Methods and Systems
	Overview of the Simulation and Statistical Frameworks
	Results (I): Influence of the Scenario on Clock Synchronization
	Results (II): Comparative Performance of Synchronization Methods
	Results (III): Guidelines for Selecting Methods

	Conclusions
	Distinctive Performance Behaviours of the Synchronization Methods
	References

